1
|
Tóth N, Loewe A, Szlovák J, Kohajda Z, Bitay G, Levijoki J, Papp JG, Varró A, Nagy N. The reverse mode of the Na +/Ca 2+ exchanger contributes to the pacemaker mechanism in rabbit sinus node cells. Sci Rep 2022; 12:21830. [PMID: 36528651 PMCID: PMC9759562 DOI: 10.1038/s41598-022-25574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sinus node (SN) pacemaking is based on a coupling between surface membrane ion-channels and intracellular Ca2+-handling. The fundamental role of the inward Na+/Ca2+ exchanger (NCX) is firmly established. However, little is known about the reverse mode exchange. A simulation study attributed important role to reverse NCX activity, however experimental evidence is still missing. Whole-cell and perforated patch-clamp experiments were performed on rabbit SN cells supplemented with fluorescent Ca2+-tracking. We established 2 and 8 mM pipette NaCl groups to suppress and enable reverse NCX. NCX was assessed by specific block with 1 μM ORM-10962. Mechanistic simulations were performed by Maltsev-Lakatta minimal computational SN model. Active reverse NCX resulted in larger Ca2+-transient amplitude with larger SR Ca2+-content. Spontaneous action potential (AP) frequency increased with 8 mM NaCl. When reverse NCX was facilitated by 1 μM strophantin the Ca2+i and spontaneous rate increased. ORM-10962 applied prior to strophantin prevented Ca2+i and AP cycle change. Computational simulations indicated gradually increasing reverse NCX current, Ca2+i and heart rate with increasing Na+i. Our results provide further evidence for the role of reverse NCX in SN pacemaking. The reverse NCX activity may provide additional Ca2+-influx that could increase SR Ca2+-content, which consequently leads to enhanced pacemaking activity.
Collapse
Affiliation(s)
- Noémi Tóth
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Axel Loewe
- grid.7892.40000 0001 0075 5874Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jozefina Szlovák
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Zsófia Kohajda
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Gergő Bitay
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Jouko Levijoki
- grid.419951.10000 0004 0400 1289Orion Pharma, Espoo, Finland
| | - Julius Gy. Papp
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Norbert Nagy
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
2
|
Stoyek MR, MacDonald EA, Mantifel M, Baillie JS, Selig BM, Croll RP, Smith FM, Quinn TA. Drivers of Sinoatrial Node Automaticity in Zebrafish: Comparison With Mechanisms of Mammalian Pacemaker Function. Front Physiol 2022; 13:818122. [PMID: 35295582 PMCID: PMC8919049 DOI: 10.3389/fphys.2022.818122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac excitation originates in the sinoatrial node (SAN), due to the automaticity of this distinct region of the heart. SAN automaticity is the result of a gradual depolarisation of the membrane potential in diastole, driven by a coupled system of transarcolemmal ion currents and intracellular Ca2+ cycling. The frequency of SAN excitation determines heart rate and is under the control of extra- and intracardiac (extrinsic and intrinsic) factors, including neural inputs and responses to tissue stretch. While the structure, function, and control of the SAN have been extensively studied in mammals, and some critical aspects have been shown to be similar in zebrafish, the specific drivers of zebrafish SAN automaticity and the response of its excitation to vagal nerve stimulation and mechanical preload remain incompletely understood. As the zebrafish represents an important alternative experimental model for the study of cardiac (patho-) physiology, we sought to determine its drivers of SAN automaticity and the response to nerve stimulation and baseline stretch. Using a pharmacological approach mirroring classic mammalian experiments, along with electrical stimulation of intact cardiac vagal nerves and the application of mechanical preload to the SAN, we demonstrate that the principal components of the coupled membrane- Ca2+ pacemaker system that drives automaticity in mammals are also active in the zebrafish, and that the effects of extra- and intracardiac control of heart rate seen in mammals are also present. Overall, these results, combined with previously published work, support the utility of the zebrafish as a novel experimental model for studies of SAN (patho-) physiological function.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melissa Mantifel
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Bailey M. Selig
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Frank M. Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
3
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
4
|
van Opbergen CJ, van der Voorn SM, Vos MA, de Boer TP, van Veen TA. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:45-58. [DOI: 10.1016/j.pbiomolbio.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
5
|
Rissoli RZ, Vasconcelos EDS, Rantin FT, Kalinin AL. Effects of exercise training on excitation-contraction coupling, calcium dynamics and protein expression in the heart of the Neotropical fish Brycon amazonicus. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:85-93. [PMID: 28966144 DOI: 10.1016/j.cbpa.2017.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Matrinxã (Brycon amazonicus) is a great swimming performance teleost fish from the Amazon basin. However, the possible cardiac adaptations of this ability are still unknown. Therefore, the aim of the present work was to investigate the effects of prolonged exercise (EX group - 60days under 0.4BL·s-1) on ventricular contractility by (i) in-vitro analysis of contractility comparing the relative roles of sodium/calcium exchanger (NCX) and sarcoplasmic reticulum (SR) in the excitation-contraction (E-C) coupling and (ii) molecular analysis of NCX, sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and phospholamban (PLB) expression and quantification. The exercise training significantly improved twitch tension, cardiac pumping capacity and the contraction rate when compared to controls (CT). Inhibition of the NCX function, replacing Na+ by Li+ in the physiological solutions, diminished cardiac contractility in the EX group, reduced all analyzed parameters under both high and low stimulation frequencies. The SR blockage, using 10μM ryanodine, caused ~50% tension reduction in CT at most analyzed frequencies while in EX, reductions (34-54%) were only found at higher frequencies. SR inhibition also decreased contraction and relaxation rates in both groups. Additionally, higher post-rest contraction values were recorded for EX, indicating an increase in SR Ca2+ loading. Higher NCX and PLB expression rates and lower SERCA2 rates were found in EX. Our data indicate that matrinxã presents a modulation in E-C coupling after exercise-training, enhancing the SR function under higher frequencies. This was the first study to functionally analyze the effects of swimming-induced exercise on fish cardiac E-C coupling.
Collapse
Affiliation(s)
- Rafael Zanelli Rissoli
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Revealing calcium fluxes by analyzing inhibition dynamics in action potential clamp. J Mol Cell Cardiol 2016; 100:93-108. [DOI: 10.1016/j.yjmcc.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022]
|
7
|
Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc Res 2016; 109:527-41. [DOI: 10.1093/cvr/cvw007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
|
8
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
9
|
Li S, Cheng H, Tomaselli GF, Li RA. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: Direct evidence of functional Ca2+-induced Ca2+ release. Heart Rhythm 2014; 11:133-40. [DOI: 10.1016/j.hrthm.2013.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Indexed: 10/26/2022]
|
10
|
Jayasundara N, Gardner LD, Block BA. Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1010-20. [DOI: 10.1152/ajpregu.00254.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca2+ ATPase gene expression with cold acclimation and an induction of Na+/Ca2+-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca2+ storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.
Collapse
Affiliation(s)
| | - Luke D. Gardner
- Stanford University, Hopkins Marine Station, Pacific Grove, California
| | - Barbara A. Block
- Stanford University, Hopkins Marine Station, Pacific Grove, California
| |
Collapse
|
11
|
Llach A, Molina CE, Alvarez-Lacalle E, Tort L, Benítez R, Hove-Madsen L. Detection, properties, and frequency of local calcium release from the sarcoplasmic reticulum in teleost cardiomyocytes. PLoS One 2011; 6:e23708. [PMID: 21897853 PMCID: PMC3163583 DOI: 10.1371/journal.pone.0023708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm(-1) min(-1) while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F(0)) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min(-1) to 8.1±2.0 min(-1), p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function.
Collapse
Affiliation(s)
- Anna Llach
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| | - Cristina E. Molina
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| | - Enrique Alvarez-Lacalle
- Departamento Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lluis Tort
- Departamento Biología Celular, Fisiología e Inmunología, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Benítez
- Departamento Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Zhang PC, Llach A, Sheng XY, Hove-Madsen L, Tibbits GF. Calcium handling in zebrafish ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2010; 300:R56-66. [PMID: 20926764 DOI: 10.1152/ajpregu.00377.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zebrafish is an important model for the study of vertebrate cardiac development with a rich array of genetic mutations and biological reagents for functional interrogation. The similarity of the zebrafish (Danio rerio) cardiac action potential with that of humans further enhances the relevance of this model. In spite of this, little is known about excitation-contraction coupling in the zebrafish heart. To address this issue, adult zebrafish cardiomyocytes were isolated by enzymatic perfusion of the cannulated ventricle and were subjected to amphotericin-perforated patch-clamp technique, confocal calcium imaging, and/or measurements of cell shortening. Simultaneous recordings of the voltage dependence of the L-type calcium current (I(Ca,L)) amplitude and cell shortening showed a typical bell-shaped current-voltage (I-V) relationship for I(Ca,L) with a maximum at +10 mV, whereas calcium transients and cell shortening showed a monophasic increase with membrane depolarization that reached a plateau at membrane potentials above +20 mV. Values of I(Ca,L) were 53, 100, and 17% of maximum at -20, +10, and +40 mV, while the corresponding calcium transient amplitudes were 64, 92, and 98% and cell shortening values were 62, 95, and 96% of maximum, respectively, suggesting that I(Ca,L) is the major contributor to the activation of contraction at voltages below +10 mV, whereas the contribution of reverse-mode Na/Ca exchange becomes increasingly more important at membrane potentials above +10 mV. Comparison of the recovery of I(Ca,L) from acute and steady-state inactivation showed that reduction of I(Ca,L) upon elevation of the stimulation frequency is primarily due to calcium-dependent I(Ca,L) inactivation. In conclusion, we demonstrate that a large yield of healthy atrial and ventricular myocytes can be obtained by enzymatic perfusion of the cannulated zebrafish heart. Moreover, zebrafish ventricular myocytes differed from that of large mammals by having larger I(Ca,L) density and a monophasically increasing contraction-voltage relationship, suggesting that caution should be taken upon extrapolation of the functional impact of mutations on calcium handling and contraction in zebrafish cardiomyocytes.
Collapse
|
13
|
Birkedal R, Christopher J, Thistlethwaite A, Shiels HA. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J Comp Physiol B 2009; 179:961-9. [PMID: 19544062 DOI: 10.1007/s00360-009-0377-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
Abstract
In cardiomyocytes, ryanodine receptors (RYRs) mediate Ca(2+)-induced Ca(2+)-release (CICR) from the sarcoplasmic reticulum (SR) during excitation-contraction (e-c) coupling. In rainbow trout heart, the relative importance of CICR increases with cold-acclimation. Thus, the aim of this study was to investigate the effect of temperature acclimation (4, 11 and 18 degrees C) on RYR intracellular localization and expression density. We used immunocytochemistry to assess intracellular localization in ventricular myocytes and Western blotting to assess RYR expression in both atrial and ventricular tissue. In ventricular myocytes, RYRs were localized peripherally in transverse bands aligning with sarcomeric m-lines and centrally around mitochondria and the nucleus. Localization did not change with temperature acclimation. RYR expression was also unaffected by temperature acclimation. The localization of RYRs at the m-line is similar to neonatal mammalian cardiomyocytes. We suggest this positioning is indicative of myocytes which rely predominantly on transsarcolemmal Ca(2+)-influx, rather than CICR, during e-c coupling.
Collapse
Affiliation(s)
- Rikke Birkedal
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility 46 Grafton Street, Manchester, M13 9NT, UK.
| | | | | | | |
Collapse
|
14
|
On C, Marshall CR, Chen N, Moyes CD, Tibbits GF. Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol Biol 2008; 8:127. [PMID: 18447948 PMCID: PMC2408596 DOI: 10.1186/1471-2148-8-127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 04/30/2008] [Indexed: 12/02/2022] Open
Abstract
Background The Na+-Ca2+ exchanger (NCX) is an important regulator of cytosolic Ca2+ levels. Many of its structural features are highly conserved across a wide range of species. Invertebrates have a single NCX gene, whereas vertebrate species have multiple NCX genes as a result of at least two duplication events. To examine the molecular evolution of NCX genes and understand the role of duplicated genes in the evolution of the vertebrate NCX gene family, we carried out phylogenetic analyses of NCX genes and compared NCX gene structures from sequenced genomes and individual clones. Results A single NCX in invertebrates and the protochordate Ciona, and the presence of at least four NCX genes in the genomes of teleosts, an amphibian, and a reptile suggest that a four member gene family arose in a basal vertebrate. Extensive examination of mammalian and avian genomes and synteny analysis argue that NCX4 may be lost in these lineages. Duplicates for NCX1, NCX2, and NCX4 were found in all sequenced teleost genomes. The presence of seven genes encoding NCX homologs may provide teleosts with the functional specialization analogous to the alternate splicing strategy seen with the three NCX mammalian homologs. Conclusion We have demonstrated that NCX4 is present in teleost, amphibian and reptilian species but has been secondarily and independently lost in mammals and birds. Comparative studies on conserved vertebrate homologs have provided a possible evolutionary route taken by gene duplicates subfunctionalization by minimizing homolog number.
Collapse
Affiliation(s)
- Caly On
- Cardiac Membrane Research Laboratory - Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|
15
|
Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons. Brain Res 2008; 1201:41-51. [DOI: 10.1016/j.brainres.2008.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 11/15/2022]
|
16
|
Török TL. Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 2007; 82:287-347. [PMID: 17673353 DOI: 10.1016/j.pneurobio.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/12/2007] [Accepted: 06/12/2007] [Indexed: 12/19/2022]
Abstract
The plasma membrane Na(+)/Ca(2+)-exchanger is a bi-directional electrogenic (3Na(+):1Ca(2+)) and voltage-sensitive ion transport mechanism, which is mainly responsible for Ca(2+)-extrusion. The Na(+)-gradient, required for normal mode operation, is created by the Na(+)-pump, which is also electrogenic (3Na(+):2K(+)) and voltage-sensitive. The Na(+)/Ca(2+)-exchanger operational modes are very similar to those of the Na(+)-pump, except that the uncoupled flux (Na(+)-influx or -efflux?) is missing. The reversal potential of the exchanger is around -40 mV; therefore, during the upstroke of the AP it is probably transiently activated, leading to Ca(2+)-influx. The Na(+)/Ca(2+)-exchange is regulated by transported and non-transported external and internal cations, and shows ATP(i)-, pH- and temperature-dependence. The main problem in determining the role of Na(+)/Ca(2+)-exchange in excitation-secretion/contraction coupling is the lack of specific (mode-selective) blockers. During recent years, evidence has been accumulated for co-localisation of the Na(+)-pump, and the Na(+)/Ca(2+)-exchanger and their possible functional interaction in the "restricted" or "fuzzy space." In cardiac failure, the Na(+)-pump is down-regulated, while the exchanger is up-regulated. If the exchanger is working in normal mode (Ca(2+)-extrusion) during most of the cardiac cycle, upregulation of the exchanger may result in SR Ca(2+)-store depletion and further impairment in contractility. If so, a normal mode selective Na(+)/Ca(2+)-exchange inhibitor would be useful therapy for decompensation, and unlike CGs would not increase internal Na(+). In peripheral sympathetic nerves, pre-synaptic alpha(2)-receptors may regulate not only the VSCCs but possibly the reverse Na(+)/Ca(2+)-exchange as well.
Collapse
Affiliation(s)
- Tamás L Török
- Department of Pharmacodynamics, Semmelweis University, P.O. Box 370, VIII. Nagyvárad-tér 4, H-1445 Budapest, Hungary.
| |
Collapse
|
17
|
Abstract
Intracellular Na(+)-concentration, [Na(+)](i) modulates excitation-contraction coupling of cardiac myocytes via the Na(+)/Ca(2+) exchanger (NCX). In cardiomyocytes from rainbow trout (Oncorhyncus mykiss), whole cell patch-clamp studies have shown that Ca(2+) influx via reverse-mode NCX contributes significantly to contraction when [Na(+)](i) is 16 mM but not 10 mM. However, physiological [Na(+)](i) has never been measured. We recorded [Na(+)](i) using the fluorescent indicator sodium-binding benzofuran isophthalate in freshly isolated atrial and ventricular myocytes from rainbow trout. We examined [Na(+)](i) at rest and during increases in contraction frequency across three temperatures that span those trout experience in nature (7, 14, and 21 degrees C). Surprisingly, we found that [Na(+)](i) was not different between atrial and ventricular cells. Furthermore, acute temperature changes did not affect [Na(+)](i) in resting cells. Thus, we report a resting in vivo [Na(+)](i) of 13.4 mM for rainbow trout cardiomyocytes. [Na(+)](i) increased from rest with increases in contraction frequency by 3.2, 4.7, and 6.5% at 0.2, 0.5, and 0.8 Hz, respectively. This corresponds to an increase of 0.4, 0.6, and 0.9 mM at 0.2, 0.5, and 0.8 Hz, respectively. Acute temperature change did not significantly affect the contraction-induced increase in [Na(+)](i). Our results provide the first measurement of [Na(+)](i) in rainbow trout cardiomyocytes. This surprisingly high [Na(+)](i) is likely to result in physiologically significant Ca(2+) influx via reverse-mode NCX during excitation-contraction coupling. We calculate that this Ca(2+)-source will decrease with the action potential duration as temperature and contraction frequency increases.
Collapse
Affiliation(s)
- Rikke Birkedal
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Second Floor, 46 Grafton St., Manchester M13 9NT, United Kingdom.
| | | |
Collapse
|
18
|
Chuu JJ, Liu SH, Lin-Shiau SY. Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicol Lett 2007; 169:109-20. [PMID: 17292570 DOI: 10.1016/j.toxlet.2006.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant, while mercuric sulfide (HgS) is a main active component of cinnabar, a Chinese mineral medicine used as a sedative. Because the neurotoxicological effects of HgS were not clearly understood, in this study, we attempted to compare HgS with MeHg in various physiological responses in Sprague-Dawley rats. After oral administration (2 mg/(kg day)) for consecutive 5 and 14 days, MeHg reversibly decreased both of motor nerve conduction velocity (MNCV) and tail flick response, whereas irreversibly inhibited all of the motor equilibrium performance, recovery of compound muscle action potentials (CMAP) following exhaustic tetanic stimuli and Na+/K+-ATPase activity of the isolated sciatic nerve. These toxic effects of MeHg were found in well correlation of Hg contents of various tissues (blood, cerebral cortex, liver and kidney) in rats. For comparison, a dose of 1g/(kg day) of HgS was orally administered to the rats based on our previous findings on ototoxicity of HgS. The results revealed that HgS only reversibly delayed the recovery of suppressed CMAP and inhibited sciatic nerve Na+/K+-ATPase activity in accordance to the lower Hg contents of the tissues. These findings provide the important information on the differential susceptibility of various nervous tissues to MeHg and HgS. The neruotoxic effects produced by HgS was estimated to be about 1000 of those induced by MeHg found in this study and our previous reports.
Collapse
Affiliation(s)
- Jiunn-Jye Chuu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
19
|
Galli GLJ, Taylor EW, Shiels HA. Calcium flux in turtle ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1781-9. [PMID: 16887918 DOI: 10.1152/ajpregu.00421.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca2+channel and the Na+/Ca2+exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca2+-sensitive dye Fura-2 elicited Ca2+transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca2+currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca2+currents originating from L-type Ca2+channels (ICa). The density of ICawas 3.2 ± 0.5 pA/pF, which led to an overall total Ca2+influx of 64.1 ± 9.3 μM/l. NCX activity was measured as the Ni+-sensitive current at two concentrations of intracellular Na+(7 and 14 mM). Total Ca2+influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 ± 7.7 μmol/l and 26.7 ± 3.2 μmol/l at 14 and 7 mM intracellular Na+, respectively. In the absence of the SR and L-type Ca2+channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca2+transport, and most of the Ca2+used for contraction originates from the L-type Ca2+channel.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciemces, The University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT UK.
| | | | | |
Collapse
|
20
|
Farrar RS, Battiprolu PK, Pierson NS, Rodnick KJ. Steroid-induced cardiac contractility requires exogenous glucose, glycolysis and the sarcoplasmic reticulum in rainbow trout. ACTA ACUST UNITED AC 2006; 209:2114-28. [PMID: 16709913 DOI: 10.1242/jeb.02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent data from our laboratory suggest that sex steroids promote contractile function in cardiac muscle of rainbow trout (Oncorhynchus mykiss Walbaum), and there are sex differences in hormone signaling and cardiac function. The current study investigated whether steroid-induced inotropism in electrically paced (0.5 Hz, 14 degrees C) ventricle strips at 90% Lmax (1) has a metabolic requirement for exogenous glucose and (2) is associated with enhanced intracellular Ca2+ storage and release from the sarcoplasmic reticulum (SR). We also explored whether sex differences exist in extracellular Ca2+ (Ca2+o) or cardiac sensitivity to Ca2+o. In the absence or at low concentrations (1 or 2 mmol l-)) of exogenous glucose, resting tension and relaxation time were increased selectively in cardiac tissue from females. Increasing glucose promoted twitch force in a bell-shaped manner, with 5 mmol l-1 representing the optimal concentration for both sexes. The positive inotropic effects of physiological concentrations of testosterone (T) and 17beta-estradiol (E2) in male and female trout ventricle strips, respectively, developed slowly (10-45 min) and were not apparent in glucose-free medium, in medium containing iodoacetate (IAA), an inhibitor of glycolysis, or medium containing 5 mmol l-) lactate or pyruvate. Male ventricle strips had increased inotropic responses to glucose and T compared with female strips exposed to glucose and E2. Furthermore, sexually maturing males showed a greater inotropic response than immature males or females. Pretreatment with ryanodine (a specific blocker of SR Ca2+ release) also eliminated the inotropic effects of sex steroids and exogenous glucose and reduced the post-rest potentiation of contractile force (a marker of SR Ca2+ storage). By contrast, the inotropic effects of epinephrine (Epi) or elevated Ca2+o were faster (developing within 1-3 min) and were not diminished by the presence or absence of glucose or by pretreatment with IAA or ryanodine. Sex differences were also found in responsiveness to caffeine (males>females) and the relationship between Ca2+ concentration and force development above baseline. The Ca2+50 was lower in female cardiac tissue than males, suggesting greater Ca2+ sensitivity, and although plasma albumin was higher in females, total and ionized plasma Ca2+ did not differ between the sexes. For the first time, our study highlights the importance of extracellular glucose, glycolytic activity and SR Ca2+ storage and release for sex steroid-induced inotropism in the trout ventricle. Conversely, the inotropes Epi and elevated [Ca2+o] do not require the presence or metabolism of exogenous glucose or the SR for signaling their positive effects on contractility. These results also demonstrate novel sex-related differences in cardiac reliance on exogenous glucose, Ca2+ sensitivity and SR function and thus should be considered in future studies.
Collapse
Affiliation(s)
- Richard S Farrar
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
21
|
Shiels HA, Paajanen V, Vornanen M. Sarcolemmal ion currents and sarcoplasmic reticulum Ca2+content in ventricular myocytes from the cold stenothermic fish, the burbot(Lota lota). J Exp Biol 2006; 209:3091-100. [PMID: 16888058 DOI: 10.1242/jeb.02321] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe burbot (Lota lota) is a cold stenothermic fish species whose heart is adapted to function in the cold. In this study we use whole-cell voltage-clamp techniques to characterize the electrophysiological properties of burbot ventricular myocytes and to test the hypothesis that changes in membrane currents and intracellular Ca2+ cycling associated cold-acclimation in other fish species are routine for stenothermic cold-adapted species. Experiments were performed at 4°C, which is the body temperature of burbot for most of the year, and after myocytes were acutely warmed to 11°C, which is in the upper range of temperatures experienced by burbot in nature. Results on K+ channels support our hypothesis as the relative density of K-channel conductances in the burbot heart are similar to those found for cold-acclimated cold-active fish species. IK1 conductance was small (39.2±5.4 pS pF-1 at 4°C and 71.4±1.7 pS pF-1 at 11°C)and IKr was large (199±27 pS pF-1 at 4°C and 320.3±8 pS pF-1 at 11°C) in burbot ventricular myocytes. We found high Na+-Ca2+ exchange(NCX) activity (35.9±6.3 pS pF-1 at 4°C and 58.6±8.4 pS pF-1 at 11°C between -40 and 20 mV),suggesting that it may be the primary pathway for sarcolemmal (SL)Ca2+ influx in this species. In contrast, the density(ICa, 0.81±0.13 pA pF-1 at 4°C, and 1.35±0.18 pA pF-1 at 11°C) and the charge(QCa, 0.24±0.043 pC pF-1 at 4°C and 0.21±0.034 pC pF-1 at 11°C) carried by the l-type Ca2+ current was small. Our results on sarcolemmal ion currents in burbot ventricular myocytes suggest that cold stenothermy and compensative cold-acclimation involve many of the same subcellular adaptations that culminate in enhanced excitability in the cold.
Collapse
Affiliation(s)
- Holly A Shiels
- Faculty of Life Sciences, University of Manchester, 2.18c Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK.
| | | | | |
Collapse
|
22
|
Savio-Galimberti E, Ponce-Hornos JE. Effects of caffeine, verapamil, lithium, and KB-R7943 on mechanics and energetics of rat myocardial bigeminies. Am J Physiol Heart Circ Physiol 2006; 290:H613-23. [PMID: 16055510 DOI: 10.1152/ajpheart.01219.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of pharmacological alteration of Ca2+sources on mechanical and energetic properties of paired-pulse (“bigeminic”) contractions. The fraction of heat release that is related to pressure development and pressure-independent heat release were measured during isovolumic contractions in arterially perfused rat ventricles. The heat released by regular and bigeminic contractions showed two brief pressure-independent components (H1 and H2) and a pressure-dependent component (H3). We used the ratio of active heat (H′a) to pressure-time integral (PtI) and the ratio of H3 to PtI to estimate the energetic cost of muscle contraction (overall economy) and pressure maintenance (contractile economy), respectively. Neither of these ratios was affected by stimulation pattern. Caffeine (an inhibitor of sarcoplasmic reticulum function) significantly decreased mechanical responses and increased the energetic cost of contraction (Δ = 101 ± 12.6%). Verapamil (an L-type Ca2+channel blocker) decreased pressure maintenance of extrasystolic (Δ = 43.4 ± 3.7%) and postextrasystolic (Δ = 37.5 ± 3.5%) contractions without affecting postextrasystolic potentiation, suggesting that a verapamil-insensitive fraction is responsible for potentiation. The verapamil-insensitive fraction was further studied in the presence of lithium (45 mM) and KB-R7943 (5 μM), inhibitors of the Na+/Ca2+exchanger. Both agents decreased all mechanical responses, including postextrasystolic potentiation (Δ = 67.3 ± 3.3%), without altering overall or contractile economies, suggesting an association of the verapamil-insensitive Ca2+fraction to the sarcolemmal Na+/Ca2+exchanger. The effect of the inhibitors of the Na+/Ca2+exchanger on potentiation suggests an increased participation of extracellular Ca2+(and, thus, a redistribution of the relative participation of the Ca2+pools) during bigeminic contractions in rat myocardium.
Collapse
Affiliation(s)
- E Savio-Galimberti
- Instituto de Investigaciones Cardiológica, School of Medicine, Universidad de Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Shiels HA, Blank JM, Farrell AP, Block BA. Electrophysiological properties of the L-type Ca2+current in cardiomyocytes from bluefin tuna and Pacific mackerel. Am J Physiol Regul Integr Comp Physiol 2004; 286:R659-68. [PMID: 14656768 DOI: 10.1152/ajpregu.00521.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca2+delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca2+channel current ( ICa) to test the hypothesis that Ca2+influx would be larger and have faster kinetics in cardiomyocytes from Pacific bluefin tuna ( Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel ( Scomber japonicus). In accordance with this hypothesis, ICain atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 ± 0.2 pA/pF and 25.9 ± 1.6 ms, respectively) than those from mackerel (-2.7 ± 0.5 pA/pF and 32.3 ± 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts (Vornanen M. Am J Physiol Regul Integr Comp Physiol 272: R1432-R1440, 1997). These results indicate enhanced ICain atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced ICamay be associated with elevated cardiac performance, because ICadelivers the majority of Ca2+involved in excitation-contraction coupling in most fish hearts. Similarly, ICais enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.
Collapse
Affiliation(s)
- H A Shiels
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|