1
|
Thongsit A, Oontawee S, Siriarchavatana P, Rodprasert W, Somparn P, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Scalable production of anti-inflammatory exosomes from three-dimensional cultures of canine adipose-derived mesenchymal stem cells: production, stability, bioactivity, and safety assessment. BMC Vet Res 2025; 21:81. [PMID: 39979916 PMCID: PMC11841348 DOI: 10.1186/s12917-025-04517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The therapeutic potential of exosomes derived from mesenchymal stem cells (MSCs) is increasingly recognized in veterinary medicine. This study explored the feasibility of a microcarrier-based three-dimensional (3D) culture system for producing the exosomes (cEXO). Investigations were conducted to enhance production efficiency, ensure stability, and evaluate the therapeutic potential of cEXO for anti-inflammatory applications while assessing their safety profile. RESULTS The microcarrier-based 3D culture system improved efficient production of cEXO, yielding exosomes with acceptable profiles, including a size of approximately 81.22 nm, negative surface charge, and high particle concentration (1.32 × 109 particles/mL). Confocal imaging proved dynamic changes in cell viability across culture phases, highlighting the challenges of maintaining cell viability during repeated exosome collection cycles. Characterization via transmission electron microscopy, nanoparticle tracking analysis, and zeta-potential measurements confirmed the stability and functionality of cEXO, particularly when stored at -20 °C. Functional assays showed that cEXO exerted significant anti-inflammatory activity in RAW264.7 macrophages in an inverse dose-dependent manner, with no observed cytotoxicity to fibroblasts or macrophages. Acute toxicity testing in rats revealed no adverse effects on clinical parameters, organ health, or body weight, supporting the safety of cEXO for therapeutic use. CONCLUSIONS This study highlights the potential of a microcarrier-based 3D culture system for scalable cEXO production with robust anti-inflammatory activity, stability, and safety profiles. These findings advance the development of cEXO-based therapies and support their application in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Anatcha Thongsit
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Gehring J, Azzout-Marniche D, Chaumontet C, Gaudichon C, Even PC. Plasma FGF21 concentrations and spontaneous self-selection of protein suggest that 15% protein in the diet may not be enough for male adult rats. Am J Physiol Endocrinol Metab 2022; 322:E154-E164. [PMID: 34927458 DOI: 10.1152/ajpendo.00204.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein requirement has been determined at 10%-15% energy. Under dietary self-selection, rats ingest 25%-30% energy as protein and regulate FGF21 (a hormone signaling protein deficiency) to levels lower than those measured with a 15% protein (15P) diet. Our hypothesis is that if a 15P diet was indeed sufficient to ensure protein homeostasis, it is probably a too low protein level to ensure optimal energy homeostasis. Adult male Wistar rats were used in this study. The first objective was to determine the changes in food intake, body composition, and plasma FGF21, IGF-1, and PYY concentrations in rats fed 8P, 15P, 30P, 40P, or 50P diets. The second was to determine whether the FGF21 levels measured in the rats were related to spontaneous protein intake. Rats were fed a 15P diet and then allowed to choose between a protein diet and a protein-free diet. Food intake and body weight were measured throughout the experiments. Body composition was determined at different experimental stages. Plasma samples were collected to measure FGF21, IGF-1, and PYY concentrations. A 15P diet appears to result in higher growth than that observed with the 30P, 40P, and 50P diets. However, the 15P diet probably does not provide optimal progression of body composition owing to a tendency of 15P rats to fix more fat and energy in the body. The variable and higher concentrations of FGF21 in the 15P diet suggest a deficit in protein intake, but this does not appear to be a parameter reflecting the adequacy of protein intake relative to individual protein requirements.NEW & NOTEWORTHY Under dietary self-selection, rats choose to ingest 25%-30% of energy as protein, a value higher than the protein requirement (10%-15%). According to our results, this higher spontaneous intake reflects the fact that rats fed a 15% protein diet, compared with high-protein diets, tend to bind more fat and have higher concentrations of FGF21, a hormone signaling protein deficiency. A 15% protein diet appears to be sufficient for protein homeostasis but not for optimal energy homeostasis.
Collapse
Affiliation(s)
- Josephine Gehring
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | | | | | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Patrick C Even
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
3
|
Gehring J, Azzout-Marniche D, Chaumontet C, Piedcoq J, Gaudichon C, Even PC. Rats Self-Select a Constant Protein-to-Carbohydrate Ratio Rather Than a Constant Protein-to-Energy Ratio and Have Low Plasma FGF21 Concentrations. J Nutr 2021; 151:1921-1936. [PMID: 33830241 DOI: 10.1093/jn/nxab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Under dietary self-selection (DSS), rats ingest 25-30% of energy as protein. This high level appears to be explained by metabolic benefits related to reduced carbohydrate dependence and associated pathologies. However, the mechanisms underlying these choices remain largely misunderstood. OBJECTIVES The aim was to test the hypothesis that in a DSS model, rats select a protein-to-energy (PE) ratio to maintain the protein-to-carbohydrate (PC) ratio constant and that fibroblast growth factor 21 (FGF21) is involved in this response. METHODS Adult male Wistar rats were used in 3 experiments. The first was to determine whether the PE ratio was influenced by changes in carbohydrate content. The second was to test whether the PE ratio was defended with a modified DSS model. The third was to determine whether the selected PE ratio was of metabolic interest compared with a standard 15% protein diet. Food intake, body weight, and energy expenditure were measured. After 3 wk, plasma was sampled and rats were killed to determine body composition and gene expression. Statistical analyses were mainly done by ANOVA tests and correlation tests. RESULTS The selected PE ratio increased from 20% to 35% when the carbohydrate content of the protein-free diet increased from 30% to 75% (R2 = 0.56; P < 10-6). Consequently, the PC ratio was constant (70%) in all groups (P = 0.18). In self-selecting rats, plasma FGF21 concentrations were 3 times lower than in rats fed the 5% protein diet (P < 10-4) and similar to those in rats fed a 30% diet. CONCLUSIONS This study showed that self-selecting rats established PE ratios larger than those considered sufficient to achieve optimal growth in adult rats (10-15%), and the ratios were highly dependent on carbohydrates, apparently with the aim of maintaining a constant and high PC ratio. This was associated with a minimization of plasma FGF21.
Collapse
Affiliation(s)
- Josephine Gehring
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | | | | | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Patrick C Even
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
4
|
Even PC, Gehring J, Tomé D. What does self-selection of dietary proteins in rats tell us about protein requirements and body weight control? Obes Rev 2021; 22:e13194. [PMID: 33403737 DOI: 10.1111/obr.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Omnivores are able to correctly select adequate amounts of macronutrients from natural foods as well as purified macronutrients. In the rat model, the selected protein levels are often well above the requirements estimated from the nitrogen balance. These high intake levels were initially interpreted as reflecting poor control of protein intake, but the selected levels were later found to be precisely controlled for changes in dietary protein quality and adjusted for cold, exercise, pregnancy, lactation, age, etc. and therefore met physiological requirements. Several authors have also suggested that instead of a given level of protein intake, rodents regulate a ratio of protein to dietary carbohydrates in order to achieve metabolic benefits such as reduced insulin levels, improved blood glucose control, and, in the long term, reduced weight and fat gain. The objective of this review was to analyze the most significant results of studies carried out on rats and mice since the beginning of the 20th century, to consider what these results can bring us to interpret the current causes of the obesity pandemic and to anticipate the possible consequences of policies aimed at reducing the contribution of animal proteins in the human diet.
Collapse
Affiliation(s)
- Patrick C Even
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Joséphine Gehring
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Daniel Tomé
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| |
Collapse
|
5
|
Pezeshki A, Chelikani PK. Low Protein Diets and Energy Balance: Mechanisms of Action on Energy Intake and Expenditure. Front Nutr 2021; 8:655833. [PMID: 34055853 PMCID: PMC8155302 DOI: 10.3389/fnut.2021.655833] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States.,Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Protein metabolism and related body function: mechanistic approaches and health consequences. Proc Nutr Soc 2020; 80:243-251. [PMID: 33050961 DOI: 10.1017/s0029665120007880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development and maintenance of body composition and functions require an adequate protein intake with a continuous supply of amino acids (AA) to tissues. Body pool and AA cellular concentrations are tightly controlled and maintained through AA supply (dietary intake, recycled from proteolysis and de novo synthesis), AA disposal (protein synthesis and other AA-derived molecules) and AA losses (deamination and oxidation). Different molecular regulatory pathways are involved in the control of AA sufficiency including the mechanistic target of rapamycin complex 1, the general control non-derepressible 2/activating transcription factor 4 system or the fibroblast growth factor 21. There is a tight control of protein intake, and human subjects and animals appear capable of detecting and adapting food and protein intake and metabolism in face of foods or diets with different protein contents. A severely protein deficient diet induces lean body mass losses and ingestion of sufficient dietary energy and protein is a prerequisite for body protein synthesis and maintenance of muscle, bone and other lean tissues and functions. Maintaining adequate protein intake with age may help preserve muscle mass and strength but there is an ongoing debate as to the optimal protein intake in older adults. The protein synthesis response to protein intake can also be enhanced by prior completion of resistance exercise but this effect could be somewhat reduced in older compared to young individuals and gain in muscle mass and function due to exercise require regular training over an extended period.
Collapse
|
7
|
Assari S, Boyce S, Bazargan M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sci 2020; 10:brainsci10100703. [PMID: 33022949 PMCID: PMC7600639 DOI: 10.3390/brainsci10100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Nucleus accumbens (NAc) is a brain structure with a well-established role in the brain reward processing system. Altered function of the NAc is shown to have a role in the development of food addiction and obesity. However, less is known about sex differences in the role of NAc function as a predictor of children’s change in body mass index (BMI) over time. Aim: We used the Adolescent Brain Cognitive Development data (version 2.01) to investigate sex differences in the predictive role of the NAc functional connectivity with the frontoparietal network on children’s BMI change over a one-year follow-up period. Methods: This 1-year longitudinal study successfully followed 3784 9–10-year-old children. Regression models were used to analyze the data. The predictor variable was NAc functional connectivity with the frontoparietal network measured using resting-state functional magnetic resonance imaging (fMRI). The primary outcome was BMI at the end of the 1-year follow up. Covariates included race, ethnicity, age, socioeconomic factors, and baseline BMI. Sex was the effect modifier. Results: NAc functional connectivity with the frontoparietal network was predictive of BMI changes over time. This association remained significant above and beyond all covariates. The above association, however, was only significant in female, not male children. Conclusion: The epidemiological observation that NAc functional connectivity is associated with BMI changes in children is an extension of well-controlled laboratory studies that have established the role of the NAc in the brain reward processing. More research is needed on sex differences in the brain regions that contribute to childhood obesity.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
- Correspondence: ; Tel.: +(734)-232-0445; Fax: +734-615-8739
| | - Shanika Boyce
- Department of Pediatrics, Charles Drew University, Los Angeles, CA 90059, USA;
| | - Mohsen Bazargan
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Family Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Tomé D, Chaumontet C, Even PC, Darcel N, Thornton SN, Azzout-Marniche D. Protein Status Modulates an Appetite for Protein To Maintain a Balanced Nutritional State-A Perspective View. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1830-1836. [PMID: 31729225 DOI: 10.1021/acs.jafc.9b05990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein sufficiency is tightly controlled through different sensing and signaling processes that modulate and adapt protein and energy metabolism and feeding behavior to reach and maintain a well-balanced protein status. High-protein diets, often discussed in the context of body weight management, usually activate anorexigenic pathways, leading to higher satiety, decreased food and energy intake, and decreased body weight and adiposity. Diets marginally low in protein (3-8% energy) or marginally deficient in some indispensable amino acid more often activate orexigenic pathways, with higher appetite and a specific appetite for protein, a response that leads to an increase in protein intake to partially compensate for the deficit in protein and amino acid. Diets severely deficient in protein (2-3% energy as protein) usually depress food intake and induce lower weight and lower fat mass and lean tissues that characterize a status of protein deficiency. The control of protein sufficiency involves various peripheral and central signals, including modulation of both metabolic pathways at the periphery as well as central pathways of the control of food and protein intake, including a reward-driven specific sensitivity to the protein content of foods.
Collapse
Affiliation(s)
- Daniel Tomé
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Catherine Chaumontet
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Patrick C Even
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Nicolas Darcel
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| | - Simon N Thornton
- U1116, Institut National de la Santé et de la Recherche Médicale (INSERM) , Université de Lorraine , 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Dalila Azzout-Marniche
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), Institut National de la Recherche Agronomique (INRA), AgroParisTech , Université Paris-Saclay , 75005 Paris , France
| |
Collapse
|
9
|
Assari S. Parental Education and Nucleus Accumbens Response to Reward Anticipation: Minorities' Diminished Returns. ACTA ACUST UNITED AC 2020; 2:132-153. [PMID: 34308362 DOI: 10.22158/assc.v2n4p132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Considerable research has documented the effects of race and socioeconomic status (SES) on reward-seeking behaviors; however, less is known about the multiplicative effects of race and family SES on brain response to reward anticipation. Marginalization-related Diminished Returns (MDRs) suggest that family SES would show weaker effects on brain development of children in non-White families than in White families. Objective To test race by SES variation in Nucleus Accumbens (NAcc) response to reward anticipation (NAcc-RA) among American children. Methods For this cross-sectional analysis, data came from the Adolescent Brain Cognitive Development (ABCD) study which included 6,419, 9-10 year old children. The independent variable was parental education. The moderator was race. The primary outcome was the right NAcc-RA. Age, sex, ethnicity, household income, and family structure were the covariates. We used mixed effects regression models that adjusted for the nested nature of the ABCD data. Results While high parental education was associated with a higher amount of right NAcc-RA, this effect was stronger for White than non-White children. This finding was evident in the observed interactions between race and parental education on the right NAcc-RA. Discussion For American children, NAcc-RA is not shaped by race or family SES, but by their intersection. As a result of the interaction between race and SES (diminished return of SES for non-Whites), middle-class racial minority children may remain susceptible to high-risk behaviors. Disparities in high-risk behaviors in children should not be reduced to economic disparities. Structural inequalities may reduce the return of SES resources for non-White families.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
| |
Collapse
|
10
|
Assari S. Stronger Association between Nucleus Accumbens Density and Body Mass Index in Low-Income and African American Children. RESEARCH IN HEALTH SCIENCE 2020; 5:107-120. [PMID: 33294757 DOI: 10.22158/rhs.v5n2p107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The nucleus accumbens' (NAc) size, function, and density influence individuals' body mass index (BMI). However, little is known about racial and socioeconomic status (SES) differences in the role of NAc density as a predictor of childhood BMI. OBJECTIVES We used the Adolescent Brain Cognitive Development (ABCD) data to investigate racial and SES differences in the effect of NAc density on childhood BMI. METHODS This cross-sectional study included 9497 children between ages 9 and 10. Mixed-effects regression models were used to analyze the data. The predictor variable was NAc density measured using diffusion MRI (dMRI). The outcome variable was BMI, operationalized as a continuous variable. Covariates included sex, age, ethnicity, family structure, and parental education. Race (White, African American, Asian, and Other/mixed) and household income (< 50k, 50-100 k, and 100+ k) were the moderators. RESULTS High NAc diffusion tension (density) was predictive of higher BMI, net of covariates. However, the positive association between NAc density and BMI was stronger in African Americans than in White, and in low-income than in high-income children. CONCLUSIONS Our findings suggest that although high NAc has implications for children's BMI, this effect varies across racial and SES groups. More research should be performed on the role of obesogenic environments in altering the effect of NAc on childhood BMI.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA.,Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
11
|
Tomé D, Chaumontet C, Even PC, Darcel N, Azzout-Marniche D. Protein status modulates the rewarding value of foods and meals to maintain an adequate protein intake. Physiol Behav 2019; 206:7-12. [DOI: 10.1016/j.physbeh.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
|
12
|
Chaumontet C, Azzout-Marniche D, Blais A, Piedcoq J, Tomé D, Gaudichon C, Even PC. Low-protein and methionine, high-starch diets increase energy intake and expenditure, increase FGF21, decrease IGF-1, and have little effect on adiposity in mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R486-R501. [DOI: 10.1152/ajpregu.00316.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-protein diets most often induce increased energy intake in an attempt to increase protein intake to meet protein needs with a risk of accumulation as fat of the excess energy intake. In female adult BALB/c mice, a decrease in dietary casein from 20% to 6% and 3% increased energy intake and slightly increased adiposity, and this response was exacerbated with soy proteins with low methionine content. The effect on fat mass was however limited because total energy expenditure increased to the same extent as energy intake. Lean body mass was preserved in all 6% fed mice and reduced only in 3% casein-fed animals. Insulin response to an oral glucose tolerance test was reduced in soy-fed mice and in low-protein-fed mice. Low-protein diets did not affect uncoupling protein 1 and increased fibroblast growth factor 21 (FGF21) in brown adipose tissue and increased FGF21, fatty acid synthase, and cluster of differentiation 36 in the liver. In the hypothalamus, neuropeptide Y was increased and proopiomelanocortin was decreased only in 3% casein-fed mice. In plasma, when protein was decreased, insulin-like growth factor-1 decreased and FGF21 increased and plasma FGF21 was best described by using a combination of dietary protein level, protein-to-carbohydrate ratio, and protein-to-methionine ratio in the diet. In conclusion, reducing dietary protein and protein quality increases energy intake but also energy expenditure resulting in an only slight increase in adiposity. In this process, FGF21 is probably an important signal that responds to a complex combination of protein restriction, protein quality, and carbohydrate content of the diet.
Collapse
Affiliation(s)
- Catherine Chaumontet
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Julien Piedcoq
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Claire Gaudichon
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Patrick C. Even
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| |
Collapse
|
13
|
Maliković J, Feyissa DD, Hussein AM, Höger H, Lubec G, Korz V. Moderate Differences in Feeding Diets Largely Affect Motivation and Spatial Cognition in Adult and Aged but Less in Young Male Rats. Front Aging Neurosci 2018; 10:249. [PMID: 30158866 PMCID: PMC6104161 DOI: 10.3389/fnagi.2018.00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023] Open
Abstract
Nutrition can have significant effects on behavior and cognitive processes. Most of the studies related to this use extremely modified diets, such as high fat contents or the exclusion of distinct components needed for normal development and bodily homeostasis. Here we report significant effects of diets with moderate differences in compositions on food rewarded spatial learning in young (3–4 months), adult (6–7 months), and aged (17–18 months) rats. Young rats fed with a lower energy diet showed better performance only during aquisition of the spatial task when compared to rats fed with a standard diet. Adult rats (6–7 months) fed with a standard diet performed less well in the spatial learning task, than rats fed with lower energy diet. Aged rats fed with a lower energy diet (from 13 to 18 months of age) performed better during all training phases, as in a previous test when they were adult and fed with a standard diet. This difference could only be partly explained by lower motivation to search for food in the first test. Correspondingly, the variability of individual performance was significantly higher and increased over trials in adult rats fed with the standard diet as compared to adult rats fed with lower energy diet. Thus, moderate changes in feeding diets have large effects on motivation and cognition in elderly and less in young rats in a food rewarded spatial learning task. Therefore, nutrition effects upon food rewarded spatial learning and memory should be considered especially in aging studies.
Collapse
Affiliation(s)
- Jovana Maliković
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.,Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - Volker Korz
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes (Lond) 2018; 43:344-354. [PMID: 29453460 PMCID: PMC6066458 DOI: 10.1038/s41366-018-0013-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/11/2017] [Accepted: 12/10/2017] [Indexed: 01/18/2023]
Abstract
Background/objectives Ghrelin, a stomach-derived hormone implicated in numerous behaviors including feeding, reward, stress, and addictive behaviors, acts through binding to the growth hormone secretagogue receptor (GHSR). Here, we present the development, verification and initial characterization of a novel GHSR knockout (KO) Wistar rat model created with CRISPR genome editing. Methods Using CRISPR/Cas9, we developed a GHSR knockout (KO) in a Wistar background. Loss of GHSR mRNA expression was histologically verified using RNAscope in wild-type WT (n = 2) and KO (n = 2) rats. We tested the effects of intraperitoneal acyl-ghrelin administration on food consumption and plasma growth hormone (GH) concentrations in WT (n = 8) and KO (n = 8) rats. We also analyzed locomotion, food consumption, and body fat composition in these animals. Body weight was monitored from early development to adulthood. Results The RNAscope analysis revealed an abundance of GHSR mRNA expression in the hypothalamus, midbrain, and hippocampus in WTs, and no observed probe binding in KOs. Ghrelin administration increased plasma GH levels (p = 0.0067) and food consumption (p = 0.0448) in WT rats but not KOs. KO rats consumed less food overall at basal conditions and weighed significantly less compared with WTs throughout development (p = 0.0001). Compared with WTs, KOs presented higher concentrations of brown adipose tissue (BAT) (p = 0.0322). Conclusions We have verified GHSR deletion in our KO model using histological, physiological, neuroendocrinological and behavioral measures. Our findings indicate that GHSR deletion in rats is not only associated with a lack of response to ghrelin, but also associated with decreases in daily food consumption and body growth, and increases in BAT. This GHSR KO Wistar rat model provides a novel tool for studying the role of the ghrelin system in obesity and in a wide range of medical and neuropsychiatric disorders.
Collapse
|