1
|
Augustsson F, Martens EA. Co-evolutionary dynamics for two adaptively coupled Theta neurons. CHAOS (WOODBURY, N.Y.) 2024; 34:113126. [PMID: 39541264 DOI: 10.1063/5.0226338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Natural and technological networks exhibit dynamics that can lead to complex cooperative behaviors, such as synchronization in coupled oscillators and rhythmic activity in neuronal networks. Understanding these collective dynamics is crucial for deciphering a range of phenomena from brain activity to power grid stability. Recent interest in co-evolutionary networks has highlighted the intricate interplay between dynamics on and of the network with mixed time scales. Here, we explore the collective behavior of excitable oscillators in a simple network of two Theta neurons with adaptive coupling without self-interaction. Through a combination of bifurcation analysis and numerical simulations, we seek to understand how the level of adaptivity in the coupling strength, a, influences the dynamics. We first investigate the dynamics possible in the non-adaptive limit; our bifurcation analysis reveals stability regions of quiescence and spiking behaviors, where the spiking frequencies mode-lock in a variety of configurations. Second, as we increase the adaptivity a, we observe a widening of the associated Arnol'd tongues, which may overlap and give room for multi-stable configurations. For larger adaptivity, the mode-locked regions may further undergo a period-doubling cascade into chaos. Our findings contribute to the mathematical theory of adaptive networks and offer insights into the potential mechanisms underlying neuronal communication and synchronization.
Collapse
Affiliation(s)
- Felix Augustsson
- Centre for Mathematical Sciences, Lund University, Märkesbacken 4, 223 62 Lund, Sweden
| | - Erik A Martens
- Centre for Mathematical Sciences, Lund University, Märkesbacken 4, 223 62 Lund, Sweden
| |
Collapse
|
2
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Klemm K, Martens EA. Bifurcations in adaptive vascular networks: Toward model calibration. CHAOS (WOODBURY, N.Y.) 2023; 33:093135. [PMID: 37748484 DOI: 10.1063/5.0160170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Transport networks are crucial for the functioning of natural and technological systems. We study a mathematical model of vascular network adaptation, where the network structure dynamically adjusts to changes in blood flow and pressure. The model is based on local feedback mechanisms that occur on different time scales in the mammalian vasculature. The cost exponent γ tunes the vessel growth in the adaptation rule, and we test the hypothesis that the cost exponent is γ=1/2 for vascular systems [D. Hu and D. Cai, Phys. Rev. Lett. 111, 138701 (2013)]. We first perform bifurcation analysis for a simple triangular network motif with a fluctuating demand and then conduct numerical simulations on network topologies extracted from perivascular networks of rodent brains. We compare the model predictions with experimental data and find that γ is closer to 1 than to 1/2 for the model to be consistent with the data. Our study, thus, aims at addressing two questions: (i) Is a specific measured flow network consistent in terms of physical reality? (ii) Is the adaptive dynamic model consistent with measured network data? We conclude that the model can capture some aspects of vascular network formation and adaptation, but also suggest some limitations and directions for future research. Our findings contribute to a general understanding of the dynamics in adaptive transport networks, which is essential for studying mammalian vasculature and developing self-organizing piping systems.
Collapse
Affiliation(s)
- Konstantin Klemm
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Erik A Martens
- Centre for Mathematical Sciences, Lund University, Sölvegatan 18B, 22100 Lund, Sweden
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
6
|
Møller S, Jacobsen JCB, Braunstein TH, Holstein-Rathlou NH, Sorensen CM. Influence of connexin45 on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F732-F740. [DOI: 10.1152/ajprenal.00185.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal autoregulation is mediated by the myogenic response and tubuloglomerular feedback (TGF) working in concert to maintain renal blood flow and glomerular filtration rate despite fluctuations in renal perfusion pressure. Intercellular communication through gap junctions may play a role in renal autoregulation. We examine if one of the building blocks in gap junctions, connexin45 (Cx45), which is expressed in vascular smooth muscle cells, has an influence on renal autoregulatory efficiency. The isolated perfused juxtamedullary nephron preparation was used to measure afferent arteriolar diameter changes in response to acute changes in renal perfusion pressure. In segmental arteries, pressure myography was used to study diameter changes in response to pressure changes. Wire myography was used to study vasoconstrictor and vasodilator responses. A mathematical model of the vascular wall was applied to interpret experimental data. We found a significant reduction in the afferent arteriolar constriction in response to acute pressure increases in Cx45 knockout (KO) mice compared with wild-type (WT) mice. Abolition of TGF caused a parallel upward shift in the autoregulation curve of WT animals but had no effect in KO animals, which is compatible with TGF providing a basal tonic contribution in afferent arterioles whereas Cx45 KO animals were functionally papillectomized. Analysis showed a shift toward lower stress sensitivity in afferent arterioles from Cx45 KO animals, indicating that the absence of Cx45 may also affect myogenic properties. Finally, loss of Cx45 in vascular smooth muscle cells appeared to associate with a change in both structure and passive properties of the vascular wall.
Collapse
Affiliation(s)
- Sophie Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H. Braunstein
- Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels-Henrik Holstein-Rathlou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sorensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Klein A, Joseph PD, Christensen VG, Jensen LJ, Jacobsen JCB. Lack of tone in mouse small mesenteric arteries leads to outward remodeling, which can be prevented by prolonged agonist-induced vasoconstriction. Am J Physiol Heart Circ Physiol 2018; 315:H644-H657. [PMID: 29775408 DOI: 10.1152/ajpheart.00111.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inward remodeling of resistance vessels is an independent risk factor for cardiovascular events. Thus far, the remodeling process remains incompletely elucidated, but the activation level of the vascular smooth muscle cell appears to play a central role. Accordingly, previous data have suggested that an antagonistic and supposedly beneficial response, outward remodeling, may follow prolonged vasodilatation. The present study aimed to determine whether 1) outward remodeling follows 3 days of vessel culture without tone, 2) a similar response can be elicited in a much shorter 4-h timeframe, and, finally, 3) whether a 4-h response can be prevented or reversed by the presence of vasoconstrictors in the medium. Cannulated mouse small mesenteric arteries were organocultured for 3 days in the absence of tone, leading to outward remodeling that continued throughout the culture period. In more acute experiments in which cannulated small mesenteric arteries were maintained in physiological saline without tone for 4 h, we detected a similar outward remodeling that proceeded at a rate several times faster. In the 4-h experimental setting, continuous vasoconstriction to ~50% tone by abluminal application of UTP or norepinephrine + neuropeptide Y prevented outward remodeling but did not cause inward remodeling. Computational modeling was used to simulate and interpret these findings and to derive time constants of the remodeling processes. It is suggested that depriving resistance arteries of activation will lead to eutrophic outward remodeling, which can be prevented by vascular smooth muscle cell activation induced by prolonged vasoconstrictor exposure. NEW & NOTEWORTHY We have established an effective 4-h method for studying outward remodeling in pressurized mouse resistance vessels ex vivo and have determined conditions that block the remodeling response. This allows for investigating the subtle but clinically highly relevant phenomenon of outward remodeling while avoiding both laborious 3-day organoid culture of cannulated vessels and in vivo experiments lasting several weeks.
Collapse
Affiliation(s)
- Anika Klein
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Philomeena Daphne Joseph
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Vibeke Grøsfjeld Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Reglin B, Secomb TW, Pries AR. Structural Control of Microvessel Diameters: Origins of Metabolic Signals. Front Physiol 2017; 8:813. [PMID: 29114229 PMCID: PMC5660852 DOI: 10.3389/fphys.2017.00813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.
Collapse
Affiliation(s)
- Bettina Reglin
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Axel R Pries
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
9
|
Cuomo F, Roccabianca S, Dillon-Murphy D, Xiao N, Humphrey JD, Figueroa CA. Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS One 2017; 12:e0173177. [PMID: 28253335 PMCID: PMC5333881 DOI: 10.1371/journal.pone.0173177] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Although considered by many as the gold standard clinical measure of arterial stiffness, carotid-to-femoral pulse wave velocity (cf-PWV) averages material and geometric properties over a large portion of the central arterial tree. Given that such properties may evolve differentially as a function of region in cases of hypertension and aging, among other conditions, there is a need to evaluate the potential utility of cf-PWV as an early diagnostic of progressive vascular stiffening. In this paper, we introduce a data-driven fluid-solid-interaction computational model of the human aorta to simulate effects of aging-related changes in regional wall properties (e.g., biaxial material stiffness and wall thickness) and conduit geometry (e.g., vessel caliber, length, and tortuosity) on several metrics of arterial stiffness, including distensibility, augmented pulse pressure, and cyclic changes in stored elastic energy. Using the best available biomechanical data, our results for PWV compare well to findings reported for large population studies while rendering a higher resolution description of evolving local and global metrics of aortic stiffening. Our results reveal similar spatio-temporal trends between stiffness and its surrogate metrics, except PWV, thus indicating a complex dependency of the latter on geometry. Lastly, our analysis highlights the importance of the tethering exerted by external tissues, which was iteratively estimated until hemodynamic simulations recovered typical values of tissue properties, pulse pressure, and PWV for each age group.
Collapse
Affiliation(s)
- Federica Cuomo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | | | - Nan Xiao
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - C. Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang J, Liu K, Wang H, Li Z, Li Y, Ping S, Bardeesi ASA, Guo Y, Zhou Y, Pei T, Deng L, Sheng P, Liu S, Li C. Role of nifedipine and hydrochlorothiazide in MAPK activation and vascular smooth muscle cell proliferation and apoptosis. Herz 2016; 42:573-584. [DOI: 10.1007/s00059-016-4489-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/28/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
|
11
|
Poulsen CB, Damkjær M, Hald BO, Wang T, Holstein-Rathlou NH, Jacobsen JCB. Vascular flow reserve as a link between long-term blood pressure level and physical performance capacity in mammals. Physiol Rep 2016; 4:4/11/e12813. [PMID: 27255360 PMCID: PMC4908491 DOI: 10.14814/phy2.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Mean arterial pressure (MAP) is surprisingly similar across different species of mammals, and it is, in general, not known which factors determine the arterial pressure level. Mammals often have a pronounced capacity for sustained physical performance. This capacity depends on the vasculature having a flow reserve that comes into play as tissue metabolism increases. We hypothesize that microvascular properties allowing for a large vascular flow reserve is linked to the level of the arterial pressure.To study the interaction between network properties and network inlet pressure, we developed a generic and parsimonious computational model of a bifurcating microvascular network where diameter and growth of each vessel evolves in response to changes in biomechanical stresses. During a simulation, the network develops well-defined arterial and venous vessel characteristics. A change in endothelial function producing a high precapillary resistance and thus a high vascular flow reserve is associated with an increase in network inlet pressure. Assuming that network properties are independent of body mass, and that inlet pressure of the microvascular network is a proxy for arterial pressure, the study provides a conceptual explanation of why high performing animals tend to have a high MAP.
Collapse
Affiliation(s)
- Christian B Poulsen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense C, Denmark
| | - Bjørn O Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
12
|
Yue X, Wu M, Jiang H, Hao J, Zhao Q, Zhu Q, Saren G, Zhang Y, Zhang X. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-κB signaling pathways. Mol Med Rep 2016; 14:1979-85. [PMID: 27430252 PMCID: PMC4991746 DOI: 10.3892/mmr.2016.5457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/15/2016] [Indexed: 01/18/2023] Open
Abstract
To investigate the effects of inflammatory factor interleukin (IL)‑6 on the expression of endothelial lipase (EL) and its potential signaling pathways in atherosclerosis, a primary culture of human umbilical vein endothelial cells (HUVECs) was established and treated as follows: i) Control group without any treatment; ii) recombinant human (rh)IL‑6 treatment (10 ng/ml) for 0, 4, 8, 12 and 24 h; iii) p38 mitogen‑activated protein kinases (MAPKs) inhibitor (SB203580, 10 µmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment; iv) nuclear factor (NF)‑κB activation inhibitor (pyrrolidine dithiocarbamate, 10 mmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment. EL levels were detected by immunocytochemical staining and western blot analysis. Proliferation of HUVECs was detected by immunostaining of proliferating cell nuclear antigen (PCNA) and an MTT assay. p38 MAPK and NF‑κB p65 levels were detected by western blotting. The results showed that rhIL‑6 treatment increased EL expression and proliferation of HUVECs. NF‑κB p65 and MAPK p38 protein levels also increased in a time‑dependent manner in HUVECs after rhIL‑6 treatment. NF‑κB inhibitor and MAPK p38 inhibitor prevented the effects of rhIL‑6 on EL expression. In conclusion, inflammatory factor IL‑6 may participate in the pathogenesis of atherosclerosis by increasing EL expression and the proliferation of endothelial cells via the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Minghui Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinghao Zhao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Zhu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Gaowa Saren
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Pries AR, Secomb TW. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda) 2015; 29:446-55. [PMID: 25362638 DOI: 10.1152/physiol.00012.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The adequate and efficient functioning of the microcirculation requires not only numerous vessels providing a large surface area for transport but also a structure that provides short diffusion distances from capillaries to tissue and efficient distribution of convective blood flow. Theoretical models show how a combination of angiogenesis, remodeling, and pruning in response to hemodynamic and metabolic stimuli, termed "angioadaptation," generates well organized, functional networks.
Collapse
Affiliation(s)
- Axel R Pries
- Department of Physiology and CCR, Charité, Berlin, Germany; Deutsches Herzzentrum Berlin, Berlin, Germany;
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Jacobsen JCB, Sorensen CM. Influence of Connexin40 on the renal myogenic response in murine afferent arterioles. Physiol Rep 2015; 3:3/5/e12416. [PMID: 26009638 PMCID: PMC4463840 DOI: 10.14814/phy2.12416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Renal autoregulation consists of two main mechanisms; the myogenic response and the tubuloglomerular feedback mechanism (TGF). Increases in renal perfusion pressure activate both mechanisms causing a reduction in diameter of the afferent arteriole (AA) resulting in stabilization of the glomerular pressure. It has previously been shown that connexin-40 (Cx40) is essential in the renal autoregulation and mediates the TGF mechanism. The aim of this study was to characterize the myogenic properties of the AA in wild-type and connexin-40 knockout (Cx40KO) mice using both in situ diameter measurements and modeling. We hypothesized that absence of Cx40 would not per se affect myogenic properties as Cx40 is expressed primarily in the endothelium and as the myogenic response is known to be present also in isolated, endothelium-denuded vessels. Methods used were the isolated perfused juxtamedullary nephron preparation to allow diameter measurements of the AA. A simple mathematical model of the myogenic response based on experimental parameters was implemented. Our findings show that the myogenic response is completely preserved in the AA of the Cx40KO and if anything, the stress sensitivity of the smooth muscle cell in the vascular wall is increased rather than reduced as compared to the WT. These findings are compatible with the view of the myogenic response being primarily a local response to the local transmural pressure.
Collapse
Affiliation(s)
- Jens Christian B Jacobsen
- Department of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Reglin B, Pries AR. Metabolic control of microvascular networks: oxygen sensing and beyond. J Vasc Res 2014; 51:376-92. [PMID: 25531863 DOI: 10.1159/000369460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O2) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decreasing) the release of vasodilatory (vasoconstricting) metabolic signal substances with decreasing partial pressure of O2. This review analyses the principles of metabolic vascular control with a focus on the prevailing feedback regulations. We propose the following hypotheses with respect to vessel diameter adaptation. (1) In addition to O2-dependent signaling, metabolic vascular regulation can be effected by signal substances produced independently of local oxygenation (reflecting the presence of cells) due to the dilution effect. (2) Control of resting vessel tone, and thus perfusion reserve, could be explained by a vascular activity/hypoxia memory. (3) Vasodilator but not vasoconstrictor signaling can prevent shunt perfusion via signal conduction upstream to feeding arterioles. (4) For low perfusion heterogeneity in the steady state, metabolic signaling from the vessel wall or a perivascular tissue sleeve is optimal. (5) For amplification of perfusion during transient increases of tissue demand, red blood cell-derived vasodilators or vasoconstrictors diluted in flowing blood may be relevant.
Collapse
|
17
|
Zhang X, Wu M, Jiang H, Hao J, Zhang Q, Zhu Q, Saren G, Zhang Y, Meng X, Yue X. Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways. PLoS One 2014; 9:e107634. [PMID: 25250890 PMCID: PMC4175466 DOI: 10.1371/journal.pone.0107634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiotensin II (AngII) participates in endothelial damage and inflammation, and accelerates atherosclerosis. Endothelial lipase (EL) is involved in the metabolism and clearance of high density lipoproteins (HDL), the serum levels of which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs). METHODS AND FINDINGS HUVECs were cultured in vitro with different treatments as follows: 1) The control group without any treatment; 2) AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3) NF-κB activation inhibitor pyrrolidine dithiocarbamate (PDTC) pretreatment for 1 h before AngII treatment; and 4) mitogen-activated protein kinase (MAPK) p38 inhibitor (SB203580) pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. NF-kappa B (NF-κB) p65, MAPK p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were assayed by western blotting. The results showed that the protein levels of EL, NF-κB p65, MAPK p38, JNK, and p-ERK protein levels, in addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC) and the MAPK p38 inhibitor (SB203580) partially inhibited the effects of AngII on EL expression. CONCLUSION AngII may upregulate EL protein expression via the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Jinan, China
| | - Minghui Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Hong Jiang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Jing Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Jinan, China
| | - Qingli Zhang
- Department of Morphology Laboratory, School of Medicine, Shandong University, Jinan, China
| | - Qing Zhu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Gaowa Saren
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiaohui Meng
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, China
| | - Xin Yue
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries. CPT Pharmacometrics Syst Pharmacol 2014; 3:e108. [PMID: 24695357 PMCID: PMC4011165 DOI: 10.1038/psp.2014.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/17/2014] [Indexed: 12/03/2022] Open
Abstract
Monitoring of physiological surrogate end points in drug development generates dynamic time-domain data reflecting the state of the biological system. Conventional data analysis often reduces the information in these data by extracting specific data points, thereby discarding potentially useful information. We developed a genetic fuzzy system (GFS) algorithm that is capable of learning all information in time-domain physiological data. Data on isometric force development of isolated small arteries were used as a framework for developing and optimizing a GFS. GFS performance was improved by several strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used in clustering or classification tasks as aids in the objective identification or prediction of dynamic physiological behavior.
Collapse
|
19
|
VanBavel E, Tuna BG. Integrative modeling of small artery structure and function uncovers critical parameters for diameter regulation. PLoS One 2014; 9:e86901. [PMID: 24497993 PMCID: PMC3908953 DOI: 10.1371/journal.pone.0086901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Organ perfusion is regulated by vasoactivity and structural adaptation of small arteries and arterioles. These resistance vessels are sensitive to pressure, flow and a range of vasoactive stimuli. Several strongly interacting control loops exist. As an example, the myogenic response to a change of pressure influences the endothelial shear stress, thereby altering the contribution of shear-dependent dilation to the vascular tone. In addition, acute responses change the stimulus for structural adaptation and vice versa. Such control loops are able to maintain resistance vessels in a functional and stable state, characterized by regulated wall stress, shear stress, matched active and passive biomechanics and presence of vascular reserve. In this modeling study, four adaptation processes are identified that together with biomechanical properties effectuate such integrated regulation: control of tone, smooth muscle cell length adaptation, eutrophic matrix rearrangement and trophic responses. Their combined action maintains arteries in their optimal state, ready to cope with new challenges, allowing continuous long-term vasoregulation. The exclusion of any of these processes results in a poorly regulated state and in some cases instability of vascular structure.
Collapse
Affiliation(s)
- Ed VanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Bilge Guvenc Tuna
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
LeBlanc AJ, Krishnan L, Sullivan CJ, Williams SK, Hoying JB. Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 2013; 19:676-95. [PMID: 22734666 DOI: 10.1111/j.1549-8719.2012.00207.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular compromise and the accompanying perfusion deficits cause or complicate a large array of disease conditions and treatment failures. This has prompted the exploration of therapeutic strategies to repair or regenerate vasculatures, thereby establishing more competent microcirculatory beds. Growing evidence indicates that an increase in vessel numbers within a tissue does not necessarily promote an increase in tissue perfusion. Effective regeneration of a microcirculation entails the integration of new stable microvessel segments into the network via neovascularization. Beginning with angiogenesis, neovascularization entails an integrated series of vascular activities leading to the formation of a new mature microcirculation, and includes vascular guidance and inosculation, vessel maturation, pruning, AV specification, network patterning, structural adaptation, intussusception, and microvascular stabilization. While the generation of new vessel segments is necessary to expand a network, without the concomitant neovessel remodeling and adaptation processes intrinsic to microvascular network formation, these additional vessel segments give rise to a dysfunctional microcirculation. While many of the mechanisms regulating angiogenesis have been detailed, a thorough understanding of the mechanisms driving post-angiogenesis activities specific to neovascularization has yet to be fully realized, but is necessary to develop effective therapeutic strategies for repairing compromised microcirculations as a means to treat disease.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Cardiovascular Innovation Institute, Jewish Hospital and St. Mary's Healthcare and University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
21
|
Barocas VH, Dorfman KD, Segal Y. A model of strain-dependent glomerular basement membrane maintenance and its potential ramifications in health and disease. J Biomech Eng 2013; 134:081006. [PMID: 22938359 DOI: 10.1115/1.4007098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A model is developed and analyzed for type IV collagen turnover in the kidney glomerular basement membrane (GBM), which is the primary structural element in the glomerular capillary wall. The model incorporates strain dependence in both deposition and removal of the GBM, leading to an equilibrium tissue strain at which deposition and removal are balanced. The GBM thickening decreases tissue strain per unit of transcapillary pressure drop according to the law of Laplace, but increases the transcapillary pressure drop required to maintain glomerular filtration. The model results are in agreement with the observed GBM alterations in Alport syndrome and thin basement membrane disease, and the model-predicted linear relation between the inverse capillary radius and inverse capillary thickness at equilibrium is consistent with published data on different mammals. In addition, the model predicts a minimum achievable strain in the GBM based on the geometry, properties, and mechanical environment; that is, an infinitely thick GBM would still experience a finite strain. Although the model assumptions would be invalid for an extremely thick GBM, the minimum achievable strain could be significant in diseases, such as Alport syndrome, characterized by focal GBM thickening. Finally, an examination of reasonable values for the model parameters suggests that the oncotic pressure drop-the osmotic pressure difference between the plasma and the filtrate due to large molecules-plays an important role in setting the GBM strain and, thus, leakage of protein into the urine may be protective against some GBM damage.
Collapse
Affiliation(s)
- Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
22
|
Zhang LF. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 2013; 113:2873-95. [DOI: 10.1007/s00421-013-2597-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
23
|
Mancini M, Petretto E, Kleinert C, Scavone A, De T, Cook S, Silhavy J, Zidek V, Pravenec M, d'Amati G, Camici PG. Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Res Cardiol 2013; 108:316. [PMID: 23197152 DOI: 10.1007/s00395-012-0316-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 02/01/2023]
Abstract
The mechanisms underlying coronary microvascular remodeling and dysfunction, which are critical determinants of abnormal myocardial blood flow regulation in human hypertension, are poorly understood. The spontaneously hypertensive rat (SHR) exhibits many features of human hypertensive cardiomyopathy. We demonstrate that remodeling of intramural coronary arterioles is apparent in the SHR already at 4 weeks of age, i.e. before the onset of systemic hypertension. To uncover possible genetic determinants of coronary microvascular remodeling, we carried out detailed histological and histomorphometric analysis of the heart and coronary vasculature in 30 weeks old SHR, age-matched Brown Norway (BN-Lx) parentals and BXH/HXB recombinant inbred (RI) strains. Using previously mapped expression quantitative trait loci (eQTLs), we carried out a genome-wide association analysis between genetic determinants of cardiac gene expression and histomorphometric traits. This identified 36 robustly mapped eQTLs in the heart which were associated with medial area of intramural coronary arterioles [false discovery rate (FDR) ~5%]. Transcripts, which were both under cis-acting genetic regulation and significantly correlated with medial area (FDR <5%), but not with blood pressure indices, were prioritized and four candidate genes were identified (Rtel1, Pla2g5, Dnaja4 and Rcn2) according to their expression levels and biological functions. Our results demonstrate that genetic factors play a role in the development of coronary microvascular remodeling and suggest blood pressure independent candidate genes for further functional experiments.
Collapse
Affiliation(s)
- Massimiliano Mancini
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Acid-base transporters modulate cell migration, growth and proliferation: Implications for structure development and remodeling of resistance arteries? Trends Cardiovasc Med 2012; 23:59-65. [PMID: 23266155 DOI: 10.1016/j.tcm.2012.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Disturbed acid-base transport across the plasma membrane affects intracellular pH control and has been shown--primarily based on studies with non-vascular cells--to interfere with a number of fundamental cell functions including cell migration, growth and proliferation. Here, we evaluate the effects of acid-base transport and intracellular pH on the morphology of the resistance artery wall, which is altered in a number of physiological and pathological conditions and is an independent predictor of cardiovascular risk. The current evidence supports that disturbed function and/or expression of acid-base transporters can alter resistance artery morphology--and potentially atherosclerosis-prone conduit arteries--and hence should be considered as possible mechanistic components and targets for treatment in cardiovascular disease. More experimental evidence is required, however, to evaluate the cell biological effects of acid-base transport in vascular cells, the roles of specific acid-base transporters in artery remodeling, the relative mechanistic importance of acid-base transporters in the vascular wall compared to other organs, and the therapeutic potential of modifying acid-base transport activity pharmacologically or genetically.
Collapse
|
25
|
Okkels F, Jacobsen JCB. Dynamic adaption of vascular morphology. Front Physiol 2012; 3:390. [PMID: 23060814 PMCID: PMC3462325 DOI: 10.3389/fphys.2012.00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system.
Collapse
Affiliation(s)
- Fridolin Okkels
- Department of Micro- and Nanotechnology, Technical University of Denmark Lyngby, Denmark
| | | |
Collapse
|
26
|
Scuteri A, Lakatta EG. Bringing prevention in geriatrics: evidences from cardiovascular medicine supporting the new challenge. Exp Gerontol 2012; 48:64-8. [PMID: 22406133 DOI: 10.1016/j.exger.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/10/2012] [Accepted: 02/22/2012] [Indexed: 02/06/2023]
Abstract
Aging is a dynamic and systemic process, with high inter-individual heterogeneity, likely partially adaptive. Cardiovascular disease and hypertension are among the leading conditions causing disabilities in older subjects. If, in accordance with most recent definition, prevention is any intervention before the patient receives a diagnosis, prevention is possible at any age. Additionally, disability and CV disease in the elderly may be prevented by targeting factors underlying and modulating the arterial aging process. Cross-talk between arterial and brain aging will be discussed in this context as a paradigmatic clinical model fostering prevention in older subjects.
Collapse
Affiliation(s)
- Angelo Scuteri
- Laboratory Cardiovascular Sciences, National Institute on Aging Intramural Research Program - NIH, Baltimore, USA.
| | | |
Collapse
|
27
|
Zachariah JP, Xanthakis V, Larson MG, Vita JA, Sullivan LM, Smith HM, Safa R, Peng X, Hamburg N, Levy D, Sawyer DB, Mitchell GF, Vasan RS. Circulating vascular growth factors and central hemodynamic load in the community. Hypertension 2012; 59:773-9. [PMID: 22371357 DOI: 10.1161/hypertensionaha.111.179242] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mean and pulsatile components of hemodynamic load are related to cardiovascular disease. Vascular growth factors play a fundamental role in vascular remodeling. The links between growth factors and hemodynamic load components are not well described. In 3496 participants from the Framingham Heart Study third generation cohort (mean age: 40±9 years; 52% women), we related 4 tonometry-derived measures of central arterial load (carotid femoral pulse wave velocity and forward pressure wave, mean arterial pressure, and the global reflection coefficient) to circulating concentrations of angiopoietin 2, its soluble receptor; vascular endothelial growth factor, its soluble receptor; hepatocyte growth factor; insulin-like growth factor 1; and its binding protein 3. Using multivariable linear regression models, adjusted for standard cardiovascular risk factors, serum insulin-like growth factor 1 concentrations were negatively associated with carotid femoral pulse wave velocity, mean arterial pressure, and reflection coefficient (P≤0.01 for all), whereas serum vascular endothelial growth factor levels were positively associated with carotid femoral pulse wave velocity and mean arterial pressure (P<0.04). Serum insulin-like growth factor binding protein 3 and soluble angiopoietin 2 receptor levels were positively related to mean arterial pressure and to forward pressure wave, respectively (P<0.05). In our cross-sectional study of a large community-based sample, circulating vascular growth factor levels were related to measures of mean and pulsatile hemodynamic load in a pattern consistent with the known physiological effects of insulin-like growth factor 1 and vascular endothelial growth factor.
Collapse
Affiliation(s)
- Justin P Zachariah
- Framingham Heart Study, 73 Mount Wayte Ave, Framingham, MA 01702-5803, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Paravicini TM, Montezano AC, Yusuf H, Touyz RM. Activation of vascular p38MAPK by mechanical stretch is independent of c-Src and NADPH oxidase: influence of hypertension and angiotensin II. ACTA ACUST UNITED AC 2012; 6:169-78. [PMID: 22341198 DOI: 10.1016/j.jash.2012.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 12/27/2011] [Accepted: 01/08/2012] [Indexed: 01/13/2023]
Abstract
Little is known about vascular MAPK regulation in response to mechanical strain. Whether mechanically-sensitive pathways are altered in hypertension is unclear. We examined effects of stretch and Ang II on activation of p38MAPK in vascular smooth muscle cells (VSMC) from WKY and SHR. The role of c-Src and redox-sensitive pathways in stretch-induced effects were examined. VSMC from mesenteric arteries were plated onto flexible silastic plates and exposed to acute or chronic cyclic stretch (10%, 1 Hz) with or without Ang II (0.1 uM). Acute stretch stimulated p38MAPK activation in WKY and SHR, independently of c-Src and reactive oxygen species (ROS), since PP2 (c-Src inhibitor) and apocynin (NADPH oxidase inhibitor), failed to alter stretch-mediated p38MAPK. Chronic stretch blunted p38MAPK phosphorylation in WKY and increased phosphorylation in SHR. Stretch, in the presence of Ang II, induced an increase in procollagen-1 expression. This was blocked by SB203580 (p38MAPK inhibitor). Accordingly, vascular p38MAPK is a mechano-sensitive MAPK, differentially regulated by acute and chronic stretch in WKY and SHR. Functionally, stretch and Ang II, amplify profibrotic responses in a p38MAPK-dependent manner, responses that are perturbed in SHR. Such molecular process may influence vascular fibrosis in hypertension and appear to be independent of c-Src and ROS.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Blotting, Western
- CSK Tyrosine-Protein Kinase
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Multienzyme Complexes/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- NADH, NADPH Oxidoreductases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Signal Transduction
- Stress, Mechanical
- Vascular Resistance/physiology
- Vasoconstriction/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
- src-Family Kinases
Collapse
Affiliation(s)
- Tamara M Paravicini
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens 2012; 29:1469-77. [PMID: 21577138 DOI: 10.1097/hjh.0b013e328347cc17] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Loss of cognitive function and hypertension are two common conditions in the elderly and both significantly contribute to loss of personal independency. Microvascular brain damage - the result of age-associated alteration in large arteries and the progressive mismatch of their cross-talk with small cerebral arteries - represents a potent risk factor for cognitive decline and for the onset of dementia in older individuals. The present review discusses the complexity of factors linking large artery to microvascular brain disease and to cognitive decline and the evidence for possible clinical markers useful for prevention of this phenomenon. The possibility of dementia prevention by cardiovascular risk factors control has not been demonstrated. In the absence of research clinical trials specifically and primarily designed to demonstrate the antihypertensive treatment efficacy for reducing the risk of dementia, further evidence demonstrating that it is possible to limit the progression of microvascular brain damage is needed.
Collapse
|
30
|
Secomb TW, Dewhirst MW, Pries AR. Structural adaptation of normal and tumour vascular networks. Basic Clin Pharmacol Toxicol 2011; 110:63-9. [PMID: 21995550 DOI: 10.1111/j.1742-7843.2011.00815.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular networks are dynamic structures, adapting to changing conditions by structural remodelling of vessel diameters and by growth of new vessels and regression of existing vessels. The vast number of blood vessels in the circulatory system, more than 10⁹, implies that vessels' arrangement and structure are not under individual genetic control but emerge as a result of generic responses of each segment to the various stimuli that it experiences. To obtain insight into the types of response that are needed, a network-oriented approach has been used, in which theoretical models are used to simulate structural adaptation in vascular networks, and the results are compared with experimental observations. With regard to the structural control of vessel diameters, this approach shows that responses to both haemodynamic and metabolic stimuli are needed for the formation of functionally adequate and efficient network structures. Furthermore, information transfer in both upstream and downstream directions is essential for balancing flows between long and short flow pathways. Otherwise, functional shunting occurs, that is, short pathways become enlarged and flow bypasses longer pathways. Information transfer in the upstream direction is achieved by conducted responses communicated along vessel walls. Simulations of structural adaptation in tumour microvascular networks indicate that impaired vascular communication, resulting in functional shunting, may be an important factor causing the dysfunctional microcirculation and local hypoxia typically observed in tumours. Anti-angiogenic treatment of tumours may restore vascular communication and thereby improve or normalize flow distribution in tumour vasculature.
Collapse
Affiliation(s)
- Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
31
|
Jacobsen JCB, Holstein-Rathlou NH. A Life under Pressure: Circumferential Stress in the Microvascular Wall. Basic Clin Pharmacol Toxicol 2011; 110:26-34. [PMID: 21917118 DOI: 10.1111/j.1742-7843.2011.00796.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jens C B Jacobsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
32
|
Abstract
Increased blood pressure (essential hypertension) is associated with increased cardiovascular risk, and the condition is treated primarily with a view to reducing this parameter. However, in the early stages, the main pathological changes are increased peripheral resistance and altered cardiovascular structure. The aim of this MiniReview was to trace the endeavours over the past several decades to translate these findings into answering the question whether normalization of resistance vessel structure should be a target for therapy. This MiniReview describes first the altered structure of the resistance vasculature in essential hypertension, where the vessels show increased media/lumen ratio because of inward eutrophic remodelling. Secondly, evidence is presented that altered small artery structure appears to have prognostic consequences. Then, the cellular mechanisms that may be involved are discussed, where there is evidence that vasoconstriction in itself can cause inward remodelling and that this can be prevented by vasodilators. This leads to a discussion of the degree to which it may be possible to rectify the abnormal structure, where it appears that this may be achieved using a therapy that causes vasodilatation in the patient concerned. Finally, the consequences of these findings are considered as regards clues for strategies that may be able to improve the outcome of antihypertensive therapy. The MiniReview concludes that there is reasonably strong evidence that improvement in abnormal resistance vessel structure requires a treatment that reduces peripheral resistance in the individual patient.
Collapse
|
33
|
Waters SL, Alastruey J, Beard DA, Bovendeerd PHM, Davies PF, Jayaraman G, Jensen OE, Lee J, Parker KH, Popel AS, Secomb TW, Siebes M, Sherwin SJ, Shipley RJ, Smith NP, van de Vosse FN. Theoretical models for coronary vascular biomechanics: progress & challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 104:49-76. [PMID: 21040741 PMCID: PMC3817728 DOI: 10.1016/j.pbiomolbio.2010.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 01/09/2023]
Abstract
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies.
Collapse
Affiliation(s)
- Sarah L Waters
- Oxford Centre for Industrial and Applied mathematics, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jacobsen JCB, Hornbech MS, Holstein-Rathlou NH. Significance of microvascular remodelling for the vascular flow reserve in hypertension. Interface Focus 2010; 1:117-31. [PMID: 22419978 DOI: 10.1098/rsfs.2010.0003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/09/2010] [Indexed: 12/26/2022] Open
Abstract
Vascular flow reserve (VFR) is the relative increase in tissue perfusion from the resting state to a state with maximum vasodilatation. Longstanding hypertension reduces the VFR, which in turn reduces the maximum working capacity of the tissue. In principle, both inward arteriolar remodelling and rarefaction of the microvascular network may contribute to this reduction. These processes are known to occur simultaneously in the microcirculation of the hypertensive individual and both cause a reduction in the luminal trans-sectional area available for perfusion. Which of them is the main factor responsible for the reduction in VFR is, however, not known. Here we present simulations performed on large microvascular networks to assess the VFR in various situations. Particular attention is paid to the VFR in networks in which the vessels have structurally adapted to a sustained increase in pressure by inward eutrophic remodelling (IER), i.e. by redistributing the same amount of wall material around a smaller lumen. Collectively, the results indicate that the IER may not per se be the main factor responsible for the hypertensive reduction in VFR. Rather, it may be explained by the presence of arteriolar and capillary rarefaction.
Collapse
Affiliation(s)
- Jens Christian Brings Jacobsen
- The Department of Biomedical Sciences, Division of Renal and Vascular Physiology , The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | | | | |
Collapse
|
35
|
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration. J Occup Environ Med 2010; 52:584-94. [DOI: 10.1097/jom.0b013e3181e12b1f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 2009; 24:45-57. [PMID: 19196651 DOI: 10.1152/physiol.00029.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diameter of resistance arteries has a profound effect on the distribution of microvascular blood flow and the control of systemic blood pressure. Here, we review mechanisms that contribute to the regulation of resistance artery diameter, both acutely and chronically, their temporal characteristics, and their interdependence. Furthermore, we hypothesize the existence of a remodeling continuum that allows for the vascular wall to rapidly modify its structural characteristics, specifically through the re-positioning of vascular smooth muscle cells. Importantly, the concepts presented more closely link acute vasoregulatory responses with adaptive changes in vessel wall structure. These rapid structural adaptations provide resistance vessels the ability to maintain a desired diameter under presumed optimal energetic and mechanical conditions.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | |
Collapse
|
37
|
Jacobsen JCB, Hornbech MS, Holstein-Rathlou NH. A tissue in the tissue: Models of microvascular plasticity. Eur J Pharm Sci 2009; 36:51-61. [DOI: 10.1016/j.ejps.2008.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/10/2008] [Indexed: 11/15/2022]
|
38
|
Abstract
The functional properties of microcirculation crucially depend on its angioarchitecture, (i.e., vessel arrangement and morphology). The microcirculation is subject to continuous dynamic structural adaptation (i.e., remodeling) controlled by hemodynamic and metabolic stimuli. Due to the complexity of the interactions among stimuli, reactions, and functional properties, an adequate understanding of structural adaptation requires mathematical models in addition to experimental investigations. Mathematical models have been developed that allow the prediction of realistic vascular properties, based on generic patterns of vascular responses. These models can be used to investigate and predict distributions of vessel morphology consistent with certain putative adaptation principles of terminal vascular beds in response to local hemodynamic and metabolic conditions. They have suggested new hypotheses, including the importance of conducted responses in network adaptation, and can explain the mechanisms underlying observed structural and functional network properties. In the future, the value of such models can be enhanced by including the effects of longitudinal stretch and pulsatility, the relationship between acute tone and structural adaptation, and the description of molecular and cellular mechanisms underlying structural responses of microvessels.
Collapse
Affiliation(s)
- Axel R Pries
- Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
39
|
Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985) 2008; 105:1652-60. [PMID: 18772322 DOI: 10.1152/japplphysiol.90549.2008] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Over the past decade, numerous studies have shown that increased aortic stiffness is associated with major cardiovascular disease end points, including heart disease, stroke, and kidney disease. Cardiac abnormalities and enhanced atherogenesis in the setting of increased pulsatile load on heart and arteries have been well described. However, recent studies have shown a further association between excessive pressure pulsatility and a number of afflictions of aging that share a predominant microvascular etiology, including many forms of kidney disease and cognitive impairment. In these disorders, microvascular remodeling and impaired regulation of local blood flow, which are related to large artery stiffness and pressure pulsatility, are associated with evidence of diffuse microscopic tissue damage. This brief review will summarize age-related changes in aortic and peripheral vascular function and will discuss potential mechanisms leading from changes in properties of large arteries to excessive pressure pulsatility, abnormal microvascular structure and function, and end-organ dysfunction and damage.
Collapse
Affiliation(s)
- Gary F Mitchell
- Cardiovascular Engineering, Inc., 1 Edgewater Dr., Suite 201A, Norwood, MA 02062, USA.
| |
Collapse
|