1
|
Dutton LC, Dudhia J, Guest DJ, Connolly DJ. CRISPR/Cas9 gene editing in induced pluripotent stem cells to investigate the feline hypertrophic cardiomyopathy causing MYBPC3/R820W mutation. PLoS One 2024; 19:e0311761. [PMID: 39388496 PMCID: PMC11466433 DOI: 10.1371/journal.pone.0311761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heart disease in domestic cats, often leading to congestive heart failure and death, with current treatment strategies unable to reverse or prevent progression of the disease. The underlying pathological processes driving HCM remain unclear, which hinders novel drug discovery. The aim of this study was to generate a cellular model of the feline HCM-causing MYBPC3 mutation R820W. Using CRISPR/Cas9 gene editing we introduced the R820W mutation into a human induced pluripotent stem cell (iPSC) line. We differentiated both homozygous mutant clones and isogenic control clones to cardiomyocytes (iPSC-CMs). Protein quantification indicated that haploinsufficiency is not the disease mechanism of the mutation. Homozygous mutant iPSC-CMs had a larger cell area than isogenic controls, with the sarcomere structure and incorporation of cMyBP-C appearing similar between mutant and control iPSC-CMs. Contraction kinetic analysis indicated that homozygous iPSC-CMs have impaired relaxation and are hypocontractile compared to isogenic control iPSC-CMs. In summary, we demonstrate successful generation of an iPSC model of a feline MYBPC3 mutation, with the cellular model recapitulating aspects of HCM including cellular hypertrophy and impaired relaxation kinetics. We anticipate that further study of this model will lead to improved understanding of the disease-causing molecular mechanism, ultimately leading to novel drug discovery.
Collapse
Affiliation(s)
- Luke C. Dutton
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - Deborah J. Guest
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - David J. Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| |
Collapse
|
2
|
Miyaji T, Kasuya R, Sawada A, Sawamura D, Kitaoka Y, Miyazaki M. Akt1 deficiency does not affect fiber type composition or mitochondrial protein expression in skeletal muscle of male mice. Physiol Rep 2024; 12:e70048. [PMID: 39256892 PMCID: PMC11387151 DOI: 10.14814/phy2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Insulin-like growth factor-1-induced activation of ATP citrate lyase (ACLY) improves muscle mitochondrial function through an Akt-dependent mechanism. In this study, we examined whether Akt1 deficiency alters skeletal muscle fiber type and mitochondrial function by regulating ACLY-dependent signaling in male Akt1 knockout (KO) mice (12-16 weeks old). Akt1 KO mice exhibited decreased body weight and muscle wet weight, with reduced cross-sectional areas of slow- and fast-type muscle fibers. Loss of Akt1 did not affect the phosphorylation status of ACLY in skeletal muscle. The skeletal muscle fiber type and expression of mitochondrial oxidative phosphorylation complex proteins were unchanged in Akt1 KO mice compared with the wild-type control. These observations indicate that Akt1 is important for the regulation of skeletal muscle fiber size, whereas the regulation of muscle fiber type and muscle mitochondrial content occurs independently of Akt1 activity.
Collapse
Affiliation(s)
- Tatsuya Miyaji
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
| | - Ryuichi Kasuya
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
| | - Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation SciencesHealth Sciences University of HokkaidoTobetsuJapan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health SciencesHokkaido UniversitySapporoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaJapan
| | - Mitsunori Miyazaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
- Department of Physical Therapy, School of Rehabilitation SciencesHealth Sciences University of HokkaidoTobetsuJapan
| |
Collapse
|
3
|
Nielsen SDH, Sahebekhtiari N, Huang Z, Young JF, Rasmussen MK. Comparison of secreted miRNAs and proteins during proliferation and differentiation of bovine satellite cells in culture implies potential roles in regulating myogenesis. Gene 2024; 894:147979. [PMID: 37952749 DOI: 10.1016/j.gene.2023.147979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.
Collapse
Affiliation(s)
| | - Navid Sahebekhtiari
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Ziyu Huang
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Jette Feveile Young
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | |
Collapse
|
4
|
Wei X, Wang J, Sun Y, Zhao T, Luo X, Lu J, Hou W, Yu X, Xue L, Yan Y, Wang H. MiR-222-3p suppresses C2C12 myoblast proliferation and differentiation via the inhibition of IRS-1/PI3K/Akt pathway. J Cell Biochem 2023; 124:1379-1390. [PMID: 37565526 DOI: 10.1002/jcb.30453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.
Collapse
Affiliation(s)
- Xiaofang Wei
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hosptial, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yaqin Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Tong Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| |
Collapse
|
5
|
Tokuda N, Watanabe D, Naito A, Yamauchi N, Ashida Y, Cheng AJ, Yamada T. Intrinsic contractile dysfunction due to impaired sarcoplasmic reticulum Ca 2+ release in compensatory hypertrophied muscle fibers following synergist ablation. Am J Physiol Cell Physiol 2023; 325:C599-C612. [PMID: 37486068 DOI: 10.1152/ajpcell.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Synergist ablation (SA) is an experimental procedure for the induction of hypertrophy. However, SA causes a decrease in specific force (i.e., force per cross-sectional area), likely due to excessive muscle use. Here, we investigated the mechanisms behind the SA-induced intrinsic contractile dysfunction, especially focusing on the excitation-contraction (EC) coupling. Male Wistar rats had unilateral surgical ablation of gastrocnemius and soleus muscles to induce compensatory hypertrophy in the plantaris muscles. Two weeks after SA, plantaris muscle was dissected from each animal and used for later analyses. SA significantly increased the mean fiber cross-sectional area (+18%). On the other hand, the ratio of depolarization-induced force to the maximum Ca2+-activated specific force, an indicator of sarcoplasmic reticulum (SR) Ca2+ release, was markedly reduced in mechanically skinned fibers from the SA group (-51%). These functional defects were accompanied by an extensive fragmentation of the SR Ca2+ release channel, the ryanodine receptor 1 (RyR1), and a decrease in the amount of other triad proteins (i.e., DHPR, STAC3, and junctophilin1). SA treatment also caused activation of calpain-1 and increased the amount of NADPH oxidase 2, endoplasmic reticulum (ER) stress proteins (i.e., Grp78, Grp94, PDI, and Ero1), and lipid peroxidation [i.e., 4-hydroxynonenal (4-HNE)] in SA-treated muscles. Our findings show that SA causes skeletal muscle weakness due to impaired EC coupling. This is likely to be induced by Ca2+-dependent degradation of triad proteins, which may result from Ca2+ leak from fragmented RyR1 triggered by increased oxidative stress.NEW & NOTEWORTHY Synergist ablation (SA) has widely been used to understand the mechanisms behind skeletal muscle hypertrophy. However, compensatory hypertrophied muscles display intrinsic contractile dysfunction, i.e., a hallmark of overuse. Here, we demonstrate that SA-induced compensatory hypertrophy is accompanied by muscle weakness due to impaired sarcoplasmic reticulum Ca2+ release. This dysfunction may be caused by the degradation of triad proteins due to the reciprocal amplification of reactive oxygen species and Ca2+ signaling at the junctional space microdomain.
Collapse
Affiliation(s)
- Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Arthur J Cheng
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
6
|
Uemichi K, Shirai T, Takemasa T. Combined effects of functional overload and denervation on skeletal muscle mass and its regulatory proteins in mice. Physiol Rep 2023; 11:e15689. [PMID: 37161590 PMCID: PMC10169777 DOI: 10.14814/phy2.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
Skeletal muscle is a highly pliable tissue and various adaptations such as muscle hypertrophy or atrophy are induced by overloading or disuse, respectively. However, the combined effect of overloading and disuse on the quantitative adaptation of skeletal muscle is unknown. Thus, the aim of this study was to investigate the effects of the combined stimuli of overloading and disuse on mouse skeletal muscle mass and the expression of regulatory factors for muscle protein anabolism or catabolism. Male mice from the Institute Cancer Research were subjected to denervation concomitant with unilateral functional overload or functional overload concomitant with unilateral denervation. Disuse and functional overload were induced by sciatic nerve transection (denervation) and synergist ablation, respectively, and the plantaris muscle was harvested 14 days after the operation. Our results showed that denervation attenuated functional overload-induced muscle hypertrophy and functional overload partially ameliorated the denervation-induced muscle atrophy. P70S6K phosphorylation, an indicator of mechanistic target of rapamycin complex 1 (mTORC1) activation, was not increased by unilateral functional overload in denervated muscles or by unilateral denervation in functional overloaded muscles. Denervation did not affect the increase of LC3-II, a marker of autophagy activation, and ubiquitinated protein expression upon unilateral functional overload. Also, functional overload did not affect ubiquitinated protein expression during unilateral denervation. Thus, our findings suggest that functional overload-induced muscle hypertrophy or denervation-induced muscle atrophy was attenuated by the combined stimuli of overload and denervation.
Collapse
Affiliation(s)
- Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takanaga Shirai
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Miyazaki M, Shimozuru M, Kitaoka Y, Takahashi K, Tsubota T. Regulation of protein and oxidative energy metabolism are down-regulated in the skeletal muscles of Asiatic black bears during hibernation. Sci Rep 2022; 12:19723. [PMID: 36385156 PMCID: PMC9668988 DOI: 10.1038/s41598-022-24251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hibernating animals exhibit an unexplained physiological characteristic of skeletal muscles being atrophy resistance, in which case muscle mass and strength remain almost unchanged both before and after hibernation. In this study, we examined the alterations in the regulatory systems of protein and energy metabolism in the skeletal muscles of Asiatic black bears during hibernation. Skeletal muscle samples (vastus lateralis muscle) were collected from identical individuals (n = 8) during the active (July) and hibernating (February) periods, while histochemical and biochemical analyses were performed. We observed no significant alterations in body weight, muscle fiber size, and fiber type composition during the active and hibernating periods, indicating that the skeletal muscles of bears are very well preserved during hibernation. In hibernating bear skeletal muscles, both regulatory pathways of muscle protein synthesis (Akt/mechanistic target of rapamycin and mitogen-activated protein kinase systems) and proteolysis (ubiquitin-proteasome and autophagy systems) were down-regulated. Gene expression levels of factors regulating oxidative metabolism were also decreased in hibernating bear skeletal muscles. This is likely an adaptive strategy to minimize the energy wasting of amino acids and lipids during hibernation, which is accompanied by a prolonged period of disuse and starvation.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- grid.257022.00000 0000 8711 3200Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553 Japan ,grid.412021.40000 0004 1769 5590Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Michito Shimozuru
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yu Kitaoka
- grid.411995.10000 0001 2155 9872Department of Human Sciences, Kanagawa University, Kanagawa, Japan
| | - Kenya Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Tsubota
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
8
|
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep 2022; 10:e15436. [PMID: 35993446 PMCID: PMC9393907 DOI: 10.14814/phy2.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 04/12/2023] Open
Abstract
Lactate is a metabolic product of glycolysis and has recently been shown to act as a signaling molecule that induces adaptations in oxidative metabolism. In this study, we investigated whether lactate administration enhanced muscle hypertrophy and protein synthesis responses during resistance exercise in animal models. We used male ICR mice (7-8 weeks old) were used for chronic (mechanical overload induced by synergist ablation: [OL]) and acute (high-intensity muscle contraction by electrical stimulation: [ES]) resistance exercise models. The animals were intraperitoneally administrated a single dose of sodium lactate (1 g/kg of body weight) in the ES study, and once a day for 14 consecutive days in the OL study. Two weeks of mechanical overload increased plantaris muscle wet weight (main effect of OL: p < 0.05) and fiber cross-sectional area (main effect of OL: p < 0.05), but those were not affected by lactate administration. Following the acute resistance exercise by ES, protein synthesis and phosphorylation of p70 S6 kinase and ribosomal protein S6, which are downstream molecules in the anabolic signaling cascade, were increased (main effect of ES: p < 0.05), but lactate administration had no effect. This study demonstrated that exogenous lactate administration has little effect on the muscle hypertrophic response during resistance exercise using acute ES and chronic OL models. Our results do not support the hypothesis that elevated blood lactate concentration induces protein synthesis responses in skeletal muscle.
Collapse
Affiliation(s)
- Takanaga Shirai
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohama‐shiKanagawaJapan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Katsuyuki Tokinoya
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
- Division of Clinical Medicine, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Kohei Takeda
- School of Political Science and EconomicsMeiji UniversitySuginami‐kuTokyoJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
9
|
Mao Y, Han CY, Hao L, Bang IH, Bae EJ, Park BH. p21-activated kinase 4 phosphorylates peroxisome proliferator-activated receptor Υ and suppresses skeletal muscle regeneration. J Cachexia Sarcopenia Muscle 2021; 12:1776-1788. [PMID: 34431242 PMCID: PMC8718036 DOI: 10.1002/jcsm.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle regeneration is an adaptive response to injury that is crucial to the maintenance of muscle mass and function. A p21-activated kinase 4 (PAK4) serine/threonine kinase is critical to the regulation of cytoskeletal changes, cell proliferation, and growth. However, PAK4's role in myoblast differentiation and regenerative myogenesis remains to be determined. METHODS We used a mouse model of myotoxin (notexin)-induced muscle regeneration. In vitro myogenesis was performed in the C2C12 myoblast cell line, primary myoblasts, and primary satellite cells. In vivo overexpression of PAK4 or kinase-inactive mutant PAK4S474A was conducted in skeletal muscle to examine PAK4's kinase-dependent effect on muscle regeneration. The regeneration process was evaluated by determining the number and size of multinucleated myofibres and expression patterns of myogenin and eMyHC. To explore whether PAK4 inhibition improves muscle regeneration, mice were injected intramuscularly with siRNA that targeted PAK4 or orally administered with a chemical inhibitor of PAK4. RESULTS p21-activated kinase 4 was highly expressed during the myoblast stage, but expression gradually and substantially decreased as myoblasts differentiated into myotubes. PAK4 overexpression, but not kinase-inactive mutant PAK4S474A overexpression, significantly impeded myoblast fusion and MyHC-positive myotube formation in C2C12 cells, primary myoblasts, and satellite cells (P < 0.01). Conversely, PAK4 silencing led to an 8.7% and a 20.3% increase in the number of multinucleated larger myotubes in C2C12 cells and primary myoblasts. Further, in vivo overexpression of PAK4 by adenovirus injection to mice prior to and after myotoxin-induced injury led to a 52.6% decrease in the number of eMyHC-positive myofibres on Day 5 in tibialis anterior muscles as compared with those injected with control adenoviruses (P < 0.01), while Ad-PAK4S474A showed comparable muscle regeneration parameters. PAK4-induced repression of muscle regeneration coincided with an increase in phosphatase and tensin homologue (PTEN) expression and a decrease in phosphoinositide 3-kinase-Akt signalling. In contrast, PAK4 silencing reduced PTEN expression in mice. Consistent with these findings, prodrug of PAK4 inhibitor CZh-226 (30 mg/kg) orally administered to mice repressed PTEN expression and accelerated myotube formation. Subsequent mechanistic studies revealed that PAK4 directly phosphorylates PPARγ at S273 to increase its transcription activity, thereby up-regulating PTEN expression. Importantly, an analysis of the Genotype-Tissue Expression database showed a positive correlation between PAK4 and PTEN in human skeletal muscle tissues (P < 0.01). CONCLUSIONS p1-activated kinase 4 is a new member of PPARγ kinase, and PAK4 inhibition may have a therapeutic role as an accelerant of muscle regeneration.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| | - Lihua Hao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
10
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Kaneshige A, Kaji T, Zhang L, Saito H, Nakamura A, Kurosawa T, Ikemoto-Uezumi M, Tsujikawa K, Seno S, Hori M, Saito Y, Matozaki T, Maehara K, Ohkawa Y, Potente M, Watanabe S, Braun T, Uezumi A, Fukada SI. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell 2021; 29:265-280.e6. [PMID: 34856120 DOI: 10.1016/j.stem.2021.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.
Collapse
Affiliation(s)
- Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hayato Saito
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Berlin Institute of Health at Charité (BIH) - Universitätsmedizin Berlin, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Shuichi Watanabe
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Fukada SI, Ito N. Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res 2021; 409:112907. [PMID: 34793776 DOI: 10.1016/j.yexcr.2021.112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
13
|
Uezumi A, Ikemoto-Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Nakatani M, Hitachi K, Yamaguchi H, Wakatsuki S, Araki T, Morita M, Yamada H, Toyoda M, Kanazawa N, Nakazawa T, Hino J, Fukada SI, Tsuchida K. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J Clin Invest 2021; 131:139617. [PMID: 33170806 DOI: 10.1172/jci139617] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Age-related sarcopenia constitutes an important health problem associated with adverse outcomes. Sarcopenia is closely associated with fat infiltration in muscle, which is attributable to interstitial mesenchymal progenitors. Mesenchymal progenitors are nonmyogenic in nature but are required for homeostatic muscle maintenance. However, the underlying mechanism of mesenchymal progenitor-dependent muscle maintenance is not clear, nor is the precise role of mesenchymal progenitors in sarcopenia. Here, we show that mice genetically engineered to specifically deplete mesenchymal progenitors exhibited phenotypes markedly similar to sarcopenia, including muscle weakness, myofiber atrophy, alterations of fiber types, and denervation at neuromuscular junctions. Through searching for genes responsible for mesenchymal progenitor-dependent muscle maintenance, we found that Bmp3b is specifically expressed in mesenchymal progenitors, whereas its expression level is significantly decreased during aging or adipogenic differentiation. The functional importance of BMP3B in maintaining myofiber mass as well as muscle-nerve interaction was demonstrated using knockout mice and cultured cells treated with BMP3B. Furthermore, the administration of recombinant BMP3B in aged mice reversed their sarcopenic phenotypes. These results reveal previously unrecognized mechanisms by which the mesenchymal progenitors ensure muscle integrity and suggest that age-related changes in mesenchymal progenitors have a considerable impact on the development of sarcopenia.
Collapse
Affiliation(s)
- Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Heying Zhou
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Masashi Nakatani
- Faculty of Rehabilitation and Care, Seijoh University, Tokai, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuhiro Morita
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Harumoto Yamada
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | | | - Nobuo Kanazawa
- Department of Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG), Tokyo, Japan
| | | | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| |
Collapse
|
14
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Miyazaki M, Moriya N, Takemasa T. Transient activation of mTORC1 signaling in skeletal muscle is independent of Akt1 regulation. Physiol Rep 2021; 8:e14599. [PMID: 33038070 PMCID: PMC7547586 DOI: 10.14814/phy2.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
The regulation of cellular protein synthesis is a critical determinant of skeletal muscle growth and hypertrophy in response to an increased workload such as resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) and its upstream protein kinase Akt1 have been implicated as a central signaling pathway that regulates protein synthesis in the skeletal muscle; however, the precise molecular regulation of mTORC1 activity is largely unknown. This study employed germline Akt1 knockout (KO) mice to examine whether upstream Akt1 regulation is necessary for the acute activation of mTORC1 signaling in the plantaris muscle following mechanical overload. The phosphorylation states of S6 kinase 1, ribosomal protein S6, and eukaryotic translation initiation factor 4E‐binding protein 1 which show the functional activity of mTORC1 signaling, were significantly increased in the skeletal muscle of both wildtype and Akt1 KO mice following an acute bout (3 and 12 hr) of mechanical overload. Akt1 deficiency did not affect load‐induced alteration of insulin‐like growth factor‐1 (IGF‐1)/IGF receptor mRNA expression. Also, no effect of Akt1 deficiency was observed on the overload‐induced increase in the gene expressions of pax7 and myogenic regulatory factor of myogenin. These observations show that the upstream IGF‐1/Akt1 regulation is dispensable for the acute activation of mTORC1 signaling and regulation of satellite cells in response to mechanical overload.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Nobuki Moriya
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan.,Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Tohru Takemasa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Uemichi K, Shirai T, Hanakita H, Takemasa T. Effect of mechanistic/mammalian target of rapamycin complex 1 on mitochondrial dynamics during skeletal muscle hypertrophy. Physiol Rep 2021; 9:e14789. [PMID: 33660929 PMCID: PMC7931617 DOI: 10.14814/phy2.14789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanistic/mammalian target of rapamycin (mTOR) is a central factor of protein synthesis signaling and plays an important role in the resistance training-induced increase in skeletal muscle mass and subsequent skeletal muscle hypertrophy response. In particular, mTOR complex 1 (mTORC1) promotes protein synthesis in ribosomes by activating the downstream effectors, p70S6K and 4EBP1, in skeletal muscle and is highly sensitive to rapamycin, an mTOR inhibitor. Recently, resistance training has also been shown to affect mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria dynamically change their morphology through repeated fusion and fission, which may be key for controlling the quality of skeletal muscle. However, how the mechanisms of mitochondrial dynamics function during hypertrophy in skeletal muscle remains unclear. The aim of this study was to examine the impact of mTOR inhibition on mitochondrial dynamics during skeletal muscle hypertrophy. Consistent with previous studies, functional overload by synergist (gastrocnemius and soleus) ablation-induced progressive hypertrophy (increase in protein synthesis and fiber cross-sectional area) of the plantaris muscle was observed in mice. Moreover, these hypertrophic responses were significantly inhibited by rapamycin administration. Fourteen days of functional overload increased levels of MFN2 and OPA1, which regulate mitochondrial fusion, whereas this enhancement was inhibited by rapamycin administration. Additionally, overload decreased the levels of DRP1, which regulates mitochondrial fission and oxidative phosphorylation, regardless of rapamycin administration. These observations suggest that the relative reduction in mitochondrial function or content is complemented by enhancement of mitochondrial fusion and that this complementary response may be regulated by mTORC1.
Collapse
Affiliation(s)
- Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideto Hanakita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Suzuki J. Effects of hyperbaric environment on endurance and metabolism are exposure time-dependent in well-trained mice. Physiol Rep 2021; 9:e14780. [PMID: 33650813 PMCID: PMC7923584 DOI: 10.14814/phy2.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022] Open
Abstract
Hyperbaric exposure (1.3 atmospheres absolute with 20.9% O2 ) for 1 h a day was shown to improve exercise capacity. The present study was designed to reveal whether the daily exposure time affects exercise performance and metabolism in skeletal and cardiac muscles. Male mice in the training group were housed in a cage with a wheel activity device for 7 weeks from 5 weeks old. Trained mice were then subjected to hybrid training (HT, endurance exercise for 30 min followed by sprint interval exercise for 30 min). Hyperbaric exposure was applied following daily HT for 15 min (15HT), 30 min (30HT), or 60 min (60HT) for 4 weeks. In the endurance capacity test, maximal work values were significantly increased by 30HT and 60HT. In the left ventricle (LV), activity levels of 3-hydroxyacyl-CoA-dehydrogenase, citrate synthase, and carnitine palmitoyl transferase (CPT) 2 were significantly increased by 60HT. CPT2 activity levels were markedly increased by hyperbaric exposure in red gastrocnemius (Gr) and plantaris muscle (PL). Pyruvate dehydrogenase complex activity values in PL were enhanced more by 30HT and 60HT than by HT. Protein levels of N-terminal isoform of PGC1α (NT-PGC1α) protein were significantly enhanced in three hyperbaric exposed groups in Gr, but not in LV. These results indicate that hyperbaric exposure for 30 min or longer has beneficial effects on endurance, and 60-min exposure has the potential to further increase performance by facilitating fatty acid metabolism in skeletal and cardiac muscles in highly trained mice. NT-PGC1α may have important roles for these adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise PhysiologyHealth and Sports SciencesCourse of Sports EducationDepartment of EducationHokkaido University of EducationIwamizawaJapan
| |
Collapse
|
19
|
Lmod3 promotes myoblast differentiation and proliferation via the AKT and ERK pathways. Exp Cell Res 2020; 396:112297. [DOI: 10.1016/j.yexcr.2020.112297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
|
20
|
Ling Y, Zheng Q, Jing J, Sui M, Zhu L, Li Y, Zhang Y, Liu Y, Fang F, Zhang X. RNA-Seq Reveals miRNA Role Shifts in Seven Stages of Skeletal Muscles in Goat Fetuses and Kids. Front Genet 2020; 11:684. [PMID: 32733538 PMCID: PMC7358459 DOI: 10.3389/fgene.2020.00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are indispensable for the regulation of skeletal muscle. We performed RNA sequencing (RNA-seq) to establish a comprehensive miRNA profiling of goats in seven stages, namely, 45- (F45), 65- (F65), 90- (F90), 120- (F120), and 135-day (F135) fetuses, newborn (B1), and 90-day-old (B90) kids. In total, 421 known miRNAs and 228 goat novel miRNAs were identified in the data, and the average abundance of 19 miRNAs in seven stages exceeds 10,000 reads per million. Furthermore, 420 differentially expressed miRNAs (DEmiRNAs) were identified in all comparison group at seven stages, 80 of which were uniquely differentially expressed in the B1 and B90 comparison groups. Pathway analysis indicated that this group was associated with the release of muscle hypertrophy and regulation of myoblast proliferation. Besides, 305 DEmiRNAs were clustered into three significantly enriched profiles (profiles 11, 16, and 19). Function analysis revealed that profile 16 was related to muscle hypertrophy and differentiation. Profile 11 was involved in multiple enzyme activities and metabolic processes in muscle cells. And profile 19 was involved in material transport and structural stability. Two highly expressed miRNAs and three key miRNAs (chi-miR-328-3p, chi-miR-767, and chi-miR-150) of these profiles were verified to be consistent with the data by quantitative real-time PCR. These results provided a catalog of goat muscle-associated miRNAs, allowing us to better understand the transformation of miRNA roles during mammalian muscle development.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
21
|
Murach KA, Vechetti IJ, Van Pelt DW, Crow SE, Dungan CM, Figueiredo VC, Kosmac K, Fu X, Richards CI, Fry CS, McCarthy JJ, Peterson CA. Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. FUNCTION 2020; 1:zqaa009. [PMID: 32864621 PMCID: PMC7448100 DOI: 10.1093/function/zqaa009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The "canonical" function of Pax7+ muscle stem cells (satellite cells) during hypertrophic growth of adult muscle fibers is myonuclear donation via fusion to support increased transcriptional output. In recent years, however, emerging evidence suggests that satellite cells play an important secretory role in promoting load-mediated growth. Utilizing genetically modified mouse models of delayed satellite cell fusion and in vivo extracellular vesicle (EV) tracking, we provide evidence for satellite cell communication to muscle fibers during hypertrophy. Myogenic progenitor cell-EV-mediated communication to myotubes in vitro influences extracellular matrix (ECM)-related gene expression, which is congruent with in vivo overload experiments involving satellite cell depletion, as well as in silico analyses. Satellite cell-derived EVs can transfer a Cre-induced, cytoplasmic-localized fluorescent reporter to muscle cells as well as microRNAs that regulate ECM genes such as matrix metalloproteinase 9 (Mmp9), which may facilitate growth. Delayed satellite cell fusion did not limit long-term load-induced muscle hypertrophy indicating that early fusion-independent communication from satellite cells to muscle fibers is an underappreciated aspect of satellite cell biology. We cannot exclude the possibility that satellite cell-mediated myonuclear accretion is necessary to maintain prolonged growth, specifically in the later phases of adaptation, but these data collectively highlight how EV delivery from satellite cells can directly contribute to mechanical load-induced muscle fiber hypertrophy, independent of cell fusion to the fiber.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Samuel E Crow
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Vandre C Figueiredo
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xu Fu
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher I Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, Luo Q, Chen J, Hou Y, Song G. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics 2020; 10:6448-6466. [PMID: 32483463 PMCID: PMC7255041 DOI: 10.7150/thno.43577] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: The exhaustion of muscle satellite cells (SCs) is correlated with muscle diseases, including sarcopenia and Duchenne muscular dystrophy. Exercise benefits skeletal muscle homeostasis and promotes proliferation of SCs. Elucidating the molecular mechanism underlying the muscle function-improving effect of exercise has important implications in regenerative medicine. Methods: Herein, we investigated the effect of 4-week treadmill training on skeletal muscle and SCs in mice. Hematoxylin and eosin (HE) staining was utilized to detect the morphometry of skeletal muscles. Flow cytometry and immunofluorescence were conducted to analyze the abundance and cell cycle of SCs. RNA sequencing was performed to elucidate the transcriptional regulatory network of SCs. The ChIP-PCR assay was used to detect enrichment of H3K27ac at the promoters of Akt. Results: We observed that exercise resulted in muscle hypertrophy and improved muscle regeneration in mice. Unexpectedly, exercise promoted cell cycling but suppressed the Akt-mTOR pathway in SCs. Proliferative SCs in "exercised mice" required suppressed mTOR activity to limit mitochondrial metabolism, maintaining the "limited activation status" of SCs against exhaustion. Mechanistically, exercise upregulated the expression of Igfbp7, thereby impeding the phosphorylation of Akt and resulting in inhibited mTOR activity and limited mitochondrial metabolism. The limited mitochondrial metabolism resulted in hypoacetylation of histone 3 and reduced enrichment of H3K27ac at promoters of Akt, decreasing the transcription of Akt. Moreover, repeatedly injured mice showed a preserved SC pool and improved muscle regeneration by the suppression of Akt-mTOR signaling. Conclusions: The findings of our study show that exercise protects proliferative SCs against exhaustion via the Igfbp7-Akt-mTOR axis. These findings establish a link between mechanical signaling, mitochondrial metabolism, epigenetic modification, and stem cell fate decisions; thus, present potential therapeutic targets for muscle diseases correlated with SC exhaustion.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiru Wu
- Clinical hematology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongxiu Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Maruyama Y, Ikeda C, Wakabayashi K, Ato S, Ogasawara R. High-intensity muscle contraction-mediated increases in Akt1 and Akt2 phosphorylation do not contribute to mTORC1 activation and muscle protein synthesis. J Appl Physiol (1985) 2020; 128:830-837. [DOI: 10.1152/japplphysiol.00578.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-intensity muscle contraction (HiMC) is known to induce muscle protein synthesis, a process in which mechanistic target of rapamycin (mTOR) is reported to play a critical role. However, the mechanistic details have not been completely elucidated. Here, we investigated whether Akt plays a role in regulating HiMC-induced mTORC1 activation and muscle protein synthesis using a rodent model of resistance exercise and MK2206 (an Akt kinase inhibitor). The right gastrocnemius muscle of male C57BL/6J mice aged 10 wk was isometrically contracted via percutaneous electrical stimulation (100 Hz, 5 sets of 10 3-s contractions, 7-s rest between contractions, and 3-min rest between sets), while the left gastrocnemius muscle served as a control. Vehicle or MK2206 was injected intraperitoneally 6 h before contraction. MK2206 inhibited both resting and HiMC-induced phosphorylation of Akt1 Ser-473 and Akt2 Ser-474. MK2206 also inhibited the resting phosphorylation of p70S6K and 4E-BP1, which are downstream targets of mTORC1; however, it did not inhibit the HiMC-induced increase in phosphorylation of these targets. Similarly, MK2206 inhibited the resting muscle protein synthesis, but not the resistance exercise-induced muscle protein synthesis. On the basis of these observations, we conclude that although Akt2 regulates resting mTORC1 activity and muscle protein synthesis, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes. NEW & NOTEWORTHY Akt is well known to be an upstream regulator of mechanistic target of rapamycin (mTOR) and has three isoforms in mammals, namely, Akt1, Akt2, and Akt3. We found that high-intensity muscle contraction (HiMC) increases Akt1 and Akt2 phosphorylation; however, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes.
Collapse
Affiliation(s)
- Yuki Maruyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Chisaki Ikeda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Koki Wakabayashi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
24
|
Rion N, Castets P, Lin S, Enderle L, Reinhard JR, Rüegg MA. mTORC2 affects the maintenance of the muscle stem cell pool. Skelet Muscle 2019; 9:30. [PMID: 31791403 PMCID: PMC6886171 DOI: 10.1186/s13395-019-0217-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Background The mammalian target of rapamycin complex 2 (mTORC2), containing the essential protein rictor, regulates cellular metabolism and cytoskeletal organization by phosphorylating protein kinases, such as PKB/Akt, PKC, and SGK. Inactivation of mTORC2 signaling in adult skeletal muscle affects its metabolism, but not muscle morphology and function. However, the role of mTORC2 in adult muscle stem cells (MuSCs) has not been investigated. Method Using histological, biochemical, and molecular biological methods, we characterized the muscle phenotype of mice depleted for rictor in the Myf5-lineage (RImyfKO) and of mice depleted for rictor in skeletal muscle fibers (RImKO). The proliferative and myogenic potential of MuSCs was analyzed upon cardiotoxin-induced injury in vivo and in isolated myofibers in vitro. Results Skeletal muscle of young and 14-month-old RImyfKO mice appeared normal in composition and function. MuSCs from young RImyfKO mice exhibited a similar capacity to proliferate, differentiate, and fuse as controls. In contrast, the number of MuSCs was lower in young RImyfKO mice than in controls after two consecutive rounds of cardiotoxin-induced muscle regeneration. Similarly, the number of MuSCs in RImyfKO mice decreased with age, which correlated with a decline in the regenerative capacity of mutant muscle. Interestingly, reduction in the number of MuSCs was also observed in 14-month-old RImKO muscle. Conclusions Our study shows that mTORC2 signaling is dispensable for myofiber formation, but contributes to the homeostasis of MuSCs. Loss of mTORC2 does not affect their myogenic function, but impairs the replenishment of MuSCs after repeated injuries and their maintenance during aging. These results point to an important role of mTORC2 signaling in MuSC for muscle homeostasis.
Collapse
Affiliation(s)
- Nathalie Rion
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Perrine Castets
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland.,Department PHYM, Centre Médical Universitaire de Genève, Geneva, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Leonie Enderle
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland.,Toronto Recombinant Antibody Centre/The Donnelly Centre, University of Toronto, M5G 1 L6, Toronto, ON, Canada
| | | | - Markus A Rüegg
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland.
| |
Collapse
|
25
|
Englund DA, Peck BD, Murach KA, Neal AC, Caldwell HA, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C719-C724. [PMID: 31314585 PMCID: PMC6851003 DOI: 10.1152/ajpcell.00260.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
It is postulated that testosterone-induced skeletal muscle hypertrophy is driven by myonuclear accretion as the result of satellite cell fusion. To directly test this hypothesis, we utilized the Pax7-DTA mouse model to deplete satellite cells in skeletal muscle followed by testosterone administration. Pax7-DTA mice (6 mo of age) were treated for 5 days with either vehicle [satellite cell replete (SC+)] or tamoxifen [satellite cell depleted (SC-)]. Following a washout period, a testosterone propionate or sham pellet was implanted for 21 days. Testosterone administration caused a significant increase in muscle fiber cross-sectional area in SC+ and SC- mice in both oxidative (soleus) and glycolytic (plantaris and extensor digitorum longus) muscles. In SC+ mice treated with testosterone, there was a significant increase in both satellite cell abundance and myonuclei that was completely absent in testosterone-treated SC- mice. These findings provide direct evidence that testosterone-induced muscle fiber hypertrophy does not require an increase in satellite cell abundance or myonuclear accretion.Listen to a podcast about this Rapid Report with senior author E. E. Dupont-Versteegden (https://ajpcell.podbean.com/e/podcast-on-paper-that-shows-testosterone-induced-skeletal-muscle-hypertrophy-does-not-need-muscle-stem-cells/).
Collapse
Affiliation(s)
- Davis A Englund
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Bailey D Peck
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Kevin A Murach
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ally C Neal
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Hannah A Caldwell
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Ato S, Kido K, Sato K, Fujita S. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats. Exp Physiol 2019; 104:1518-1531. [PMID: 31328833 PMCID: PMC6790689 DOI: 10.1113/ep087585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
New Findings What is the central question of this study? Type 2 diabetes mellitus (T2DM) causes skeletal muscle atrophy; does it affect resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy? What is the main finding and its importance? Although skeletal muscle mass and regulation were not preserved under conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle. These findings suggest that the capacity of RT‐mediated muscle mass gain is not diminished in the T2DM condition.
Abstract Type 2 diabetes mellitus (T2DM) is known to cause skeletal muscle atrophy. However, it is not known whether T2DM affects resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy. Therefore, we investigated the effect of T2DM on response of skeletal muscle hypertrophy to chronic RT using a rat resistance exercise mimetic model. T2DM and healthy control rats were subjected to 18 bouts (3 times per week) of chronic RT on unilateral lower legs. RT significantly increased gastrocnemius muscle mass and myonuclei in both T2DM and healthy control rats to the same extent, even though T2DM caused muscle atrophy in the resting condition. Further, T2DM significantly reduced mechanistic target of rapamycin complex 1 (mTORC1) activity (phosphorylation of p70S6KThr389 and 4E‐BP1Thr37/46) to insulin stimulation and the number of myonuclei in the untrained basal condition, but RT‐mediated adaptations were not affected by T2DM. These findings suggested that although the skeletal muscle mass and regulation were not preserved under basal conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle.
Collapse
Affiliation(s)
- Satoru Ato
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kido
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Koji Sato
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Satoshi Fujita
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
27
|
Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Front Physiol 2018; 9:635. [PMID: 29896117 PMCID: PMC5986879 DOI: 10.3389/fphys.2018.00635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Davis A Englund
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|