1
|
Jiménez AG, Nash-Braun E, Meyers JR. White epaxial muscle aerobic and anaerobic potential and muscle fiber structure in surface and cave morphotypes of the Mexican cavefish (Astyanax mexicanus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:861-868. [PMID: 37493010 DOI: 10.1002/jez.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Proper muscle function and muscle fiber structures that match the environmental demands of organisms are imperative to their success in any ecosystem. The Mexican cavefish, Astyanax mexicanus, has two morphotypes: an obligate cave-dwelling form that lives in thermally insulated caves and an O2 poor environment, and a surface form that lives in a more thermally variable, but O2 rich river environment. As environment can determine physiological adaptations, it is of interest to compare the aerobic and anaerobic metabolic profiles of white muscle metabolism in both morphotypes of this species, as well as their muscle structures. Here, we used white muscle of both morphotypes of the Mexican cavefish to determine citrate synthase (CS) activity as a measure of aerobic potential, and lactate concentration as a measure of anaerobic potential at three different chronic acclimation temperatures (14°C, 25°C, and 31°C). By examining aerobic and anaerobic potential in both morphs, we sought to link environmental thermal flexibility to muscle metabolism. We found that the surface morphotype had higher CS activity and lower lactate concentration, suggesting an overall more efficient usage of aerobic metabolism; whereas the cave morphotype showed lower CS activity and higher lactate concentration, suggesting a stronger reliance on anaerobic pathways. We also measured white muscle histological variables that have been previously linked to whole-animal metabolism: fiber diameter, number of nuclei per mm of fiber and myonuclear domain (MND) of both morphotypes at 25°C to examine cell-level differences in muscle morphology. However, we found no differences in fiber diameter, number of nuclei per mm of fiber or MND between the two morphotypes. Thus, although the cellular morphology is similar in these species, the environmental differences in the evolution of the two morphs has led to differences in their metabolic profiles.
Collapse
Affiliation(s)
| | - Evan Nash-Braun
- Department of Biology, Colgate University, Hamilton, New York, USA
| | - Jason R Meyers
- Department of Biology, Colgate University, Hamilton, New York, USA
- Neuroscience Program, Colgate University, Hamilton, New York, USA
| |
Collapse
|
2
|
Mapping the Energetic Costs of Free-Swimming Gilthead Sea Bream ( Sparus aurata), a Key Species in European Marine Aquaculture. BIOLOGY 2021; 10:biology10121357. [PMID: 34943271 PMCID: PMC8698635 DOI: 10.3390/biology10121357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Assessment of the energetic costs of different living activities is of primary interest among fish biologists. However, assessing energy expenditure in free-swimming fish is challenging owing to the difficulty of performing such measurements in the field. Therefore, the use of implant fish with sensors that transmit signals that serve as a proxy for energy expenditure is a promising method to counter these limitations, allowing remote monitoring in tagged fish. The aim of this study was to correlate the acceleration recorded by the tag with the activities of the red and white muscles and the oxygen consumption rate (MO2), which could serve as a proxy for energy expenditure, in gilthead sea bream (Sparus aurata), a key species in European marine aquaculture. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through electromyographic analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms during swimming. Finally, the tag implantation did not affect the swimming performance, metabolic traits, and swimming efficiency of the sea bream. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological indicators may be useful for the purposes of aquaculture health/welfare remote monitoring of gilthead sea bream. Abstract Measurement of metabolic rates provides a valuable proxy for the energetic costs of different living activities. However, such measurements are not easy to perform in free-swimming fish. Therefore, mapping acceleration from accelerometer tags with oxygen consumption rates (MO2) is a promising method to counter these limitations and could represent a tool for remotely estimating MO2 in aquaculture environments. In this study, we monitored the swimming performance and MO2 of 79 gilthead sea bream (Sparus aurata; weight range, 219–971 g) during a critical swimming test. Among all the fish challenged, 27 were implanted with electromyography (EMG) electrodes, and 27 were implanted with accelerometer tags to monitor the activation pattern of the red/white muscles during swimming. Additionally, we correlated the acceleration recorded by the tag with the MO2. Overall, we found no significant differences in swimming performance, metabolic traits, and swimming efficiency between the tagged and untagged fish. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through EMG analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms until reaching critical swimming speed. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological data may be useful for the purposes of aquaculture health/welfare remote monitoring of the gilthead sea bream, a key species in European marine aquaculture.
Collapse
|
3
|
Neurohr JM, Paulson ET, Kinsey ST. A higher mitochondrial content is associated with greater oxidative damage, oxidative defenses, protein synthesis and ATP turnover in resting skeletal muscle. J Exp Biol 2021; 224:jeb242462. [PMID: 34581401 PMCID: PMC8541733 DOI: 10.1242/jeb.242462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
An unavoidable consequence of aerobic metabolism is the production of reactive oxygen species (ROS). Mitochondria have historically been considered the primary source of ROS; however, recent literature has highlighted the uncertainty in primary ROS production sites and it is unclear how variation in mitochondrial density influences ROS-induced damage and protein turnover. Fish skeletal muscle is composed of distinct, highly aerobic red muscle and anaerobic white muscle, offering an excellent model system in which to evaluate the relationship of tissue aerobic capacity and ROS-induced damage under baseline conditions. The present study used a suite of indices to better understand potential consequences of aerobic tissue capacity in red and white muscle of the pinfish, Lagodon rhomboides. Red muscle had a 7-fold greater mitochondrial volume density than white muscle, and more oxidative damage despite also having higher activity of the antioxidant enzymes superoxide dismutase and catalase. The dominant protein degradation system appears to be tissue dependent. Lysosomal degradation markers and autophagosome volume density were greater in white muscle, while ubiquitin expression and 20S proteasome activity were significantly greater in red muscle. However, ubiquitin ligase expression was significantly higher in white muscle. Red muscle had a more than 2-fold greater rate of translation and total ATP turnover than white muscle, results that may be due in part to the higher mitochondrial density and the associated increase in oxidative damage. Together, these results support the concept that an elevated aerobic capacity is associated with greater oxidative damage and higher costs of protein turnover.
Collapse
Affiliation(s)
| | | | - Stephen T. Kinsey
- University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
4
|
De Jesus AD, Jimenez AG. Effects of acute temperature increases on House sparrow (Passer domesticus) pectoralis muscle myonuclear domain. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:150-158. [PMID: 34516707 DOI: 10.1002/jez.2544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
With rapid climate change, heat wave episodes have become more intense and more frequent. This poses a significant threat to animals, and forces them to manage these physiologically challenging conditions by adapting and/or moving. As an invasive species with a large niche breadth, House sparrows (Passer domesticus) exhibit high phenotypic flexibility that caters to seasonal changes in function and metabolism. For example, their pectoral muscle complex exhibits size and mass plasticity with winter and summer acclimation. Here, we investigated the effects of acute whole-organism heat stress to 43°C on cellular-level changes in House sparrow pectoralis muscle myonuclear domain (MND), the volumetric portion each nucleus is responsible for, that have gone overlooked in the current literature. House sparrows were separated into a control group, a heat-shocked group subjected to thermal stress at 43°C for 24 h, and a recovery group that was returned to room temperature for 24 h after experiencing the same temperature treatment. Here, we found that heat-shocked and recovery groups demonstrated a decrease in number of nuclei per millimeter of fiber and increase in MND, when compared with the control. We also found a significant positive correlation between fiber diameter and MND in the recovery group, suggesting the possibility that nuclei number constrains the extent of muscle fiber size. Together, these results show that acute heat shock alters House sparrow pectoralis muscle cellular physiology in a rigid way that could prove detrimental to long-term muscle integrity and performance.
Collapse
|
5
|
Jimenez AG. Structural plasticity of the avian pectoralis: a case for geometry and the forgotten organelle. J Exp Biol 2020; 223:223/23/jeb234120. [DOI: 10.1242/jeb.234120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
The avian pectoralis muscle demonstrates incredible plasticity. This muscle is the sole thermogenic organ of small passerine birds, and many temperate small passerines increase pectoralis mass in winter, potentially to increase heat production. Similarly, this organ can double in size prior to migration in migratory birds. In this Commentary, following the August Krogh principle, I argue that the avian pectoralis is the perfect tissue to reveal general features of muscle physiology. For example, in both mammals and birds, skeletal muscle fiber diameter is generally accepted to be within 10–100 µm. This size constraint is assumed to include reaction-diffusion limitations, coupled with metabolic cost savings associated with fiber geometry. However, avian muscle fiber structure has been largely ignored in this field, and the extensive remodeling of the avian pectoralis provides a system with which to investigate this. In addition, fiber diameter has been linked to whole-animal metabolic rates, although this has only been addressed in a handful of bird studies, some of which demonstrate previously unreported levels of plasticity and flexibility. Similarly, myonuclei, which are responsible for protein turnover within the fiber, have been forgotten in the avian literature. The few studies that have addressed myonuclear domain (MND) changes in avian muscle have found rates of change not previously seen in mammals. Both fiber diameter and MND have strong implications for aging rates; most aging mammals demonstrate muscular atrophy (a decrease in fiber diameter) and changes in MND. As I discuss here, these features are likely to differ in birds.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
6
|
Vézina F, Cornelius Ruhs E, O'Connor ES, Le Pogam A, Régimbald L, Love OP, Jimenez AG. Consequences of being phenotypically mismatched with the environment: rapid muscle ultrastructural changes in cold-shocked black-capped chickadees ( Poecile atricapillus). Am J Physiol Regul Integr Comp Physiol 2019; 318:R274-R283. [PMID: 31823671 DOI: 10.1152/ajpregu.00203.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phenotypic flexibility has received considerable attention in the last decade; however, whereas many studies have reported amplitude of variation in phenotypic traits, much less attention has focused on the rate at which traits can adjust in response to sudden changes in the environment. We investigated whole animal and muscle phenotypic changes occurring in black-capped chickadees (Poecile atricapillus) acclimated to cold (-5°C) and warm (20°C) temperatures in the first 3 h following a 15°C temperature drop (over 3 h). Before the temperature change, cold-acclimated birds were consuming 95% more food, were carrying twice as much body fat, and had 23% larger pectoralis muscle fiber diameters than individuals kept at 20°C. In the 3 h following the temperature drop, these same birds altered their pectoralis muscle ultrastructure by increasing the number of capillaries per fiber area and the number of nuclei per millimeter of fiber by 22%, consequently leading to a 22% decrease in myonuclear domain (amount of cytoplasm serviced per nucleus), whereas no such changes were observed in the warm-acclimated birds. To our knowledge, this is the first demonstration of such a rapid adjustment in muscle fiber ultrastructure in vertebrates. These results support the hypothesis that chickadees maintaining a cold phenotype are better prepared than warm-phenotype individuals to respond to a sudden decline in temperature, such as what may be experienced in their natural wintering environment.
Collapse
Affiliation(s)
- François Vézina
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Emily Cornelius Ruhs
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Erin S O'Connor
- Department of Biology, Colgate University, Hamilton, New York
| | - Audrey Le Pogam
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Lyette Régimbald
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | | |
Collapse
|
7
|
Jimenez AG, O'Connor ES, Brown KJ, Briggs CW. Seasonal muscle ultrastructure plasticity and resistance of muscle structural changes during temperature increases in resident black-capped chickadees and rock pigeons. ACTA ACUST UNITED AC 2019; 222:jeb.201855. [PMID: 31171604 DOI: 10.1242/jeb.201855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023]
Abstract
Resident birds in temperate zones respond to seasonally fluctuating temperatures by adjusting their physiology, such as changes in basal metabolic rate or peak metabolic rate during cold exposure, or altering their organ sizes, so as to match the thermogenic requirements of their current environment. Climate change is predicted to cause increases in the frequency of heat and cold wave events, which could increase the likelihood that birds will face an environmental mismatch. Here, we examined seasonality and the effects of acute and chronic heat shock to 33°C and subsequent recovery from heat shock on the ultrastructure of the superficial pectoralis muscle fiber diameter, myonuclear domain (MND) and capillary density in two temperate bird species of differing body mass, the black-capped chickadee (Poecile atricapillus) and the rock pigeon (Columba livia). We found that muscle fiber ultrastructure did not change with heat treatment. However, in black-capped chickadees, there was a significant increase in fiber diameter in spring phenotype birds compared with summer phenotype birds. In rock pigeons, we saw no differences in fiber diameter across seasons. Capillary density did not change as a function of fiber diameter in black-capped chickadees, but did change seasonally, as did MND. Across seasons, as fiber diameter decreased, capillary density increased in the pectoralis muscle of rock pigeons. For both species in this study, we found that as fiber diameter increased, so did MND. Our findings imply that these two temperate birds employ different muscular growth strategies that may be metabolically beneficial to each.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Karl J Brown
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Christopher W Briggs
- Hamilton College, Department of Biology, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
8
|
White DP, Baumgarner BL, Watanabe WO, Alam MS, Kinsey ST. The effects of dietary β-guanidinopropionic acid on growth and muscle fiber development in juvenile red porgy, Pagrus pagrus. Comp Biochem Physiol B Biochem Mol Biol 2017; 216:48-58. [PMID: 29175483 DOI: 10.1016/j.cbpb.2017.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
β-guanidinopropionic acid (β-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental β-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that β-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. β-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with β-GPA treatment. These results suggest that β-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that β-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes.
Collapse
Affiliation(s)
- Dalon P White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, United States.
| | - Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, 800 University Way, Spartanburg, SC 29303, United States
| | - Wade O Watanabe
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, United States; Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403-5928, United States
| | - Md Shah Alam
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403-5928, United States
| | - Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, United States
| |
Collapse
|
9
|
da Rosa JGS, Barcellos HHDA, Idalencio R, Marqueze A, Fagundes M, Rossini M, Variani C, Balbinoti F, Tietböhl TMH, Rosemberg DB, Barcellos LJG. Just Keep Swimming: Neuroendocrine, Metabolic, and Behavioral Changes After a Forced Swimming Test in Zebrafish. Zebrafish 2016; 14:51-59. [PMID: 27672711 DOI: 10.1089/zeb.2016.1340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.
Collapse
Affiliation(s)
- João Gabriel Santos da Rosa
- 1 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM) , Santa Maria, Brazil
| | - Heloísa Helena de Alcântara Barcellos
- 1 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM) , Santa Maria, Brazil
- 2 Universidade de Passo Fundo (UPF) , Passo Fundo, Brazil
| | - Renan Idalencio
- 1 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM) , Santa Maria, Brazil
- 2 Universidade de Passo Fundo (UPF) , Passo Fundo, Brazil
| | - Alessandra Marqueze
- 3 Programa de Pós-Graduação em Avaliação de Impactos Ambientais em Mineração, Centro Universitário La Salle-Unilasalle , Canoas, Brazil
| | | | | | | | - Francine Balbinoti
- 3 Programa de Pós-Graduação em Avaliação de Impactos Ambientais em Mineração, Centro Universitário La Salle-Unilasalle , Canoas, Brazil
| | - Tássia Michele Huff Tietböhl
- 3 Programa de Pós-Graduação em Avaliação de Impactos Ambientais em Mineração, Centro Universitário La Salle-Unilasalle , Canoas, Brazil
| | - Denis Broock Rosemberg
- 4 Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM) , Santa Maria, Brazil
- 5 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| | - Leonardo José Gil Barcellos
- 1 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM) , Santa Maria, Brazil
- 2 Universidade de Passo Fundo (UPF) , Passo Fundo, Brazil
- 6 Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo(UPF) , Passo Fundo, Brazil
| |
Collapse
|
10
|
Jimenez AG, Dillaman RM, Kinsey ST. Large fibre size in skeletal muscle is metabolically advantageous. Nat Commun 2014; 4:2150. [PMID: 23851638 PMCID: PMC3728711 DOI: 10.1038/ncomms3150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/13/2013] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle fiber size is highly variable, and while diffusion appears to limit maximal fiber size, there is no paradigm for the control of minimal size. The optimal fiber size hypothesis posits that the reduced surface area to volume (SA:V) in larger fibers reduces the metabolic cost of maintaining the membrane potential, and so fibers attain an optimal size that minimizes metabolic cost while avoiding diffusion limitation. Here we examine changes during hypertrophic fiber growth in metabolic cost and activity of the Na+-K+-ATPase in white skeletal muscle from crustaceans and fishes. We provide evidence for a major tenet of the optimal fiber size hypothesis by demonstrating that larger fibers are metabolically cheaper to maintain, and the cost of maintaining the membrane potential is proportional to fiber SA:V. The influence of SA:V on metabolic cost is apparent during growth in 16 species spanning a 20-fold range in fiber size, suggesting that this principle may apply widely.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| | | | | |
Collapse
|
11
|
Pathi B, Kinsey ST, Locke BR. Oxygen control of intracellular distribution of mitochondria in muscle fibers. Biotechnol Bioeng 2013; 110:2513-24. [PMID: 23568454 DOI: 10.1002/bit.24918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/10/2022]
Abstract
Mitochondrial density in skeletal muscle fibers is governed by the demand for aerobic ATP production, but the heterogeneous distribution of these mitochondria appears to be governed by constraints associated with oxygen diffusion. We propose that each muscle fiber has an optimal mitochondrial distribution at which it attains a near maximal rate of ATP consumption (RATPase ) while mitochondria are exposed to a minimal oxygen concentration, thus minimizing reactive oxygen species (ROS) production. We developed a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function and considered four fiber types in mouse extensor digitorum longus (EDL) and soleus (SOL) muscle. The developed mathematical model uses a reaction-diffusion analysis of metabolites including oxygen, ATP, ADP, phosphate, and phosphocreatine (PCr) involved in energy metabolism and mitochondrial function. A CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber was superimposed and coupled to the reaction-diffusion approach. The model results show the sensitivity of important model outputs such as the RATPase , effectiveness factor (η) and average oxygen concentration available at each mitochondrion to local oxygen concentration in the fibers through variation in the CA model parameter θdet , which defines the sensitivity of mitochondrial death to the oxygen concentration. The predicted optimal mitochondrial distributions matched previous experimental findings. Deviations from this optimal distribution corresponding to higher CA model parameter values (a more uniform mitochondrial distribution) lead to lower aerobic rates. In contrast, distributions corresponding to lower CA model parameter values (a more asymmetric distribution) lead to an increased exposure of mitochondria to oxygen, usually without substantial increases in aerobic rates, which would presumably result in increased ROS production and thus increased risks of cytotoxicity.
Collapse
Affiliation(s)
- B Pathi
- Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | | | | |
Collapse
|
12
|
Kielhorn CE, Dillaman RM, Kinsey ST, McLellan WA, Mark Gay D, Dearolf JL, Ann Pabst D. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 2013; 274:663-75. [DOI: 10.1002/jmor.20124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/31/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023]
|
13
|
Pathi B, Kinsey ST, Howdeshell ME, Priester C, McNeill RS, Locke BR. The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle. ACTA ACUST UNITED AC 2012; 215:1871-83. [PMID: 22573766 DOI: 10.1242/jeb.067207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O(2) concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the muscle fiber by increasing the energy status and increasing sustainable metabolic rates.
Collapse
Affiliation(s)
- B Pathi
- Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dasika SK, Kinsey ST, Locke BR. Sensitivity analysis of reaction-diffusion constraints in muscle energetics. Biotechnol Bioeng 2011; 109:559-71. [PMID: 21956284 DOI: 10.1002/bit.23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 11/10/2022]
Abstract
Theoretical and experimental studies of aerobic metabolism on a wide range of skeletal muscle fibers have shown that while all fibers normally function within the reaction control regime, some fibers operate near the transition region where reaction control switches to diffusion control. Thus, the transition region between reaction and diffusion control may define the limits of muscle function, and analysis of factors that affect this transition is therefore needed. In order to assess the role of all important model parameters, a sensitivity analysis (SA) was performed to define the parameter space where muscle fibers transition from reaction to diffusion control. SA, performed on a previously developed reaction-diffusion model, shows that the maximum rate for the ATPase reaction (V(max,ATPase)), boundary oxygen concentration in the capillary supply (O ₂⁰), the mitochondrial volume fraction (ε(mito)), and the diffusion coefficient of oxygen (DO ₂) are the most sensitive parameters affecting this transition to diffusion control. It is demonstrated that fibers are not limited by diffusion for slow reactions (V(max,ATPase) < 25 mM/min), high oxygen supply for the capillaries (O ₂⁰ ≥ 35 µM), and large amounts of mitochondria (ε(mito) ≥ 0.1). These conditions are applicable to muscle cells spanning a very broad range of animals. Within the diffusion-controlled region, the overall metabolic rate and ATP concentrations have much higher sensitivity to the diffusion coefficient of oxygen than to the diffusion coefficients of the other metabolites (ATP, ADP, P(i)).
Collapse
Affiliation(s)
- S K Dasika
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
15
|
Dasika SK, Kinsey ST, Locke BR. Facilitated diffusion of myoglobin and creatine kinase and reaction-diffusion constraints of aerobic metabolism under steady-state conditions in skeletal muscle. Biotechnol Bioeng 2011; 109:545-58. [PMID: 21915855 DOI: 10.1002/bit.23329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/10/2011] [Accepted: 09/02/2011] [Indexed: 01/15/2023]
Abstract
The roles of creatine kinase (CK) and myoglobin (Mb) on steady-state facilitated diffusion and temporal buffering of ATP and oxygen, respectively, are assessed within the context of a reaction-diffusion model of muscle energetics. Comparison of the reaction-diffusion model with experimental data from a wide range of muscle fibers shows that the experimentally observed skeletal muscle fibers are generally not limited by diffusion, and the model further indicates that while some muscle fibers operate near the edge of diffusion limitation, no detectable effects of Mb and CK on the effectiveness factor, a measure of diffusion constraints, are observed under steady-state conditions. However, CK had a significant effect on average ATP concentration over a wide range of rates and length scales within the reaction limited regime. The facilitated diffusion functions of Mb and CK become observable in the model for larger size cells with low mitochondrial volume fraction and for low boundary O(2) concentration and high ATP demand, where the fibers may be limited by diffusion. From the transient analysis it may be concluded that CK primarily functions to temporally buffer ATP as opposed to facilitating diffusion while Mb has a small temporal buffering effect on oxygen but does not play any significant role in steady-state facilitated diffusion in skeletal muscle fibers under most physiologically relevant regions.
Collapse
Affiliation(s)
- S K Dasika
- Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, USA
| | | | | |
Collapse
|
16
|
Priester C, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Growth patterns and nuclear distribution in white muscle fibers from black sea bass, Centropristis striata: evidence for the influence of diffusion. ACTA ACUST UNITED AC 2011; 214:1230-9. [PMID: 21430198 DOI: 10.1242/jeb.053199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 μm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers. Mean fiber diameter increased from 36±0.87 μm in the 0.45 g fish to 280±5.47 μm in the 1885 g fish. Growth beyond 2000 g triggered the recruitment of smaller fibers, thus significantly reducing mean fiber diameter. Nuclei in the smaller fibers were exclusively subsarcolemmal (SS), whereas in larger fibers nuclei were more numerous and included intermyofibrillar (IM) nuclei. There was a significant effect of body mass on nuclear domain size (F=118.71, d.f.=3, P<0.0001), which increased to a maximum in fish of medium size (282-1885 g) and then decreased in large fish (>2000 g). Although an increase in the number of nuclei during fiber growth can help preserve the myonuclear domain, the appearance of IM nuclei during hypertrophic growth seems to be aimed at maintaining short effective diffusion distances for nuclear substrates and products. If only SS nuclei were present throughout growth, the diffusion distance would increase in proportion to the radius of the fibers. These observations are consistent with the hypothesis that changes in nuclear distribution and fiber growth patterns are mechanisms for avoiding diffusion limitation during animal growth.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA.
| | | | | | | | | |
Collapse
|
17
|
Pathi B, Kinsey ST, Locke BR. Influence of reaction and diffusion on spatial organization of mitochondria and effectiveness factors in skeletal muscle cell design. Biotechnol Bioeng 2011; 108:1912-24. [PMID: 21351070 DOI: 10.1002/bit.23112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/09/2011] [Accepted: 02/16/2011] [Indexed: 01/03/2023]
Abstract
A mathematical model is developed to analyze the influence of chemical reaction and diffusion processes on the intracellular organization of mitochondria in skeletal muscle cells. The mathematical modeling approach uses a reaction-diffusion analysis of oxygen, ATP, and ADP involved in energy metabolism and mitochondrial function as governed by oxygen supply, volume fraction of mitochondria, and rates of reaction. Superimposed upon and coupled to the continuum species material balances is a cellular automata (CA) approach governing mitochondrial life cycles in response to the metabolic state of the cell. The effectiveness factor (η), defined as the ratio of reaction rate in the system with finite rates of diffusion to those in the absence of any diffusion limitation is used to assess diffusional constraints in muscle cells. The model shows the dramatic effects that the governing parameters have on the mitochondrial cycle of life and death and how these effects lead to changes in the distribution patterns of mitochondria observed experimentally. The model results showed good agreement with experimental results on mitochondrial distributions in mammalian muscle fibers. The η increases as the mitochondrial population is redistributed toward the fiber periphery in response to a decreased availability of oxygen. Modification of the CA parameters so that the mitochondrial lifecycle is more sensitive to the oxygen concentration caused larger mitochondrial shifts to the edge of the cell with smaller changes in oxygen concentration, and thus also lead to increased values of η. The present study shows that variation in oxygen supply, muscle activity and mitochondrial ATP supply influence the η and are the important parameters that can cause diffusion limitations. In order to prevent diffusion constraints, the cell resorts to shifts in their mitochondrial population towards the cell periphery, thus increasing η.
Collapse
Affiliation(s)
- B Pathi
- Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
18
|
Kinsey ST, Locke BR, Dillaman RM. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle. J Exp Biol 2011; 214:263-74. [PMID: 21177946 PMCID: PMC3008633 DOI: 10.1242/jeb.047985] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 12/23/2022]
Abstract
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
Collapse
Affiliation(s)
- Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA.
| | | | | |
Collapse
|
19
|
Scaling with body mass of mitochondrial respiration from the white muscle of three phylogenetically, morphologically and behaviorally disparate teleost fishes. J Comp Physiol B 2010; 180:967-77. [PMID: 20461388 DOI: 10.1007/s00360-010-0474-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
White muscle (WM) fibers in many fishes often increase in size from <50 μm in juveniles to >250 μm in adults. This leads to increases in intracellular diffusion distances that may impact the scaling with body mass of muscle metabolism. We have previously found similar negative scaling of aerobic capacity (mitochondrial volume density, V(mt)) and the rate of an aerobic process (post-contractile phosphocreatine recovery) in fish WM. In the present study, we examined the scaling with body mass of oxygen consumption rates of isolated mitochondria (VO(2mt)) from WM in three species from different families that vary in morphology and behavior: an active, pelagic species (bluefish, Pomatomus saltatrix), a relatively inactive demersal species (black sea bass, Centropristis striata), and a sedentary, benthic species (southern flounder, Paralichthys lethostigma). In contrast to our prior studies, the measurement of respiration in isolated mitochondria is not influenced by the diffusion of oxygen or metabolites. V(mt) was measured in WM and in high-density isolates used for VO(2mt) measurements. WM V(mt) was significantly higher in the bluefish than in the other two species and VO(2mt) was independent of body mass when expressed per milligram protein or per milliliter mitochondria. The size-independence of VO(2mt) indicates that differences in WM aerobic function result from variation in V(mt) and not to changes in VO(2mt). This is consistent with our prior work that indicated that while diffusion constraints influence mitochondrial distribution, the negative scaling of aerobic processes like post-contractile PCr recovery can largely be attributed to the body size dependence of V(mt).
Collapse
|
20
|
Hardy KM, Dillaman RM, Locke BR, Kinsey ST. A skeletal muscle model of extreme hypertrophic growth reveals the influence of diffusion on cellular design. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1855-67. [PMID: 19321701 DOI: 10.1152/ajpregu.00076.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Muscle fibers that power swimming in the blue crab Callinectes sapidus are <80 microm in diameter in juveniles but grow hypertrophically, exceeding 600 microm in adults. Therefore, intracellular diffusion distances become progressively greater as the animals grow and, in adults, vastly exceed those in most cells. This developmental trajectory makes C. sapidus an excellent model for characterization of the influence of diffusion on fiber structure. The anaerobic light fibers, which power burst swimming, undergo a prominent shift in organelle distribution with growth. Mitochondria, which require O2 and rely on the transport of small, rapidly diffusing metabolites, are evenly distributed throughout the small fibers of juveniles, but in the large fibers of adults they are located almost exclusively at the fiber periphery where O2 concentrations are high. Nuclei, which do not require O2, but rely on the transport of large, slow-moving macromolecules, have the inverse pattern: they are distributed peripherally in small fibers but are evenly distributed across the large fibers, thereby reducing diffusion path lengths for large macromolecules. The aerobic dark fibers, which power endurance swimming, have evolved an intricate network of cytoplasmically isolated, highly perfused subdivisions that create the short diffusion distances needed to meet the high aerobic ATP turnover demands of sustained contraction. However, fiber innervation patterns are the same in the dark and light fibers. Thus the dark fibers appear to have disparate functional units for metabolism (fiber subdivision) and contraction (entire fiber). Reaction-diffusion mathematical models demonstrate that diffusion would greatly constrain the rate of metabolic processes without these developmental changes in fiber structure.
Collapse
Affiliation(s)
- Kristin M Hardy
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA
| | | | | | | |
Collapse
|
21
|
Fernández DA, Calvo J. Fish muscle: the exceptional case of Notothenioids. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:43-52. [PMID: 18979217 DOI: 10.1007/s10695-008-9282-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
Fish skeletal muscle is an excellent model for studying muscle structure and function, since it has a very well-structured arrangement with different fiber types segregated in the axial and pectoral fin muscles. The morphological and physiological characteristics of the different muscle fiber types have been studied in several teleost species. In fish muscle, fiber number and size varies with the species considered, limiting fish maximum final length due to constraints in metabolites and oxygen diffusion. In this work, we analyze some special characteristics of the skeletal muscle of the suborder Notothenioidei. They experienced an impressive radiation inside Antarctic waters, a stable and cold environment that could account for some of their special characteristics. The number of muscle fibers is very low, 12,700-164,000, in comparison to 550,000-1,200,000 in Salmo salar of similar sizes. The size of the fibers is very large, reaching 600 microm in diameter, while for example Salmo salar of similar sizes have fibers of 220 microm maximum diameter. Evolutionary adjustment in cell cycle length for working at low temperature has been shown in Harpagifer antarcticus (111 h at 0 degrees C), when compared to the closely related sub-Antarctic species Harpagifer bispinis (150 h at 5 degrees C). Maximum muscle fiber number decreases towards the more derived notothenioids, a trend that is more related to phylogeny than to geographical distribution (and hence water temperature), with values as low as 3,600 in Harpagifer bispinis. Mitochondria volume density in slow muscles of notothenioids is very high (reaching 0.56) and since maximal rates of substrate oxidation by mitochondria is not enhanced, at least in demersal notothenioids, volume density is the only means of overcoming thermal constraints on oxidative capacity. In brief, some characteristics of the muscles of notothenioids have an apparent phylogenetic component while others seem to be adaptations to low temperature.
Collapse
Affiliation(s)
- Daniel A Fernández
- Austral Center for Scientific Research, CADIC-CONICET, Ushuaia, Tierra del Fuego, Argentina.
| | | |
Collapse
|
22
|
Locke BR, Kinsey ST. Diffusional constraints on energy metabolism in skeletal muscle. J Theor Biol 2008; 254:417-29. [PMID: 18619978 DOI: 10.1016/j.jtbi.2008.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/12/2008] [Accepted: 06/10/2008] [Indexed: 11/28/2022]
Abstract
Aerobic metabolic flux depends on the diffusion of high-energy phosphate molecules (e.g., ATP and phosphocreatine) from the mitochondria to cellular ATPases, as well as the diffusion of other molecules (e.g., ADP, Pi) back to the mitochondria. Here, we develop an approach for evaluating the influence of intracellular metabolite diffusion on skeletal muscle aerobic metabolism through the application of the effectiveness factor (eta). This parameter provides an intuitive and informative means of quantifying the extent to which diffusion limits metabolic flux. We start with the classical approach assuming an infinite supply of substrate at the fiber boundary, and we expand this model to ultimately include nonlinear boundary and homogeneous reactions. Comparison of the model with experimental data from a wide range of skeletal muscle types reveals that most muscle fibers are not substantially limited by diffusion (eta close to unity), but many are on the brink of rather substantial diffusion limitation. This implies that intracellular metabolite diffusion does not dramatically limit aerobic metabolic flux in most fibers, but it likely plays a role in limiting the evolution of muscle fiber design and function.
Collapse
Affiliation(s)
- B R Locke
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA.
| | | |
Collapse
|