1
|
Verma N, Knudsen B, Gholston A, Skubal A, Blanz S, Settell M, Frank J, Trevathan J, Ludwig K. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. J Neural Eng 2023; 20:10.1088/1741-2552/acc35c. [PMID: 36898148 PMCID: PMC10587909 DOI: 10.1088/1741-2552/acc35c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective.Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.Approach.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).Main results.The cuff recorded the largest ECAP signal (p< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.Significance.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Gholston
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Megan Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Jennifer Frank
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Kip Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
2
|
Menkara A, Faryami A, Viar D, Harris C. Applications of a novel reciprocating positive displacement pump in the simulation of pulsatile arterial blood flow. PLoS One 2022; 17:e0270780. [PMID: 36512622 PMCID: PMC9746965 DOI: 10.1371/journal.pone.0270780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pulsatile arterial blood flow plays an important role in vascular system mechanobiology, especially in the study of mechanisms of pathology. Limitations in cost, time, sample size, and control across current in-vitro and in-vivo methods limit future exploration of novel treatments. Presented is the verification of a novel reciprocating positive displacement pump aimed at resolving these issues through the simulation of human ocular, human fingertip and skin surface, human cerebral, and rodent spleen organ systems. A range of pulsatile amplitudes, frequencies, and flow rates were simulated using pumps made of 3D printed parts incorporating a tubing system, check valve and proprietary software. Volumetric analysis of 430 total readings across a flow range of 0.025ml/min to 16ml/min determined that the pump had a mean absolute error and mean relative error of 0.041 ml/min and 1.385%, respectively. Linear regression analysis compared to expected flow rate across the full flow range yielded an R2 of 0.9996. Waveform analysis indicated that the pump could recreate accurate beat frequency for flow ranges above 0.06ml/min at 70BPM. The verification of accurate pump output opens avenues for the development of novel long-term in-vitro benchtop models capable of looking at fluid flow scenarios previously unfeasible, including low volume-high shear rate pulsatile flow.
Collapse
Affiliation(s)
- Adam Menkara
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Ahmad Faryami
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel Viar
- Department of Computer Science and Engineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carolyn Harris
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
3
|
Gonzalez-Gonzalez MA, Bendale GS, Wang K, Wallace GG, Romero-Ortega M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun Biol 2021; 4:1097. [PMID: 34535751 PMCID: PMC8448843 DOI: 10.1038/s42003-021-02628-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neural interfacing nerve fascicles along the splenic neurovascular plexus (SNVP) is needed to better understand the spleen physiology, and for selective neuromodulation of this major organ. However, their small size and anatomical location have proven to be a significant challenge. Here, we use a reduced liquid crystalline graphene oxide (rGO) fiber coated with platinum (Pt) as a super-flexible suture-like electrode to interface multiple SNVP. The Pt-rGO fibers work as a handover knot electrodes over the small SNVP, allowing sensitive recording from four splenic nerve terminal branches (SN 1–4), to uncover differential activity and axon composition among them. Here, the asymmetric defasciculation of the SN branches is revealed by electron microscopy, and the functional compartmentalization in spleen innervation is evidenced in response to hypoxia and pharmacological modulation of mean arterial pressure. We demonstrate that electrical stimulation of cervical and sub-diaphragmatic vagus nerve (VN), evokes activity in a subset of SN terminal branches, providing evidence for a direct VN control over the spleen. This notion is supported by adenoviral tract-tracing of SN branches, revealing an unconventional direct brain-spleen projection. High-performance Pt-rGO fiber electrodes, may be used for the fine neural modulation of other small neurovascular plexus at the point of entry of major organs as a bioelectronic medical alternative. Gonzalez-Gonzalez et al. use high-performance platinized graphene fiber electrodes to interface individual neurovascular plexus that innervate the spleen. Their approach provides evidence for distinct function of individual spleen terminal branches in organ function.
Collapse
Affiliation(s)
- Maria A Gonzalez-Gonzalez
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Geetanjali S Bendale
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mario Romero-Ortega
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA.
| |
Collapse
|
4
|
Enescu A, Petrescu F, Mitruţ P, Petrescu IO, Pădureanu V, Enescu AŞ. Hepatorenal Syndrome: Diagnosis and Treatment - newsreel. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2016; 54:143-150. [PMID: 27658161 DOI: 10.1515/rjim-2016-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/06/2023]
Abstract
Hepatorenal syndrome (HRS) is defined as renal failure that occurs in the presence of severe acute or chronic liver disease in the absence of underlying renal pathology. Due to the functional nature of the disease and the absence of specific diagnostic markers, HRS diagnosis is determined based on positive criteria associated with excluding other causes of renal failure in patients with liver cirrhosis and ascites. Differentiation from other types of acute or chronic renal disease is extremely difficult and therapeutic options are limited, prophylactic behavior is most appropriate in patients with severe hepatic disease and risk factors for the installation of hepatorenal syndrome. Highlighting all precipitating factors of acute renal insufficiency and therapeutic modalities in order to minimize adverse events is an important step in improving the follow-up of the patients with liver cirrhosis. The prognosis is reserved especially for type 1 HRS. Liver transplantation is the best option for patients without contraindications. The therapies introduced in recent years, such as vasoconstrictor drugs or transjugular intrahepatic portosystemic shunt are effective methods in the renal function improvement.
Collapse
|
5
|
Abstract
The kidneys play a central role in cardiovascular homeostasis by ensuring a balance between the fluid taken in and that lost and excreted during everyday activities. This ensures stability of extracellular fluid volume and maintenance of normal levels of blood pressure. Renal fluid handling is controlled via neural and humoral influences, with the former determining a rapid dynamic response to changing intake of sodium whereas the latter cause a slower longer-term modulation of sodium and water handling. Activity in the renal sympathetic nerves arises from an integration of information from the high and low pressure cardiovascular baroreceptors, the somatosensory and visceral systems as well as the higher cortical centers. Each sensory system provides varying input to the autonomic centers of the hypothalamic and medullary areas of the brain at a level appropriate to the activity being performed. In pathophysiological states, such as hypertension, heart failure and chronic renal disease, there may be an inappropriate sympathoexcitation causing sodium retention which exacerbates the disease process. The contribution of the renal sympathetic nerves to these cardiovascular diseases is beginning to be appreciated with the demonstration that renal denervation of resistant hypertensive patients results in a long-term normalization of blood pressure.
Collapse
Affiliation(s)
- Edward J Johns
- Department of Physiology, University College Cork, Cork, Republic of Ireland.
| |
Collapse
|
6
|
Hamza SM, Kaufman S. Role of spleen in integrated control of splanchnic vascular tone: physiology and pathophysiology. Can J Physiol Pharmacol 2009; 87:1-7. [PMID: 19142210 DOI: 10.1139/y08-103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aside from its established immunologic and hematologic functions, the spleen also plays an important role in cardiovascular regulation. This occurs through changes in intrasplenic microvascular tone, as well as through splenic neurohormonal modulation of the renal and mesenteric vascular beds. Splenic regulation of blood volume occurs predominantly through fluid extravasation from the splenic circulation into lymphatic reservoirs; this is controlled by direct modulation of splenic pre- and postcapillary resistance by established physiologic agents such as atrial natriuretic peptide (ANP), nitric oxide (NO), and adrenomedullin (ADM). In addition to physiologic fluid regulation, splenic extravasation is a key factor in the inability to maintain adequate intravascular volume in septic shock. The spleen also controls renal microvascular tone through reflex activation of the splenic afferent and renal sympathetic nerves. This splenorenal reflex not only contributes to the physiologic regulation of blood pressure, but also contributes to the cardiovascular dysregulation associated with both septic shock and portal hypertension. In septic shock, the splenorenal reflex protectively limits splenic extravasation and potentially promotes renal sodium and water reabsorption and release of the vasoconstrictor angiotensin II; this function is eventually overwhelmed as shock progresses. In portal hypertension, on the other hand, the splenorenal reflex-mediated reduction in renal vascular conductance exacerbates sodium and water retention in the kidneys and may eventually contribute to renal dysfunction. Preliminary evidence suggests that the spleen also may play a role in the hemodynamic complications of portal hypertension via neurohormonal modulation of the mesenteric vascular bed. Lastly, the spleen itself may be a source of a vasoactive factor.
Collapse
Affiliation(s)
- Shereen M Hamza
- 473 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | |
Collapse
|
7
|
Tiniakov R, Scrogin KE. The spleen is required for 5-HT1A receptor agonist-mediated increases in mean circulatory filling pressure during hemorrhagic shock in the rat. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1392-401. [PMID: 19244581 DOI: 10.1152/ajpregu.91055.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5-HT(1A) receptor agonist, 8- OH-DPAT, increases whole body venous tone (mean circulatory filling pressure; MCFP), and attenuates metabolic acidosis in a rat model of unresuscitated hemorrhagic shock. To determine whether improved acid-base balance was associated with sympathetic activation and venous constriction, MCFP, sympathetic activity (SA), and blood gases were compared in hemorrhaged rats following administration of 5-HT(1A) receptor agonist 8-OH-DPAT, the arterial vasoconstrictor arginine vasopressin (AVP), or saline. To further determine whether protection of acid-base balance was dependent on splenic contraction and blood mobilization, central venous pressure (CVP), MCFP, and blood gases were determined during hemorrhage and subsequent 8-OH-DPAT-administration in rats subjected to real or sham splenectomy. Subjects were hemorrhaged to an arterial pressure of 50 mmHg for 25 min and subsequently were treated with 8-OH-DPAT (30 nmol/kg iv), AVP titrated to match the pressor effect of 8-OH-DPAT (approximately 2 ng/min iv), or infusion of normal saline. 8-OH-DPAT increased MAP, CVP, MCFP, and SA, and decreased lactate accumulation. AVP did not affect CVP or SA, but raised MCFP slightly to a level intermediate between 8-OH-DPAT- and saline-treated rats. Infusion of AVP also produced a modest protection against metabolic acidosis. Splenectomy prevented the rise in CVP, MCFP, and protection against metabolic acidosis produced by 8-OH-DPAT but had no effect on the immediate pressor response to the drug. Together, the data indicate that 8-OH-DPAT produces a pattern of cardiovascular responses consistent with a sympathetic-mediated venoconstriction that is, in part, responsible for the drug's beneficial effect on acid-base balance. Moreover, blood mobilization stimulated by the spleen is required for the beneficial effects of 8-OH-DPAT.
Collapse
Affiliation(s)
- Ruslan Tiniakov
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
8
|
EDGELL HEATHER, KAUFMAN SUSAN. Effect of Hindlimb Unloading on Salt and Water Intake and Output in Male and Female Rats. Med Sci Sports Exerc 2008; 40:1249-54. [DOI: 10.1249/mss.0b013e31816a2450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Hamza SM, Kaufman S. Effect of mesenteric vascular congestion on reflex control of renal blood flow. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1917-22. [PMID: 17715185 DOI: 10.1152/ajpregu.00180.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Portal hypertension initiates a splenorenal reflex, whereby increases in splenic afferent nerve activity and renal sympathetic nerve activity cause a decrease in renal blood flow (RBF). We postulated that mesenteric vascular congestion similarly compromises renal function through an intestinal-renal reflex. The portal vein was partially occluded in anesthetized rats, either rostral or caudal to the junction with the splenic vein. Portal venous pressure increased (6.5 +/- 0.1 to 13.2 +/- 0.1 mmHg; n = 78) and mesenteric venous outflow was equally obstructed in both cases. However, only rostral occlusion increased splenic venous pressure. Rostral occlusion caused a fall in RBF (-1.2 +/- 0.2 ml/min; n = 9) that was attenuated by renal denervation (-0.5 +/- 0.1 ml/min; n = 6), splenic denervation (-0.2 +/- 0.1 ml/min; n = 11), celiac ganglionectomy (-0.3 +/- 0.1 ml/min; n = 9), and splenectomy (-0.5 +/- 0.1 ml/min; n = 6). Caudal occlusion induced a significantly smaller fall in RBF (-0.5 +/- 0.1 ml/min; n = 9), which was not influenced by renal denervation (-0.2 +/- 0.2 ml/min; n = 6), splenic denervation (-0.1 +/- 0.1 ml/min; n = 7), celiac ganglionectomy (-0.1 +/- 0.3 ml/min; n = 8), or splenectomy (-0.3 +/- 0.1 ml/min; n = 7). Renal arterial conductance fell only in intact animals subjected to rostral occlusion (-0.007 +/- 0.002 ml.min(-1).mmHg(-1)). This was accompanied by increases in splenic afferent nerve activity (15.0 +/- 3.5 to 32.6 +/- 6.2 spikes/s; n = 7) and renal efferent nerve activity (32.7 +/- 5.2 to 39.3 +/- 6.0 spikes/s; n = 10). In animals subjected to caudal occlusion, there were no such changes in renal arterial conductance or splenic afferent/renal sympathetic nerve activity. We conclude that the portal hypertension-induced fall in RBF is initiated by increased splenic, but not mesenteric, venous pressure, i.e., we did not find evidence for intestinal-renal reflex control of the kidneys.
Collapse
Affiliation(s)
- Shereen M Hamza
- Department of Physiology, Univerity of Alberta, Edmonton, AB, Canada T6G 2S2
| | | |
Collapse
|
10
|
Moncrief K, Hamza S, Kaufman S. Splenic reflex modulation of central cardiovascular regulatory pathways. Am J Physiol Regul Integr Comp Physiol 2007; 293:R234-42. [PMID: 17395787 DOI: 10.1152/ajpregu.00562.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The splenorenal reflex induces changes in mean arterial pressure (MAP) and renal function. We hypothesized that, in addition to spinal pathways previously identified, these effects are also mediated through central pathways. We investigated the effect of elevated splenic venous pressure on central neural activation in intact, renal-denervated, and renal + splenic-denervated rats. Fos-labeled neurons were quantified in the nucleus of the tractus solitarius (NTS), paraventricular nucleus (PVN), supraoptic nucleus (SON), and subfornical organ (SFO) after 1-h partial splenic vein occlusion (SVO) in conscious rats bearing balloon occluders around the splenic vein, telemetric pressure transducers in the gastric vein (splenic venous pressure), and abdominal aorta catheters (MAP). SVO stimulated Fos expression in the PVN and SON, but not NTS or SFO of intact rats. Renal denervation abolished this response in the parvocellular PVN, while renal + splenic denervation abolished activation in the magnocellular PVN and the SON. In renal-denervated animals, SVO depressed Fos expression in the NTS and increased expression in the SFO, responses that were abolished by renal + splenic denervation. In intact rats, SVO also induced a fall in right atrial pressure, an increase in renal afferent nerve activity, and an increase in MAP. We conclude that elevated splenic venous pressure does induce hypothalamic activation and that this is mediated through both splenic and renal afferent nerves. However, in the absence of renal afferent input, SVO depressed NTS activation, probably as a result of the accompanying fall in cardiac preload and reduced afferent signaling from the cardiopulmonary receptors.
Collapse
Affiliation(s)
- Karli Moncrief
- Department of Physiology, University of Alberta, 473 Heritage Medical Research Centre, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
11
|
Wadei HM, Mai ML, Ahsan N, Gonwa TA. Hepatorenal syndrome: pathophysiology and management. Clin J Am Soc Nephrol 2006; 1:1066-79. [PMID: 17699328 DOI: 10.2215/cjn.01340406] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hani M Wadei
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Jacksonville, FL 32216, USA
| | | | | | | |
Collapse
|