1
|
Stojnić B, Galmés S, Serrano A, Sulli M, Sušak L, Seye N, Palou A, Diretto G, Bonet ML, Ribot J. Glycosaminoglycan dermatan sulfate supplementation decreases diet-induced obesity and metabolic dysfunction in mice. Biofactors 2024; 50:493-508. [PMID: 38063391 DOI: 10.1002/biof.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 06/15/2024]
Abstract
Glycosaminoglycans are complex carbohydrates used as nutraceuticals for diverse applications. We studied the potential of the glycosaminoglycan dermatan sulfate (DS) to counteract the development of diet-induced obesity (DIO) using obesity-prone mice fed a high-fat diet (HFD) as a model. Oral DS supplementation protected the animals against HFD-induced increases in whole-body adiposity, visceral fat mass, adipocyte size, blood glucose levels, insulin resistance, and pro-inflammatory lipids levels in brown adipose tissue (BAT) and the liver, where it largely counteracted the HFD-induced changes in the nonpolar metabolome. Protection against DIO in the DS-supplemented mice occurred despite higher energy intake and appeared to be associated with increased energy expenditure, higher uncoupling protein 1 expression in BAT, decreased BAT "whitening," and an enhanced channeling of fuel substrates toward skeletal muscle. This work is the first preclinical study to examine the anti-obesity activity of DS tested individually in vivo. The results support possible uses of DS as an active component in functional foods/supplements to manage obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Bojan Stojnić
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Sebastiá Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Alba Serrano
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Lana Sušak
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Ndioba Seye
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| |
Collapse
|
2
|
Shirif AZ, Kovačević S, Brkljačić J, Teofilović A, Elaković I, Djordjevic A, Matić G. Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress. Int J Mol Sci 2021; 22:ijms22137206. [PMID: 34281257 PMCID: PMC8269441 DOI: 10.3390/ijms22137206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
The modern lifestyle brings both excessive fructose consumption and daily exposure to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation. The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated receptors-α and -δ and stimulated lipid uptake, lipolysis and β-oxidation in the muscle of fructose-fed stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin receptor supstrate-1 and Akt, as well as the level of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B, nuclear factor-κB, tumor necrosis factor-α, were observed in the muscle of fructose-fed stressed rats. Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle can make a setting for lipid-induced inflammation and the development of insulin resistance in fructose-fed stressed rats.
Collapse
|
3
|
Pillon NJ, Frendo-Cumbo S, Jacobson MR, Liu Z, Milligan PL, Hoang Bui H, Zierath JR, Bilan PJ, Brozinick JT, Klip A. Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells. J Lipid Res 2018; 59:1148-1163. [PMID: 29794037 DOI: 10.1194/jlr.m080788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Ceramides contribute to obesity-linked insulin resistance and inflammation in vivo, but whether this is a cell-autonomous phenomenon is debated, particularly in muscle, which dictates whole-body glucose uptake. We comprehensively analyzed lipid species produced in response to fatty acids and examined the consequence to insulin resistance and pro-inflammatory pathways. L6 myotubes were incubated with BSA-adsorbed palmitate or palmitoleate in the presence of myriocin, fenretinide, or fumonisin B1. Lipid species were determined by lipidomic analysis. Insulin sensitivity was scored by Akt phosphorylation and glucose transporter 4 (GLUT4) translocation, while pro-inflammatory indices were estimated by IκBα degradation and cytokine expression. Palmitate, but not palmitoleate, had mild effects on Akt phosphorylation but significantly inhibited insulin-stimulated GLUT4 translocation and increased expression of pro-inflammatory cytokines Il6 and Ccl2 Ceramides, hexosylceramides, and sphingosine-1-phosphate significantly heightened by palmitate correlated negatively with insulin sensitivity and positively with pro-inflammatory indices. Inhibition of sphingolipid pathways led to marked changes in cellular lipids, but did not prevent palmitate-induced impairment of insulin-stimulated GLUT4 translocation, suggesting that palmitate-induced accumulation of deleterious lipids and insulin resistance are correlated but independent events in myotubes. We propose that muscle cell-endogenous ceramide production does not evoke insulin resistance and that deleterious effects of ceramides in vivo may arise through ancillary cell communication.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Departments of Physiology and Pharmacology Karolinska Institutet, Stockholm, Sweden
| | - Scott Frendo-Cumbo
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maya R Jacobson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhi Liu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Juleen R Zierath
- Departments of Physiology and Pharmacology Karolinska Institutet, Stockholm, Sweden.,Molecular Medicine and Surgery Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Philip J Bilan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Pataky MW, Wang H, Yu CS, Arias EB, Ploutz-Snyder RJ, Zheng X, Cartee GD. High-Fat Diet-Induced Insulin Resistance in Single Skeletal Muscle Fibers is Fiber Type Selective. Sci Rep 2017; 7:13642. [PMID: 29057943 PMCID: PMC5651812 DOI: 10.1038/s41598-017-12682-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle is the major site for insulin-stimulated glucose disposal, and muscle insulin resistance confers many negative health outcomes. Muscle is composed of multiple fiber types, and conventional analysis of whole muscles cannot elucidate fiber type differences at the cellular level. Previous research demonstrated that a brief (two weeks) high fat diet (HFD) caused insulin resistance in rat skeletal muscle. The primary aim of this study was to determine in rat skeletal muscle the influence of a brief (two weeks) HFD on glucose uptake (GU) ± insulin in single fibers that were also characterized for fiber type. Epitrochlearis muscles were incubated with [3H]-2-deoxyglucose (2DG) ± 100 µU/ml insulin. Fiber type (myosin heavy chain expression) and 2DG accumulation were measured in whole muscles and single fibers. Although fiber type composition of whole muscles did not differ between diet groups, GU of insulin-stimulated whole muscles from LFD rats significantly exceeded HFD values (P < 0.005). For HFD versus LFD rats, GU of insulin-stimulated single fibers was significantly (P < 0.05) lower for IIA, IIAX, IIBX, IIB, and approached significance for IIX (P = 0.100), but not type I (P = 0.776) fibers. These results revealed HFD-induced insulin resistance was attributable to fiber type selective insulin resistance and independent of altered fiber type composition.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Carmen S Yu
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. .,Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res 2015; 65:193-207. [PMID: 26447514 DOI: 10.33549/physiolres.932993] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is often associated with metabolic impairments in peripheral tissues. Evidence suggests an excess of free fatty acids (FFA) as one factor linking obesity and related pathological conditions and the impact of FFA overload on skeletal muscle metabolism is described herein. Obesity is associated with dysfunctional adipose tissue unable to buffer the flux of dietary lipids. Resulting increased levels and fluxes of plasma FFA lead to ectopic lipid deposition and lipotoxicity. FFA accumulated in skeletal muscle are associated with insulin resistance and overall cellular dysfunction. Mechanisms supposed to be involved in these conditions include the Randle cycle, intracellular accumulation of lipid metabolites, inflammation and mitochondrial dysfunction or mitochondrial stress. These mechanisms are described and discussed in the view of current experimental evidence with an emphasis on conflicting theories of decreased vs. increased mitochondrial fat oxidation associated with lipid overload. Since different types of FFA may induce diverse metabolic responses in skeletal muscle cells, this review also focuses on cellular mechanisms underlying the different action of saturated and unsaturated FFA.
Collapse
Affiliation(s)
- J Tumova
- Department of Nutrition and Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
6
|
Barroso E, Rodríguez-Rodríguez R, Chacón MR, Maymó-Masip E, Ferrer L, Salvadó L, Salmerón E, Wabistch M, Palomer X, Vendrell J, Wahli W, Vázquez-Carrera M. PPARβ/δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1049-58. [DOI: 10.1016/j.bbadis.2015.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
7
|
Cai Z, Jiang X, Pan Y, Chen L, Zhang L, Zhu K, Cai Y, Ling Y, Chen F, Xu X, Chen M. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet. BMC Genomics 2015; 16:59. [PMID: 25887406 PMCID: PMC4328429 DOI: 10.1186/s12864-015-1283-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Results Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. Conclusions This study demonstrated that testosterone deficiency aggravated hypercholesterolemia and hepatic steatosis in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, enhanced immune and inflammatory responses, oxidative stress, and apoptosis may contribute to the increased hepatic steatosis induced by testosterone deficiency and an HFC diet. These results deepened our understanding of the molecular mechanisms of testosterone deficiency-induced hepatic steatosis and provided a foundation for future investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoling Jiang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Yongming Pan
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lifan Zhang
- College of Animal Science, Nanjing Agricultural University, Nanjing, 310058, China.
| | - Keyan Zhu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yueqin Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Ling
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fangming Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoping Xu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Minli Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Quintela AM, Jiménez R, Piqueras L, Gómez-Guzmán M, Haro J, Zarzuelo MJ, Cogolludo A, Sanz MJ, Toral M, Romero M, Pérez-Vizcaíno F, Duarte J. PPARβ activation restores the high glucose-induced impairment of insulin signalling in endothelial cells. Br J Pharmacol 2015; 171:3089-102. [PMID: 24527778 DOI: 10.1111/bph.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE PPARβ enhances insulin sensitivity in adipocytes and skeletal muscle cells, but its effects on insulin signalling in endothelial cells are not known. We analysed the effects of the PPARβ/δ (PPARβ) agonists, GW0742 and L165041, on impaired insulin signalling induced by high glucose in HUVECs and aortic and mesenteric arteries from diabetic rats. EXPERIMENTAL APPROACH Insulin-stimulated NO production, Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, and reactive oxygen species (ROS) production were studied in HUVECs incubated in low- or high-glucose medium. Insulin-stimulated relaxations and protein phosphorylation in vessels from streptozotocin (STZ)-induced diabetic rats were also analysed. KEY RESULTS HUVECs incubated in high-glucose medium showed a significant reduction in insulin-stimulated production of NO. High glucose also reduced insulin-induced Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, increased IRS-1-Ser(636) and ERK1/2-Thr(183) -Tyr(185) phosphorylation and increased ROS production. The co-incubation with the PPARβ agonists GW0742 or L165041 prevented all these effects induced by high glucose. In turn, the effects induced by the agonists were suppressed when HUVEC were also incubated with the PPARβ antagonist GSK0660, the pyruvate dehydrogenase kinase (PDK)4 inhibitor dichloroacetate or after knockdown of both PPARβ and PDK4 with siRNA. The ERK1/2 inhibitor PD98059, ROS scavenger catalase, inhibitor of complex II thenoyltrifluoroacetone or uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone, also prevented glucose-induced insulin resistance. In STZ diabetic rats, oral GW0742 also improved insulin signalling and the impaired NO-mediated vascular relaxation. CONCLUSION AND IMPLICATIONS PPARβ activation in vitro and in vivo restores the endothelial function, preserving the insulin-Akt-eNOS pathway impaired by high glucose, at least in part, through PDK4 activation.
Collapse
Affiliation(s)
- A M Quintela
- Department of Pharmacology, University of Granada, 18071, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:637027. [PMID: 25371775 PMCID: PMC4211163 DOI: 10.1155/2014/637027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.
Collapse
|
10
|
Mosti MP, Stunes AK, Ericsson M, Pullisaar H, Reseland JE, Shabestari M, Eriksen EF, Syversen U. Effects of the peroxisome proliferator-activated receptor (PPAR)-δ agonist GW501516 on bone and muscle in ovariectomized rats. Endocrinology 2014; 155:2178-89. [PMID: 24708238 DOI: 10.1210/en.2013-1166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Estrogen deficiency promotes bone loss and skeletal muscle dysfunction. Peroxisome proliferator-activated receptors (PPARs) have 3 subtypes (α, δ, and γ). PPARγ agonists induce bone loss, whereas PPARα agonists increase bone mass. Although PPARδ agonists are known to influence skeletal muscle metabolism, the skeletal effects are unsettled. This study investigated the musculoskeletal effects of the PPARδ agonist GW501516 in ovariectomized (OVX) rats. Female Sprague Dawley rats, 12 weeks of age, were allocated to a sham-operated group and 3 OVX groups; high-dose GW501516 (OVX-GW5), low-dose GW501516 (OVX-GW1), and a control group (OVX-CTR), respectively (n = 12 per group). Animals received GW501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) was assessed by dual x-ray absorptiometry at the femur, spine, and whole body. Bone microarchitecture at the proximal tibia was assessed by microcomputed tomography, and dynamic histomorphometry was performed. Quadriceps muscle morphology and the relative expression of mitochondrial proteins were analyzed. Bone metabolism markers and metabolic markers were measured in plasma. After 4 months, the OVX-GW5 group displayed lower femoral BMD than OVX-CTR. Trabecular separation was higher in the GW-treated groups, compared with OVX-CTR. The OVX-GW5 group also exhibited lower cortical area fraction and a higher structure model index than OVX-CTR. These effects coincided with impaired bone formation in both GW groups. The OVX-GW5 group displayed elevated triglyceride levels and reduced adiponectin levels, whereas no effects on muscle morphology or mitochondrial gene expression appeared. In summary, the PPARδ agonist GW501516 negatively affected bone properties in OVX rats, whereas no effects were detected in skeletal muscle.
Collapse
Affiliation(s)
- M P Mosti
- Department of Cancer Research and Molecular Medicine (M.P.M., A.K.S., U.S.), Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Medical Biosciences, Physiological Chemistry (M.E.), Umeå University, SE-901 85 Umeå, Sweden; Department of Biomaterials (H.P., J.E.R., M.S.), Institute for Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; Department of Endocrinology (E.F.E.), Oslo University Hospital, 0424 Oslo, Norway; and Department of Endocrinology (U.S.), St Olav's University Hospital HF, 7030 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Feng YZ, Nikolić N, Bakke SS, Boekschoten MV, Kersten S, Kase ET, Rustan AC, Thoresen GH. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference. Arch Physiol Biochem 2014; 120:12-21. [PMID: 23991827 DOI: 10.3109/13813455.2013.829105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.
Collapse
Affiliation(s)
- Yuan Z Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo , Norway
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin FR, Tatsumi R, Sato Y, Nakamura M, Ikeuchi Y. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS One 2013; 8:e80152. [PMID: 24244634 PMCID: PMC3823866 DOI: 10.1371/journal.pone.0080152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/30/2013] [Indexed: 01/31/2023] Open
Abstract
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Yohei Iwamoto
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Bungo Shirouchi
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masao Sato
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Farzaneh Rahimi Razin
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Sato
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Rindler PM, Crewe CL, Fernandes J, Kinter M, Szweda LI. Redox regulation of insulin sensitivity due to enhanced fatty acid utilization in the mitochondria. Am J Physiol Heart Circ Physiol 2013; 305:H634-43. [DOI: 10.1152/ajpheart.00799.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Obesity enhances the risk for the development of type 2 diabetes and cardiovascular disease. Loss in insulin sensitivity and diminished ability of muscle to take up and use glucose are characteristics of type 2 diabetes. Paradoxically, regulatory mechanisms that promote utilization of fatty acids appear to initiate diet-induced insulin insensitivity. In this review, we discuss recent findings implicating increased mitochondrial production of the prooxidant H2O2 due to enhanced utilization of fatty acids, as a signal to diminish reliance on glucose and its metabolites for energy. In the short term, the ability to preferentially use fatty acids may be beneficial, promoting a metabolic shift that ensures use of available fat by skeletal muscle and heart while preventing intracellular glucose accumulation and toxicity. However, with prolonged consumption of high dietary fat and ensuing obesity, the near exclusive dependence on fatty acid oxidation for production of energy by the mitochondria drives insulin resistance, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Paul M. Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Clair L. Crewe
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Jolyn Fernandes
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Michael Kinter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Geriatric Medicine, Reynolds Center on Aging, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Luke I. Szweda
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
- Department of Geriatric Medicine, Reynolds Center on Aging, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|
14
|
Castillero E, Alamdari N, Aversa Z, Gurav A, Hasselgren PO. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting. PLoS One 2013; 8:e59726. [PMID: 23555761 PMCID: PMC3605288 DOI: 10.1371/journal.pone.0059726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/17/2013] [Indexed: 01/01/2023] Open
Abstract
FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aniket Gurav
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dirkx E, Schwenk RW, Glatz JFC, Luiken JJFP, van Eys GJJM. High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 2011; 85:219-25. [PMID: 21571515 DOI: 10.1016/j.plefa.2011.04.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Ellen Dirkx
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Ye JM, Tid-Ang J, Turner N, Zeng XY, Li HY, Cooney GJ, Wulff EM, Sauerberg P, Kraegen EW. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle. Br J Pharmacol 2011; 163:556-66. [PMID: 21265823 DOI: 10.1111/j.1476-5381.2011.01240.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The peroxisome proliferator-activated receptor (PPAR)δ has been considered a therapeutic target for diabetes and obesity through enhancement of fatty acid oxidation. The present study aimed to characterize the effects of PPARδ agonists during insulin resistance of the whole body, muscle and liver. EXPERIMENTAL APPROACH Wistar rats and C57BL/J6 mice were fed a high fat diet (HF) and then treated with PPARδ agonists NNC61-5920 and GW501516. The effects on insulin resistance were evaluated by hyperinsulinaemic clamp or glucose tolerance tests combined with glucose tracers. KEY RESULTS In HF rats, 3 weeks of treatment with NNC61-5920 reduced the glucose infusion rate (by 14%, P < 0.05) and glucose disposal into muscle (by 20-30%, P < 0.01) during hyperinsulinaemic clamp. Despite increased mRNA expression of carnitine palmitoyltransferase-1, pyruvate dehydrogenase kinase 4 and uncoupling protein 3 in muscle, plasma and muscle triglyceride levels were raised (P < 0.01). Similar metabolic effects were observed after extended treatment with NNC61-5920 and GW501516 to 6 weeks. However, HF mice treated with NNC61-5920 improved their plasma lipid profile, glucose tolerance and insulin action in muscle. In both HF rats and mice, NNC61-5920 treatment attenuated hepatic insulin resistance and decreased expression of stearoyl-CoA desaturase 1, fatty acid translocase protein CD36 and lipoprotein lipase in liver. CONCLUSIONS AND IMPLICATIONS PPARδ agonists exacerbated insulin resistance in HF rats in contrast to their beneficial effects on metabolic syndrome in HF mice. These opposing metabolic consequences result from their different effects on lipid metabolism and insulin sensitivity in skeletal muscle of these two species.
Collapse
Affiliation(s)
- Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ljubicic V, Miura P, Burt M, Boudreault L, Khogali S, Lunde JA, Renaud JM, Jasmin BJ. Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet 2011; 20:3478-93. [PMID: 21659335 DOI: 10.1093/hmg/ddr265] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A therapeutic approach for Duchenne muscular dystrophy (DMD) is to up-regulate utrophin in skeletal muscle in an effort to compensate for the lack of dystrophin. We previously hypothesized that promotion of the slow, oxidative myogenic program, which triggers utrophin up-regulation, can attenuate the dystrophic pathology in mdx animals. Since treatment of healthy mice with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) enhances oxidative capacity and elicits a fast-to-slow fiber-type transition, we evaluated the effects of chronic AMPK stimulation on skeletal muscle phenotype and utrophin expression in mdx mice. Daily AICAR administration (500 mg/kg/day, 30 days) of 5-7-week-old mdx animals induced an elevation in mitochondrial cytochrome c oxidase enzyme activity, an increase in myosin heavy-chain type IIa-positive fibers and slower twitch contraction kinetics in the fast, glycolytic extensor digitorum longus muscle. Utrophin expression was significantly enhanced in response to AICAR, which occurred coincident with an elevated β-dystroglycan expression along the sarcolemma. These adaptations were associated with an increase in sarcolemmal structural integrity under basal conditions, as well as during damaging eccentric contractions ex vivo. Notably, peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) and silent information regulator two ortholog 1 protein contents were significantly higher in muscle from mdx mice compared with wild-type littermates and AICAR further increased PGC-1α expression. Our data show that AICAR-evoked muscle plasticity results in beneficial phenotypic adaptations in mdx mice and suggest that the contextually novel application of this compound for muscular dystrophy warrants further study.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ngala RA, Stocker CJ, Roy AG, Hislop D, Wargent E, Bell R, Hassall DG, Harling JD, Billin AN, Willson TM, Arch JRS, Cawthorne MA. A new, highly selective murine peroxisome proliferator-activated receptor δ agonist increases responsiveness to thermogenic stimuli and glucose uptake in skeletal muscle in obese mice. Diabetes Obes Metab 2011; 13:455-64. [PMID: 21272187 DOI: 10.1111/j.1463-1326.2011.01371.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM We investigated how GW800644, the first pharmacologically selective murine peroxisome proliferator-activated receptor δ (PPARδ) agonist, affects energy balance, glucose homeostasis and fuel utilization by muscle in obese mice. METHODS Potencies were determined in transactivation assays. Oral glucose tolerance was determined after 14 and 22 days' administration (10 mg/kg body weight, twice daily) to Lep(ob)/Lep(ob) mice. Food intake and energy expenditure were measured during a 26-day experiment, and plasma metabolites and 2-deoxyglucose uptake in vivo at termination. Palmitate oxidation and 2-deoxyglucose uptake by isolated soleus muscles were measured after 14 (in lean and obese mice) and 26 days. RESULTS GW800644 activated murine PPARδ (EC(50) 2 nM), but caused little to no activation of PPARα or PPARγ up to 10 µM. It did not increase liver weight. GW800644 reduced food intake and body weight in obese mice after 8 days. It did not affect resting energy expenditure, but, compared to pair-fed mice, it increased the response to a β(3)-adrenoceptor agonist. It improved glucose tolerance. GW800644, but not pair-feeding, reduced plasma glucose, insulin and triglyceride concentrations. It increased 2-deoxyglucose uptake in vivo in adipose tissue, soleus muscle, heart, brain and liver, and doubled 2-deoxyglucose uptake and palmitate oxidation in isolated soleus muscle from obese but not lean mice. CONCLUSIONS PPARδ agonism reduced food intake and independently elicited metabolic effects that included increased responsiveness to β(3)-adrenoceptor stimulation, increased glucose utilization and fat oxidation in soleus muscle of Lep(ob)/Lep(ob) but not lean mice and increased glucose utilization in vivo in Lep(ob)/Lep(ob) mice.
Collapse
Affiliation(s)
- R A Ngala
- Clore Laboratory, University of Buckingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|