1
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
2
|
Hicks AI, Kobrinsky S, Zhou S, Yang J, Prager-Khoutorsky M. Anatomical Organization of the Rat Subfornical Organ. Front Cell Neurosci 2021; 15:691711. [PMID: 34552469 PMCID: PMC8450496 DOI: 10.3389/fncel.2021.691711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022] Open
Abstract
The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.
Collapse
Affiliation(s)
| | - Simona Kobrinsky
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Suijian Zhou
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Jieyi Yang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Matsuda T, Hiyama TY, Kobayashi K, Kobayashi K, Noda M. Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake. Nat Commun 2020; 11:5692. [PMID: 33173030 PMCID: PMC7655816 DOI: 10.1038/s41467-020-19191-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/02/2020] [Indexed: 01/29/2023] Open
Abstract
The control of water-intake behavior is critical for life because an excessive water intake induces pathological conditions, such as hyponatremia or water intoxication. However, the brain mechanisms controlling water intake currently remain unclear. We previously reported that thirst-driving neurons (water neurons) in the subfornical organ (SFO) are cholecystokinin (CCK)-dependently suppressed by GABAergic interneurons under Na-depleted conditions. We herein show that CCK-producing excitatory neurons in the SFO stimulate the activity of GABAergic interneurons via CCK-B receptors. Fluorescence-microscopic Ca2+ imaging demonstrates two distinct subpopulations in CCK-positive neurons in the SFO, which are persistently activated under hyponatremic conditions or transiently activated in response to water drinking, respectively. Optical and chemogenetic silencings of the respective types of CCK-positive neurons both significantly increase water intake under water-repleted conditions. The present study thus reveals CCK-mediated neural mechanisms in the central nervous system for the control of water-intake behaviors. Water intake is critical to our life, and the subfornical organ in the brain involved in the control of this behavior. Here, the authors reveal that two distinct groups of CCK-producing neurons in the SFO suppress water intake according to the physiological condition or water-intake stimulus.
Collapse
Affiliation(s)
- Takashi Matsuda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan.,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan. .,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
4
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. A preliminary study of the effect of a high-salt diet on transcriptome dynamics in rat hypothalamic forebrain and brainstem cardiovascular control centers. PeerJ 2020; 8:e8528. [PMID: 32175184 PMCID: PMC7059759 DOI: 10.7717/peerj.8528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND High dietary salt intake is strongly correlated with cardiovascular (CV) diseases and it is regarded as a major risk factor associated with the pathogenesis of hypertension. The CV control centres in the brainstem (the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM)) and hypothalamic forebrain (the subfornical organ, SFO; the supraoptic nucleus, SON and the paraventricular nucleus, PVN) have critical roles in regulating CV autonomic motor outflows, and thus maintaining blood pressure (BP). Growing evidence has implicated autonomic regulatory networks in salt-sensitive HPN (SSH), but the genetic basis remains to be delineated. We hypothesized that the development and/ or maintenance of SSH is reliant on the change in the expression of genes in brain regions controlling the CV system. METHODOLOGY We used RNA-Sequencing (RNA-Seq) to describe the differential expression of genes in SFO, SON, PVN, NTS and RVLM of rats being chronically fed with high-salt (HS) diet. Subsequently, a selection of putatively regulated genes was validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in both Spontaneously Hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats. RESULTS The findings enabled us to identify number of differentially expressed genes in SFO, SON, PVN, NTS and RVLM; that are either up-regulated in both strains of rats (SON- Caprin2, Sctr), down-regulated in both strains of rats (PVN- Orc, Gkap1), up-regulated only in SHRs (SFO- Apopt1, Lin52, AVP, OXT; SON- AVP, OXT; PVN- Caprin2, Sclt; RVLM- A4galt, Slc29a4, Cmc1) or down-regulated only in SHRs (SON- Ndufaf2, Kcnv1; PVN- Pi4k2a; NTS- Snrpd2l, Ankrd29, St6galnac6, Rnf157, Iglon5, Csrnp3, Rprd1a; RVLM- Ttr, Faim). CONCLUSIONS These findings demonstrated the adverse effects of HS diet on BP, which may be mediated via modulating the signaling systems in CV centers in the hypothalamic forebrain and brainstem.
Collapse
Affiliation(s)
- Chitra Devi Ramachandran
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Sau Kuen Lam
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| |
Collapse
|
5
|
Hammad ASA, Ahmed ASF, Heeba GH, Taye A. Heme oxygenase-1 contributes to the protective effect of resveratrol against endothelial dysfunction in STZ-induced diabetes in rats. Life Sci 2019; 239:117065. [PMID: 31751579 DOI: 10.1016/j.lfs.2019.117065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction is a common complication of diabetes that mainly stems from increased reactive oxygen species, which makes antioxidants of great benefit. Resveratrol (RSV) is an antioxidant that shows protective effects in a variety of disease models where the ameliorative effect appears to be mediated, in part, via heme oxygenase-1 (HO-1) induction. However, the pathophysiological relevance of HO-1 in the ameliorative response of RSV in endothelial dysfunction is not clearly defined. The present study was conducted to investigate whether HO-1 plays a role in diabetes-induced vascular dysfunction. Streptozotocin-diabetic rats were treated with RSV (10 mg/kg) in presence or absence of an HO-1 blocker, Zinc protoporphyrin (ZnPP) to assess vascular function and indicators of disease status. We found that RSV treatment significantly abrogated diabetes induced vascular dysfunction. This improvement was associated with the ability of RSV to decrease oxidative stress markers alongside a reduction in the aortic TGF-β expression, elevation of NOS3 expression and aortic nitrite concentration as well as HO activity. These ameliorative effects were diminished when ZnPP was administered prior to RSV. Our results clearly demonstrate the protective effects of RSV in diabetes-associated endothelial dysfunction and verified a causal role of HO-1 in this setting.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Egypt
| |
Collapse
|
6
|
Electrophysiological properties of rat subfornical organ neurons expressing calbindin D28K. Neuroscience 2019; 404:459-469. [DOI: 10.1016/j.neuroscience.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
|
7
|
Yeo SH, Kyle V, Blouet C, Jones S, Colledge WH. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 2019; 14:e0213927. [PMID: 30917148 PMCID: PMC6436706 DOI: 10.1371/journal.pone.0213927] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The normal function of the mammalian reproductive axis is strongly influenced by physiological, metabolic and environmental factors. Kisspeptin neuropeptides, encoded by the Kiss1 gene, are potent regulators of the mammalian reproductive axis by stimulating gonadodropin releasing hormone secretion from the hypothalamus. To understand how the reproductive axis is modulated by higher order neuronal inputs we have mapped the afferent circuits into arcuate (ARC) Kiss1 neurons. We used a transgenic mouse that expresses the CRE recombinase in Kiss1 neurons for conditional viral tracing with genetically modified viruses. CRE-mediated activation of these viruses in Kiss1 neurons allows the virus to move transynaptically to label neurons with primary or secondary afferent inputs into the Kiss1 neurons. Several regions of the brain showed synaptic connectivity to arcuate Kiss1 neurons including proopiomelanocortin neurons in the ARC itself, kisspeptin neurons in the anteroventral periventricular nucleus, vasopressin neurons in the supraoptic and suprachiasmatic nuclei, thyrotropin releasing neurons in the paraventricular nucleus and unidentified neurons in other regions including the subfornical organ, amygdala, interpeduncular nucleus, ventral premammilary nucleus, basal nucleus of stria terminalis and the visual, somatosensory and piriform regions of the cortex. These data provide an insight into how the activity of Kiss1 neurons may be regulated by metabolic signals and provide a detailed neuroanatomical map for future functional studies.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Kyle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - William Henry Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Paes-Leme B, Dos-Santos RC, Mecawi AS, Ferguson AV. Interaction between angiotensin II and glucose sensing at the subfornical organ. J Neuroendocrinol 2018; 30:e12654. [PMID: 30365188 DOI: 10.1111/jne.12654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.
Collapse
Affiliation(s)
- Bruno Paes-Leme
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alastair V Ferguson
- Centre for Neurosciences Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
10
|
Samson WK. Editorial team changes in 2018. Am J Physiol Regul Integr Comp Physiol 2017; 313:R631-R632. [DOI: 10.1152/ajpregu.00385.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Willis K. Samson
- Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Abstract
Thirst motivates animals to find and consume water. More than 40 years ago, a set of interconnected brain structures known as the lamina terminalis was shown to govern thirst. However, owing to the anatomical complexity of these brain regions, the structure and dynamics of their underlying neural circuitry have remained obscure. Recently, the emergence of new tools for neural recording and manipulation has reinvigorated the study of this circuit and prompted re-examination of longstanding questions about the neural origins of thirst. Here, we review these advances, discuss what they teach us about the control of drinking behaviour and outline the key questions that remain unanswered.
Collapse
Affiliation(s)
- Christopher A Zimmerman
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - David E Leib
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - Zachary A Knight
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
12
|
Cancelliere NM, Ferguson AV. Subfornical organ neurons integrate cardiovascular and metabolic signals. Am J Physiol Regul Integr Comp Physiol 2016; 312:R253-R262. [PMID: 28003212 DOI: 10.1152/ajpregu.00423.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG (n = 55) or CCK (n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (χ2, P < 0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (χ2, P < 0.01). Our data demonstrate that SFO neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia.
Collapse
Affiliation(s)
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci 2016; 20:230-241. [PMID: 27991901 DOI: 10.1038/nn.4463] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
Body fluid conditions are continuously monitored in the brain to regulate thirst and salt-appetite sensations. Angiotensin II drives both thirst and salt appetite; however, the neural mechanisms underlying selective water- and/or salt-intake behaviors remain unknown. Using optogenetics, we show that thirst and salt appetite are driven by distinct groups of angiotensin II receptor type 1a-positive excitatory neurons in the subfornical organ. Neurons projecting to the organum vasculosum lamina terminalis control water intake, while those projecting to the ventral part of the bed nucleus of the stria terminalis control salt intake. Thirst-driving neurons are suppressed under sodium-depleted conditions through cholecystokinin-mediated activation of GABAergic neurons. In contrast, the salt appetite-driving neurons were suppressed under dehydrated conditions through activation of another population of GABAergic neurons by Nax signals. These distinct mechanisms in the subfornical organ may underlie the selective intakes of water and/or salt and may contribute to body fluid homeostasis.
Collapse
Affiliation(s)
- Takashi Matsuda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Taiji Matsusaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
14
|
Hiyama TY, Noda M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci Res 2016; 113:1-11. [PMID: 27521454 DOI: 10.1016/j.neures.2016.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/28/2023]
Abstract
The brain monitors conditions of body fluids and levels of circulating neuroactive factors to maintain the systemic homeostasis. Unlike most regions in the brain, circumventricular organs (CVOs) lack the blood-brain barrier, and serve as the sensing center. Among the CVOs, the subfornical organ (SFO) is the sensing site of Na+ levels in body fluids to control water and salt intake. The SFO harbors neuronal cell bodies with a variety of hormone receptors and innervates many brain loci. In addition, the SFO harbors specialized glial cells (astrocytes and ependymal cells) expressing Nax, a Na+-level-sensitive sodium channel. These glial cells wrap a specific population of neurons with their processes, and control the firing activities of the neurons by gliotransmitters, such as lactate and epoxyeicosatrienoic acids (EETs), relevant to water/salt-intake behaviors. Recent advances in the understanding of physiological functions of the SFO are reviewed herein with a focus on the Na+-sensing mechanism by Nax.
Collapse
Affiliation(s)
- Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, and School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan.
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, and School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|