1
|
Guthrie GL, Almutlaq RN, Sugahara S, Butt MK, Brooks CR, Pollock DM, Gohar EY. G protein-coupled estrogen receptor 1 regulates renal endothelin-1 signaling system in a sex-specific manner. Front Physiol 2023; 14:1086973. [PMID: 36733911 PMCID: PMC9887121 DOI: 10.3389/fphys.2023.1086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.
Collapse
Affiliation(s)
- Ginger L. Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sho Sugahara
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M. Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Eman Y. Gohar,
| |
Collapse
|
2
|
Post EH, Vincent JL. Renal autoregulation and blood pressure management in circulatory shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:81. [PMID: 29566705 PMCID: PMC5865356 DOI: 10.1186/s13054-018-1962-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The importance of personalized blood pressure management is well recognized. Because renal pressure–flow relationships may vary among patients, understanding how renal autoregulation may influence blood pressure control is essential. However, much remains uncertain regarding the determinants of renal autoregulation in circulatory shock, including the influence of comorbidities and the effects of vasopressor treatment. We review published studies on renal autoregulation relevant to the management of acutely ill patients with shock. We delineate the main signaling pathways of renal autoregulation, discuss how it can be assessed, and describe the renal autoregulatory alterations associated with chronic disease and with shock.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
3
|
Mitrou N, Braam B, Cupples WA. A gap junction inhibitor, carbenoxolone, induces spatiotemporal dispersion of renal cortical perfusion and impairs autoregulation. Am J Physiol Heart Circ Physiol 2016; 311:H582-91. [PMID: 27371687 DOI: 10.1152/ajpheart.00941.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/27/2016] [Indexed: 11/22/2022]
Abstract
Renal autoregulation dynamics originating from the myogenic response (MR) and tubuloglomerular feedback (TGF) can synchronize over large regions of the kidney surface, likely through gap junction-mediated electrotonic conduction and reflecting distributed operation of autoregulation. We tested the hypotheses that inhibition of gap junctions reduces spatial synchronization of autoregulation dynamics, abrogates spatial and temporal smoothing of renal perfusion, and impairs renal autoregulation. In male Long-Evans rats, we infused the gap junction inhibitor carbenoxolone (CBX) or the related glycyrrhizic acid (GZA) that does not block gap junctions into the renal artery and monitored renal blood flow (RBF) and surface perfusion by laser speckle contrast imaging. Neither CBX nor GZA altered RBF or mean surface perfusion. CBX preferentially increased spatial and temporal variation in the distribution of surface perfusion, increased spatial variation in the operating frequencies of the MR and TGF, and reduced phase coherence of TGF and increased its dispersion. CBX, but not GZA, impaired dynamic and steady-state autoregulation. Separately, infusion of the Rho kinase inhibitor Y-27632 paralyzed smooth muscle, grossly impaired dynamic autoregulation, and monotonically increased spatial variation of surface perfusion. These data suggest CBX inhibited gap junction communication, which in turn reduced the ability of TGF to synchronize among groups of nephrons. The results indicate that impaired autoregulation resulted from degraded synchronization, rather than the reverse. We show that network behavior in the renal vasculature is necessary for effective RBF autoregulation.
Collapse
Affiliation(s)
- Nicholas Mitrou
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| | - Branko Braam
- Department of Physiology and Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - William A Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| |
Collapse
|
4
|
Abstract
Endothelin (ET) is one of the most potent renal vasoconstrictors. Endothelin plays an essential role in the regulation of renal blood flow, glomerular filtration, sodium and water transport, and acid-base balance. ET-1, ET-2, and ET-3 are the three distinct endothelin isoforms comprising the endothelin family. ET-1 is the major physiologically relevant peptide and exerts its biological activity through two G-protein-coupled receptors: ET(A) and ET(B). Both ET(A) and ET(B) are expressed by the renal vasculature. Although ET(A) are expressed mainly by vascular smooth muscle cells, ET(B) are expressed by both renal endothelial and vascular smooth muscle cells. Activation of the endothelin system, or overexpression of downstream endothelin signaling pathways, has been implicated in several pathophysiological conditions including hypertension, acute kidney injury, diabetic nephropathy, and immune nephritis. In this review, we focus on the effects of endothelin on the renal microvasculature, and update recent findings on endothelin in the regulation of renal hemodynamics.
Collapse
Affiliation(s)
- Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Justin P VanBeusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
5
|
Moss NG, Gentle TK, Arendshorst WJ. Modulation of the myogenic mechanism: concordant effects of NO synthesis inhibition and O2- dismutation on renal autoregulation in the time and frequency domains. Am J Physiol Renal Physiol 2016; 310:F832-45. [PMID: 26823282 DOI: 10.1152/ajprenal.00461.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Renal blood flow autoregulation was investigated in anesthetized C57Bl6 mice using time- and frequency-domain analyses. Autoregulation was reestablished by 15 s in two stages after a 25-mmHg step increase in renal perfusion pressure (RPP). The renal vascular resistance (RVR) response did not include a contribution from the macula densa tubuloglomerular feedback mechanism. Inhibition of nitric oxide (NO) synthase [N(G)-nitro-l-arginine methyl ester (l-NAME)] reduced the time for complete autoregulation to 2 s and induced 0.25-Hz oscillations in RVR. Quenching of superoxide (SOD mimetic tempol) during l-NAME normalized the speed and strength of stage 1 of the RVR increase and abolished oscillations. The slope of stage 2 was unaffected by l-NAME or tempol. These effects of l-NAME and tempol were evaluated in the frequency domain during random fluctuations in RPP. NO synthase inhibition amplified the resonance peak in admittance gain at 0.25 Hz and markedly increased the gain slope at the upper myogenic frequency range (0.06-0.25 Hz, identified as stage 1), with reversal by tempol. The slope of admittance gain in the lower half of the myogenic frequency range (equated with stage 2) was not affected by l-NAME or tempol. Our data show that the myogenic mechanism alone can achieve complete renal blood flow autoregulation in the mouse kidney following a step increase in RPP. They suggest also that the principal inhibitory action of NO is quenching of superoxide, which otherwise potentiates dynamic components of the myogenic constriction in vivo. This primarily involves the first stage of a two-stage myogenic response.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tayler K Gentle
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Mitrou N, Morrison S, Mousavi P, Braam B, Cupples WA. Transient impairment of dynamic renal autoregulation in early diabetes mellitus in rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R892-901. [DOI: 10.1152/ajpregu.00247.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023]
Abstract
Renal autoregulation is impaired in early (1 wk) diabetes mellitus (DM) induced by streptozotocin, but effective in established DM (4 wk). Furthermore nitric oxide synthesis (NOS) inhibition with NG-nitro-l-arginine methyl ester (l-NAME) significantly improved autoregulation in early DM but not in established DM. We hypothesized that autoregulation is transiently impaired in early DM because of increased NO availability in the kidney. Because of the conflicting evidence available for a role of NO in DM, we tested the hypothesis that DM reduces autoregulation effectiveness by reducing the spatial similarity of autoregulation. Male Long-Evans rats were divided into control (CON) and diabetic (DM; streptozotocin) groups and followed for either 1 wk (CON1, n = 6; DM1, n = 5) or 4 wk (CON4, n = 7; DM4, n = 7). At the end of the experiment, dynamic autoregulation was assessed in isoflurane-anesthetized rats by whole kidney RBF during baseline, NOS1 inhibition, and nonselective NOS inhibition. Kidney surface perfusion, monitored with laser speckle contrast imaging, was used to assess spatial heterogeneity of autoregulation. Autoregulation was significantly impaired in DM1 rats and not impaired in DM4 rats. l-NAME caused strong renal vasoconstriction in all rats, but did not significantly affect autoregulation dynamics. Autoregulation was more spatially heterogeneous in DM1, but not DM4. Therefore, our results, which are consistent with transient impairment of autoregulation in DM, argue against the hypothesis that this impairment is NO-dependent, and suggest that spatial properties of autoregulation may also contribute to reduced autoregulatory effectiveness in DM1.
Collapse
Affiliation(s)
- Nicholas Mitrou
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sidney Morrison
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paymon Mousavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Branko Braam
- Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - William A. Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
7
|
Fellner RC, Guan Z, Cook AK, Pollock DM, Inscho EW. Endothelin contributes to blunted renal autoregulation observed with a high-salt diet. Am J Physiol Renal Physiol 2015; 309:F687-96. [PMID: 26246513 DOI: 10.1152/ajprenal.00641.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 07/29/2015] [Indexed: 01/03/2023] Open
Abstract
Autoregulation of renal blood flow (RBF) is an essential function of the renal microcirculation that has been previously shown to be blunted by excessive dietary salt. Endogenous endothelin 1 (ET-1) is increased following a high-salt (HS) diet and contributes to the control of RBF but the differential effects of ET-1 on renal microvessel autoregulation in response to HS remain to be established. We hypothesized that a HS diet increases endothelin receptor activation in normal Sprague-Dawley rats and blunts autoregulation of RBF. The role of ET-1 in the blunted autoregulation produced by a HS diet was assessed in vitro and in vivo using the blood-perfused juxtamedullary nephron preparation and anesthetized rats, respectively. Using highly selective antagonists, we observed that blockade of either ETA or ETB receptors was sufficient to restore normal autoregulatory behavior in afferent arterioles from HS-fed rats. Additionally, normal autoregulatory behavior was restored in vivo in HS-fed rats by simultaneous ETA and ETB receptor blockade, whereas blockade of ETB receptors alone showed significant improvement of normal autoregulation of RBF. Consistent with this observation, autoregulation of RBF in ETB receptor-deficient rats fed HS was similar to both ETB-deficient rats and transgenic control rats on normal-salt diets. These data support the hypothesis that endogenous ET-1, working through ETB and possibly ETA receptors, contributes to the blunted renal autoregulatory behavior in rats fed a HS diet.
Collapse
Affiliation(s)
- Robert C Fellner
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zhengrong Guan
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anthony K Cook
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Experimental Medicine, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Edward W Inscho
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Iliescu R, Cazan R, McLemore GR, Venegas-Pont M, Ryan MJ. Renal blood flow and dynamic autoregulation in conscious mice. Am J Physiol Renal Physiol 2008; 295:F734-40. [PMID: 18579706 DOI: 10.1152/ajprenal.00115.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Autoregulation of renal blood flow (RBF) occurs via myogenic and tubuloglomerular feedback (TGF) mechanisms that are engaged by pressure changes within preglomerular arteries and by tubular flow and content, respectively. Our understanding of autoregulatory function in the kidney largely stems from experiments in anesthetized animals where renal perfusion pressure is precisely controlled. However, normally occurring variations in blood pressure are sufficient to engage both myogenic and TGF mechanisms, making the assessment of autoregulatory function in conscious animals of significant value. To our knowledge, no studies have evaluated the dynamics of RBF in conscious mice. Therefore, we used spectral analysis of blood pressure and RBF and identified dynamic operational characteristics of the myogenic and TGF mechanisms in conscious, freely moving mice instrumented with ultrasound flow probes and arterial catheters. The myogenic response generates a distinct resonance peak in transfer gain at 0.31 +/- 0.01 Hz. Myogenic-dependent attenuation of RBF oscillations, indicative of active autoregulation, is apparent as a trough in gain below 0.3 Hz (-6.5 +/- 1.3 dB) and a strong positive phase peak (93 +/- 9 deg), which are abolished by amlodipine infusion. Operation of TGF produces a local maximum in gain at 0.05 +/- 0.01 Hz and a positive phase peak (62.3 +/- 12.3 deg), both of which are eliminated by infusion of furosemide. Administration of amlodipine eliminated both myogenic and TGF signature peaks, whereas furosemide shifted the myogenic phase peak to a slower operational frequency. These data indicate that myogenic and TGF dynamics may be used to investigate the effectiveness of renal autoregulatory mechanisms in conscious mice.
Collapse
Affiliation(s)
- Radu Iliescu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
10
|
Thai TL, Arendshorst WJ. ADP-ribosyl cyclase and ryanodine receptors mediate endothelin ETA and ETB receptor-induced renal vasoconstriction in vivo. Am J Physiol Renal Physiol 2008; 295:F360-8. [PMID: 18524860 DOI: 10.1152/ajprenal.00512.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ADP-ribosyl cyclase (ADPR cyclase) and ryanodine receptors (RyR) participate in calcium transduction in isolated afferent arterioles. We hypothesized that this signaling pathway is activated by ETA and ETB receptors in the renal vasculature to mediate vasoconstriction in vivo. To test this, we measured acute renal blood flow (RBF) responses to ET-1 in anesthetized rats and mice in the presence and absence of functional ADPR cyclase and/or RyR. Inhibitors of ADPR cyclase (nicotinamide) or RyR (ruthenium red) reduced RBF responses to ET-1 by 44% (P < 0.04 for both) in Sprague-Dawley rats. Mice lacking the predominant form of ADPR cyclase (CD38-/-) had RBF responses to ET-1 that were 47% weaker than those seen in wild-type mice (P = 0.01). Selective ETA receptor stimulation (ET-1+BQ788) produced decreases in RBF that were attenuated by 43 and 56% by nicotinamide or ruthenium red, respectively (P < 0.02 for both). ADPR cyclase or RyR inhibition also reduced vasoconstrictor effects of the ETB receptor agonist sarafotoxin 6c (S6c; 77 and 54%, respectively, P < 0.02 for both). ETB receptor stimulation by ET-1 + the ETA receptor antagonist BQ123 elicited responses that were attenuated by 59 and 60% by nicotinamide and ruthenium red, respectively (P < 0.01 for both). Nicotinamide attenuated RBF responses to S6c by 54% during inhibition of nitric oxide synthesis (P = 0.001). We conclude that in the renal microcirculation in vivo 1) ET-1-induced vasoconstriction is mediated by ADPR cyclase and RyR; 2) both ETA and ETB receptors activate this pathway; and 3) ADPR cyclase participates in ETB receptor signaling independently of NO.
Collapse
Affiliation(s)
- Tiffany L Thai
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
11
|
Endothelin and NOS1/nitric oxide signaling and regulation of sodium homeostasis. Curr Opin Nephrol Hypertens 2008; 17:70-5. [PMID: 18090673 DOI: 10.1097/mnh.0b013e3282f34b02] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In general, the nitric oxide and endothelin signaling pathways in the kidney promote natriuresis. The basis for this statement will first be reviewed for each of these systems. Next, this review will outline the progression of data providing support for our hypothesis that an intra-renal mechanism of endothelin activation of ETB receptors stimulates NOS1 activity and nitric oxide production to promote sodium excretion. RECENT FINDINGS New information in recent years has provided considerable evidence that both nitric oxide and endothelin function to regulate sodium and water balance by the kidney. Furthermore, dysfunction of these pathways may play a role in salt-sensitivity and hypertension. While a strong picture has emerged to suggest these systems are important and powerful players in sodium homeostasis, many questions remain to be answered before we can apply these mechanisms to an understanding of clinical hypertension. SUMMARY Salt-sensitive hypertension contributes to the growing population of patients resistant to conventional antihypertensive therapy. Thus, a thorough understanding of the mechanisms related to the control of sodium excretion will allow a more focused approach for future therapeutic studies.
Collapse
|
12
|
Inflammatory responses after endothelin B (ETB) receptor activation in human monocytes: new evidence for beneficial anti-inflammatory potency of ETB-receptor antagonism. Pulm Pharmacol Ther 2008; 21:533-9. [PMID: 18295521 DOI: 10.1016/j.pupt.2007.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2007] [Indexed: 12/01/2022]
Abstract
Endothelin (ET) stimulates potent ETA/ETB receptors important in the pathogenesis of pulmonary arterial hypertension (PAH) and fibrosis. Though therapy with ET-receptor antagonists is well established uncertainty exists whether selective ETA or dual ETA/ETB-receptor antagonism is superior in PAH. The objective of this study was to further elucidate the pro-inflammatory effects of ET-1 on ETB receptors in cultured human monocytes (10(5)/20 h) compared with non-specific stimulation with LPS in vitro and to define the antagonizing effects of bosentan, a dual ETA/ETB-receptor antagonist, on inflammatory mediator production. We further hypothesized that ETB-receptor antagonism reduces the requirement of PGE2 to control inflammatory mediator production. Activation of the monocyte ETB subtype by ET (1 ng/ml) concentration-dependently stimulated TNF-alpha (744%) >PGE2 (570%) > IL-1 beta (112%) and had no effect on 5-lipoxygenase metabolism. Compared with ET a different profile of IL-1 beta >TNF-alpha >PGE2 was induced by LPS. ETB-receptor antagonism attenuated ET- and LPS-responses in monocytes, in particular of TNF-alpha and PGE2 to a similar extend (40%) that were only demonstrable following LPS at therapeutic plasma concentrations of bosentan and had no effect on IL-1 beta. Inhibition of ETB receptors in LPS-stimulated monocytes by bosentan was responded with suppression of PGE2 and increased production of leukotrienes indicating strong effects in the cyclooxygenase pathway that is known to control cellular ET transcription. These data suggest an important signaling pathway between ET-induced cytokine production following ETB-receptor activation with no further control of ET transcription by PGE2 required following ETB receptor antagonism. Therefore, in states of inflammation increased ETB-receptor expression and activation mediated by elevated ET concentrations may be an underestimated mechanism, which warrants the application of combined ETA/ETB-receptor antagonists.
Collapse
|
13
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|