1
|
Chaves ADS, Magalhães NS, Insuela DBR, Silva PMRE, Martins MA, Carvalho VF. Captopril inhibits the overproduction of proopiomelanocortin and adrenocorticotropic hormone in the pituitary gland of male diabetic mice in close relationship with an increase in glucocorticoid receptor expression. Eur J Pharmacol 2024; 984:177057. [PMID: 39396750 DOI: 10.1016/j.ejphar.2024.177057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Prior investigation shows that diabetic patients present hypothalamus-pituitary-adrenal (HPA) axis hyperactivity related to impaired negative feedback. This study investigates the effect of Captopril on the overproduction of adrenocorticotropic hormone (ACTH) and its precursor proopiomelanocortin (POMC) in the pituitary gland of male diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice, and the animals were treated with Captopril for 14 consecutive days, starting 7 days post-diabetes induction. Plasma corticosterone levels were evaluated by ELISA, while pituitary gland expressions of angiotensin-II type 1 receptor (AT1), angiotensin-II type 2 receptor (AT2), ACTH, Bax, Bcl-2, KI-67, POMC, and glucocorticoid receptor (GR) were evaluated using immunohistochemistry or Western blot. Diabetic mice showed pituitary gland overexpression of AT1, without altering AT2 levels, which were sensitive to Captopril treatment. Furthermore, diabetic mice presented hypercortisolism, along with an increase in the number of corticotroph cells, POMC and ACTH expression, and number of proliferative cells, and a decrease of GR expression in the pituitary gland. In addition, treatment with Captopril reduced systemic corticosterone levels, corticotroph and proliferative cell numbers, and Bcl-2, POMC, and ACTH expression in the pituitary gland of diabetic mice, besides increasing the expression of Bax and GR. In conclusion, these findings show that Captopril is a promising therapy for treating complications associated with HPA axis hyperactivity in diabetic patients, in a mechanism probably related to the downregulation of POMC production in the pituitary gland and subsequent reduction of systemic corticosterone levels.
Collapse
Affiliation(s)
- Amanda da Silva Chaves
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Nathalia Santos Magalhães
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Daniella Bianchi Reis Insuela
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues E Silva
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Brazil.
| |
Collapse
|
2
|
Hornung E, Achanta S, Moss A, Schwaber JS, Vadigepalli R. Multi-organ gene expression analysis and network modeling reveal regulatory control cascades during the development of hypertension in female spontaneously hypertensive rat. PLoS One 2024; 19:e0313252. [PMID: 39514592 PMCID: PMC11548744 DOI: 10.1371/journal.pone.0313252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension is a multifactorial disease with stage-specific gene expression changes occurring in multiple organs over time. The temporal sequence and the extent of gene regulatory network changes occurring across organs during the development of hypertension remain unresolved. In this study, female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats were used to analyze expression patterns of 96 genes spanning inflammatory, metabolic, sympathetic, fibrotic, and renin-angiotensin (RAS) pathways in five organs, at five time points from the onset to established hypertension. We analyzed this multi-dimensional dataset containing ~15,000 data points and developed a data-driven dynamic network model that accounts for gene regulatory influences within and across visceral organs and multiple brainstem autonomic control regions. We integrated the data from female SHR and WKY with published multiorgan gene expression data from male SHR and WKY. In female SHR, catecholaminergic processes in the adrenal gland showed the earliest gene expression changes prior to inflammation-related gene expression changes in the kidney and liver. Hypertension pathogenesis in male SHR instead manifested early as catecholaminergic gene expression changes in brainstem and kidney, followed by an upregulation of inflammation-related genes in liver. RAS-related gene expression from the kidney-liver-lung axis was downregulated and intra-adrenal RAS was upregulated in female SHR, whereas the opposite pattern of gene regulation was observed in male SHR. We identified disease-specific and sex-specific differences in regulatory interactions within and across organs. The inferred multi-organ network model suggests a diminished influence of central autonomic neural circuits over multi-organ gene expression changes in female SHR. Our results point to the gene regulatory influence of the adrenal gland on spleen in female SHR, as compared to brainstem influence on kidney in male SHR. Our integrated molecular profiling and network modeling identified a stage-specific, sex-dependent, multi-organ cascade of gene regulation during the development of hypertension.
Collapse
Affiliation(s)
- Eden Hornung
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sirisha Achanta
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alison Moss
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James S. Schwaber
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Le Nezet E, Marqueze-Pouey C, Guisle I, Clavel MA. Molecular Features of Calcific Aortic Stenosis in Female and Male Patients. CJC Open 2024; 6:1125-1137. [PMID: 39525825 PMCID: PMC11544188 DOI: 10.1016/j.cjco.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past 15 years, sex-related differences in aortic valve (AV) stenosis (AS) have been highlighted, affecting various aspects of AS, such as the pathophysiology, AV lesions, left ventricle remodelling, and outcomes. Female patients were found to present a more profibrotic pattern of leaflet remodelling and/or thickening, whereas male patients have a preponderance of calcification within stenosed leaflets. The understanding of these sex differences is still limited, owing to the underrepresentation of female patients in many basic and clinical research studies and trials. A better understanding of sex differences in the pathophysiology of AS may highlight new therapeutic targets that potentially could be sex-specific. This review aims to summarize sex-related differences in AS, as discovered from basic research experiments, covering aspects of the disease ranging from leaflet composition to signalling pathways, sex hormones, genetics and/or transcriptomics, and potential sex-adapted medical treatments.
Collapse
Affiliation(s)
- Emma Le Nezet
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Chloé Marqueze-Pouey
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Isabelle Guisle
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| |
Collapse
|
4
|
Eshraghi-Jazi F, Nematbakhsh M. The Effect of Angiotensin II Type 1 Receptor Antagonist on Age-Related Differences in Renal Vascular Responses to Angiotensin II in Male and Female Rats. Adv Biomed Res 2024; 13:71. [PMID: 39434945 PMCID: PMC11493212 DOI: 10.4103/abr.abr_387_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 10/23/2024] Open
Abstract
Background Advancing age could influence renin angiotensin system components, especially angiotensin type 1 receptor (AT1R). This study examined the effect of AT1R antagonist, losartan, on age-related differences in renal vascular responses to angiotensin II in male and female rats. Materials and Methods Forty-eight anesthetized male and female rats (8-12 and 24-28 weeks age ranges) were subjected to catheterize. Then, the responses of mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) to angiotensin II with or without losartan were determined and evaluated. Results There were not significant differences in the basal values of MAP, RPP, RBF, and RVR in males. However, it was observed significant difference in RVR in females (P < 0.05). The blockade of AT1R attenuated basal MAP and RPP in all the groups (P < 0.05). The infusion of losartan altered basal RVR and RBF values in female groups (P < 0.05). Moreover, losartan eliminated vasoconstrictor responses to angiotensin II in female groups (P < 0.05). Also, losartan induced significant vascular responses to angiotensin II in male groups (P < 0.05). Conclusions Losartan could maintain RBF changes in response to angiotensin II in both 8-12- and 24-28-week females. Losartan enhanced the RBF response to angiotensin II in 8-12-week males, but not in 24-28-week males. It seems that females (not males) in various age ranges are resistance against RBF changes by acutely increased angiotensin II.
Collapse
Affiliation(s)
- Fatemeh Eshraghi-Jazi
- Water and Electrolytes Research Center, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Shawky NM, Reckelhoff JF, Alexander BT, Cardozo LLY. Insights Into the Cardiomodulatory Effects of Sex Hormones: Implications in Transgender Care. Hypertension 2023; 80:1810-1820. [PMID: 37462057 PMCID: PMC10530189 DOI: 10.1161/hypertensionaha.123.19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Transgender individuals that undergo gender-affirming hormone therapy may experience discrimination in the health care setting with a lack of access to medical personnel competent in transgender medicine. Recent evidence suggests that gender-affirming hormone therapy is associated with an increased risk of cardiovascular diseases and cardiovascular risk factors. A recent statement from the American Heart Association reinforces the importance of cardiovascular-focused clinical management and the necessity for more research into the impact of gender-affirming hormone therapy. With this in mind, this review will highlight the known cardiovascular risk factors associated with gender-affirming hormone therapy and identify potential molecular mechanisms determined from the limited animal studies that explore the role of cross-sex steroids on cardiovascular risk. The lack of data in this understudied population requires future clinical and basic research studies to inform and educate clinicians and their transgender patient population to promote precision medicine for their care to improve their quality of life.
Collapse
Affiliation(s)
- Noha M. Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Jane F. Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Barbara T. Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
6
|
Reckelhoff JF. Mechanisms of sex and gender differences in hypertension. J Hum Hypertens 2023; 37:596-601. [PMID: 36797338 DOI: 10.1038/s41371-023-00810-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The mechanisms that control blood pressure are multifaceted including the sympathetic nervous system and the renin-angiotensin system leading to vasoconstriction and sodium reabsorption that causes a shift in the pressure-natriuesis relationship to higher blood pressures. Sex steroids can affect these mechanisms either directly or indirectly, and the effects may be different depending on the sex of the individual. This review will discuss some of the major blood pressure-controlling mechanisms and how sex steroids may affect them and the need for future studies to better clarify the mechanisms responsible for sex and gender differences in blood pressure control. New mechanisms that are identified, along with what is already known, will provide better tools for treatment of hypertension in men and women of all ethnicities and decrease the risk of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, Women's Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
7
|
Piťha J, Vaněčková I, Zicha J. Hypertension after the Menopause: What Can We Learn from Experimental Studies? Physiol Res 2023; 72:S91-S112. [PMID: 37565415 PMCID: PMC10660576 DOI: 10.33549/physiolres.935151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Collapse
Affiliation(s)
- J Piťha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
8
|
Nwia SM, Leite APO, Li XC, Zhuo JL. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front Cardiovasc Med 2023; 10:1198090. [PMID: 37404743 PMCID: PMC10315499 DOI: 10.3389/fcvm.2023.1198090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula O. Leite
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
9
|
Amruta N, Kandikattu HK, Intapad S. Cardiovascular Dysfunction in Intrauterine Growth Restriction. Curr Hypertens Rep 2022; 24:693-708. [PMID: 36322299 DOI: 10.1007/s11906-022-01228-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction. RECENT FINDINGS Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5-15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFβ signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR. We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA.
| |
Collapse
|
10
|
Long L, Zhang X, Wen Y, Li J, Wei L, Cheng Y, Liu H, Chu J, Fang Y, Xie Q, Shen A, Peng J. Qingda Granule Attenuates Angiotensin II-Induced Renal Apoptosis and Activation of the p53 Pathway. Front Pharmacol 2022; 12:770863. [PMID: 35222007 PMCID: PMC8867011 DOI: 10.3389/fphar.2021.770863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Qingda granules (QDG) exhibit antihypertension and multiple-target-organ protection. However, the therapeutic potential of QDG on hypertensive renal injury remains unknown. Therefore, the main objective of the current study is to explore the effects and underlying mechanisms of QDG treatment on renal injury in angiotensin (Ang) II-infused mice. Methods and results: Mice were infused with Ang II (500 ng/kg/min) or saline for 4 weeks with subcutaneously implanted osmotic pumps. After infusion, mice in the Ang II + QDG group were intragastrically administrated with QDG daily (1.145 g/kg/day), whereas the control group and Ang II group were intragastrically administrated with the same amount of double-distilled water. Blood pressure of the mice monitored using the CODA™ noninvasive blood pressure system revealed that QDG treatment significantly attenuated elevated blood pressure. Moreover, hematoxylin-eosin staining indicated that QDG treatment ameliorated Ang II-induced renal morphological changes, including glomerular sclerosis and atrophy, epithelial cell atrophy, and tubular dilatation. RNA-sequencing (RNA-seq) identified 662 differentially expressed transcripts (DETs) in renal tissues of Ang II-infused mice, which were reversed after QDG treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on DETs in both comparisons of Ang II vs. Control and Ang II + QDG vs. Ang II identified multiple enriched pathways, including apoptosis and p53 pathways. Consistently, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining and Annexin V staining revealed that QDG treatment significantly attenuated Ang II-induced cell apoptosis in renal tissues and cultured renal tubular epithelial cell lines (NRK-52E). Furthermore, western blot analysis indicated that Ang II infusion significantly upregulated the protein expression of p53, BCL2-associated X (BAX), cle-caspase-9, and cle-caspase-3, while downregulating the protein expression of BCL-2 in renal tissues, which were attenuated after QDG treatment. Conclusion: Collectively, QDG treatment significantly attenuated hypertensive renal injury, partially by attenuating renal apoptosis and suppressing p53 pathways, which might be the underlying mechanisms.
Collapse
Affiliation(s)
- Linzi Long
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Ying Wen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Huixin Liu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Yi Fang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| |
Collapse
|
11
|
Elmarakby A, Sullivan J. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clin Sci (Lond) 2021; 135:1791-1804. [PMID: 34338771 PMCID: PMC8329852 DOI: 10.1042/cs20201017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
Although numerous clinical and experimental studies have clearly identified a sexual dimorphism in blood pressure control, the mechanism(s) underlying gender differences in blood pressure remain unclear. Over the past two decades, numerous laboratories have utilized the spontaneously hypertensive rats (SHR) as an experimental model of essential hypertension to increase our understanding of the mechanisms regulating blood pressure in males and females. Previous work by our group and others have implicated that differential regulation of adrenergic receptors, the renin-angiotensin system, oxidative stress, nitric oxide bioavailability and immune cells contribute to sex differences in blood pressure control in SHR. The purpose of this review is to summarize previous findings to date regarding the mechanisms of blood pressure control in male versus female SHR.
Collapse
Affiliation(s)
- Ahmed A. Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, U.S.A
| | | |
Collapse
|
12
|
Sainsily X, Coquerel D, Giguère H, Dumont L, Tran K, Noll C, Ionescu AL, Côté J, Longpré JM, Carpentier A, Marsault É, Lesur O, Sarret P, Auger-Messier M. Elabela Protects Spontaneously Hypertensive Rats From Hypertension and Cardiorenal Dysfunctions Exacerbated by Dietary High-Salt Intake. Front Pharmacol 2021; 12:709467. [PMID: 34385922 PMCID: PMC8353398 DOI: 10.3389/fphar.2021.709467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Arterial hypertension, when exacerbated by excessive dietary salt intake, worsens the morbidity and mortality rates associated with cardiovascular and renal diseases. Stimulation of the apelinergic system appears to protect against several circulatory system diseases, but it remains unknown if such beneficial effects are conserved in severe hypertension. Therefore, we aimed at determining whether continuous infusion of apelinergic ligands (i.e., Apelin-13 and Elabela) exerted cardiorenal protective effects in spontaneously hypertensive (SHR) rats receiving high-salt diet. Methods: A combination of echocardiography, binding assay, histology, and biochemical approaches were used to investigate the cardiovascular and renal effects of Apelin-13 or Elabela infusion over 6 weeks in SHR fed with normal-salt or high-salt chow. Results: High-salt intake upregulated the cardiac and renal expression of APJ receptor in SHR. Importantly, Elabela was more effective than Apelin-13 in reducing high blood pressure, cardiovascular and renal dysfunctions, fibrosis and hypertrophy in high-salt fed SHR. Unlike Apelin-13, the beneficial effects of Elabela were associated with a counter-regulatory role of the ACE/ACE2/neprilysin axis of the renin-angiotensin-aldosterone system (RAAS) in heart and kidneys of salt-loaded SHR. Interestingly, Elabela also displayed higher affinity for APJ in the presence of high salt concentration and better resistance to RAAS enzymes known to cleave Apelin-13. Conclusion: These findings highlight the protective action of the apelinergic system against salt-induced severe hypertension and cardiorenal failure. As compared with Apelin-13, Elabela displays superior pharmacodynamic and pharmacokinetic properties that warrant further investigation of its therapeutic use in cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Xavier Sainsily
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Coquerel
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kien Tran
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Noll
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrei L Ionescu
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jérôme Côté
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André Carpentier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Shawky NM, Patil CN, Dalmasso C, Maranon RO, Romero DG, Drummond H, Reckelhoff JF. Pregnancy Protects Hyperandrogenemic Female Rats From Postmenopausal Hypertension. Hypertension 2020; 76:943-952. [PMID: 32755410 PMCID: PMC7429272 DOI: 10.1161/hypertensionaha.120.15504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
Polycystic ovary syndrome, the most common endocrine disorder in women of reproductive age, is characterized by hyperandrogenemia, obesity, insulin resistance, and elevated blood pressure. However, few studies have focused on the consequences of pregnancy on postmenopausal cardiovascular disease and hypertension in polycystic ovary syndrome women. In hyperandrogenemic female (HAF) rats, the hypothesis was tested that previous pregnancy protects against age-related hypertension. Rats were implanted with dihydrotestosterone (7.5 mg/90 days, beginning at 4 weeks and continued throughout life) or placebo pellets (controls), became pregnant at 10 to 15 weeks, and pups were weaned at postnatal day 21. Dams and virgins were then aged to 10 months (still estrous cycling) or 16 months (postcycling). Although numbers of offspring per litter were similar for HAF and control dams, birth weights were lower in HAF offspring. At 10 months of age, there were no differences in blood pressure, proteinuria, nitrate/nitrite excretion, or body composition in previously pregnant HAF versus virgin HAF. However, by 16 months of age, despite no differences in dihydrotestosterone, fat mass/or lean mass/body weight, previously pregnant HAF had significantly lower blood pressure and proteinuria, higher nitrate/nitrite excretion, with increased intrarenal mRNA expression of endothelin B receptor and eNOS (endothelial nitric oxide synthase), and decreased ACE (angiotensin-converting enzyme), AT1aR (angiotensin 1a receptor), and endothelin A receptor than virgin HAF. Thus, pregnancy protects HAF rats against age-related hypertension, and the mechanism(s) may be due to differential regulation of the nitric oxide, endothelin, and renin-angiotensin systems. These data suggest that polycystic ovary syndrome women who have experienced uncomplicated pregnancy may be protected from postmenopausal hypertension.
Collapse
Affiliation(s)
- Noha M. Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Chetan N. Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Heather Drummond
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Physiology, University of Mississippi Medical Center, Jackson, MS
| | - Jane F. Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
14
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Lee SH, Lee YH, Jung SW, Kim DJ, Park SH, Song SJ, Jeong KH, Moon JY, Ihm CG, Lee TW, Kim JS, Sohn IS, Lee SY, Kim DO, Kim YG. Sex-related differences in the intratubular renin-angiotensin system in two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2019; 317:F670-F682. [PMID: 31339773 DOI: 10.1152/ajprenal.00451.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The intratubular renin-angiotensin system (RAS) is thought to play an essential role in hypertensive renal disease, but information regarding sex-related differences in this system is limited. The present study investigated sex differences in the intratubular RAS in two-kidney, one-clip (2K1C) rats. A 2.5-mm clip was placed on the left renal artery of Sprague-Dawley rats, and rats were euthanized 3 or 5 wk after the operation. Systolic blood pressure increased in 2K1C rats in both sexes but was significantly higher in male rats than in female rats, and an antihypertensive effect was not observed in 2K1C ovariectomized (OVX) female rats. Compared with male 2K1C rats, intratubular angiotensin-converting enzyme (ACE) and ANG II were repressed, and intratubular ACE2, angiotensin (1-7), and Mas receptor were increased in both kidneys in female 2K1C rats 5 wk after surgery. Comparison with male and female rats and intratubular mRNA levels of ACE and ANG II type 1 receptor were augmented in OVX female rats, regardless of the clipping surgery 3 wk postoperation. ANG II type 2 receptor was upregulated in female rats with or without OVX; thus, the ANG II type 1-to-type 2 receptor ratio was higher in male rats than in female rats. In conclusion, female rats were protected from hypertensive renal and cardiac injury after renal artery clipping. An increase in the intratubular nonclassic RAS [ACE2/angiotensin (1-7)/Mas receptor] and a decrease in the ANG II type 1-to-type 2 receptor ratio could limit the adverse effects of the classic RAS during renovascular hypertension in female rats, and estrogen is suggested to play a primary role in the regulation of intratubular RAS components.
Collapse
Affiliation(s)
- Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Dong Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seon Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seok Jong Song
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ju Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Tae Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Il Suk Sohn
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Dong-Ok Kim
- Division of Anesthesiology, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
17
|
Thaeomor A, Teangphuck P, Chaisakul J, Seanthaweesuk S, Somparn N, Roysommuti S. Perinatal Taurine Supplementation Prevents Metabolic and Cardiovascular Effects of Maternal Diabetes in Adult Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:295-305. [PMID: 28849464 DOI: 10.1007/978-94-024-1079-2_26] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study tests the hypothesis that perinatal taurine supplementation prevents diabetes mellitus and hypertension in adult offspring of maternal diabetic rats. Female Wistar rats were fed normal rat chow and tap water with (Diabetes group) or without diabetic induction by intraperitoneal streptozotocin injection (Control group) before pregnancy. Then, they were supplemented with 3% taurine in water (Control+T and Diabetes+T groups) or water alone from conception to weaning. After weaning, both male and female offspring were fed normal rat chow and tap water throughout the study. Blood chemistry and cardiovascular parameters were studied in 16-week old rats. Body, heart, and kidney weights were not significantly different among the eight groups. Further, lipid profiles except triglyceride were not significantly different among male and female groups, while male Diabetes displayed increased fasting blood glucose, decreased plasma insulin, and increased plasma triglyceride compared to other groups. Compared to Control, mean arterial pressures significantly increased and baroreflex control of heart rate decreased in both male and female Diabetes, while heart rates significantly decreased in male but increased in female Diabetes group. Although perinatal taurine supplementation did not affect any measured parameters in Control groups, it abolished the adverse effects of maternal diabetes on fasting blood glucose, plasma insulin, lipid profiles, mean arterial pressure, heart rate, and baroreflex sensitivity in adult male and female offspring. The present study indicates that maternal diabetes mellitus induces metabolic and cardiovascular defects more in male than female adult offspring, and these adverse effects can be prevented by perinatal taurine supplementation.
Collapse
Affiliation(s)
- Atcharaporn Thaeomor
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Punyaphat Teangphuck
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Suphaket Seanthaweesuk
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Nuntiya Somparn
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
18
|
Roysommuti S, Lerdweeraphon W, Michael Wyss J. Perinatal Taurine Imbalance Followed by High Sugar Intake Alters the Effects of Estrogen on Renal Excretory Function in Adult Female Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:769-787. [PMID: 28849498 DOI: 10.1007/978-94-024-1079-2_60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study tests the hypothesis that perinatal taurine imbalance impairs renal function in adult female rats via alterations in estrogen activity. Female Sprague-Dawley rats were fed normal rat chow and water containing 3% beta-alanine (TD), 3% taurine (TS) or water alone (C) from conception until weaning. Then, female offspring received normal rat chow and water with (CG, TDG, TSG) or without (CW, TDW, TSW) 5% glucose. At 7-8 weeks of age, renal function at rest and after acute saline load was tested in conscious, restrained female rats treated with non-selective estrogen receptor blocker tamoxifen for a week. Compared to control, TD or TS did not affect mean arterial pressure (MAP). Tamoxifen significantly increased resting MAP only in TDG compared to TDW groups. Although renal blood flow did not significantly differ among the groups, renal vascular resistance increased in TSG compared to CW, CG, and TSW groups. Glomerular filtration rate and water and sodium excretion were not significantly different among the groups. Compared to CW, saline load significantly depressed fractional water excretion in CG, TDW, TDG, and TSW, and fractional sodium excretion in CG, TDW, TDG, TSW, and the TSG groups. Potassium excretion was not significantly different among the corresponding groups. Fractional potassium excretion significantly increased in TDW compared to CG and in TSG compared to CG and TSW groups. These differences were abolished by tamoxifen treatment. These data indicate that in adult female rats, perinatal taurine imbalance, particularly followed by high sugar intake, alters renal function via an estrogenic mechanism.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Wichaporn Lerdweeraphon
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Faculty of Veterinary Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
19
|
Torres Fernandez ED, Adams KV, Syed M, Maranon RO, Romero DG, Yanes Cardozo LL. Long-Lasting Androgen-Induced Cardiometabolic Effects in Polycystic Ovary Syndrome. J Endocr Soc 2018; 2:949-964. [PMID: 30087950 PMCID: PMC6065488 DOI: 10.1210/js.2018-00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, is characterized by androgen excess and ovarian dysfunction and presents with increased cardiometabolic risk factors such as obesity, insulin resistance, and elevated blood pressure (BP). We previously reported that administration of dihydrotestosterone (DHT) to female rats elicits cardiometabolic derangements similar to those found in women with PCOS. In this study, we tested the hypothesis that the DHT-mediated cardiometabolic derangements observed in PCOS are long lasting despite DHT withdrawal. Four-week-old female Sprague Dawley rats were treated with DHT (7.5 mg/90 days) or placebo for 6 months. DHT was discontinued (ex-DHT), and rats were followed for 6 additional months. After 6 months of DHT withdrawal, food intake, body weight, fat and lean mass, fasting plasma insulin, leptin, and adiponectin were elevated in ex-DHT rats. BP remained significantly elevated, and enalapril, an angiotensin-converting enzyme (ACE) inhibitor, normalized BP in ex-DHT rats. Expression of components of the intrarenal renin-angiotensin system was increased in ex-DHT rats. The cardiometabolic features found in ex-DHT rats were associated with lower plasma androgen levels but increased expression of renal and adipose tissue androgen receptors. In summary, androgen-induced cardiometabolic effects persisted after DHT withdrawal in a PCOS experimental model. Activation of intrarenal renin-angiotensin system plays a major role in the androgen-mediated increase in BP in ex-DHT. Upregulation of the renal and adipose tissue androgen receptor may explain the long-lasting effects of androgens. In clinical scenarios characterized by hyperandrogenemia in women, prompt normalization of androgen levels may be necessary to prevent their long-lasting cardiometabolic effects.
Collapse
Affiliation(s)
- Edgar D Torres Fernandez
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kristen V Adams
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maryam Syed
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Rodrigo O Maranon
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Leete J, Gurley S, Layton A. Modeling Sex Differences in the Renin Angiotensin System and the Efficacy of Antihypertensive Therapies. Comput Chem Eng 2018; 112:253-264. [PMID: 30555192 DOI: 10.1016/j.compchemeng.2018.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The renin angiotensin system is a major regulator of blood pressure and a target for many anti-hypertensive therapies; yet the efficacy of these treatments varies between the sexes. We use published data for systemic RAS hormones to build separate models for four groups of rats: male normotensive, male hypertensive, female normotensive, and female hypertensive rats. We found that plasma renin activity, angiotensinogen production rate, angiotensin converting enzyme activity, and neutral endopeptidase activity differ significantly among the four groups of rats. Model results indicate that angiotensin converting enzyme inhibitors and angiotensin receptor blockers induce similar percentage decreases in angiotensin I and II between groups, but substantially different absolute decreases. We further propose that a major difference between the male and female RAS may be the strength of the feedback mechanism, by which receptor bound angiotensin II impacts the production of renin.
Collapse
Affiliation(s)
- Jessica Leete
- Computational Biology & Bioinformatics Program, Duke University, Box 90320
| | - Susan Gurley
- Department of Medicine, Duke University, Box 90320
| | - Anita Layton
- Department of Mathematics, Duke University, Box 90320
| |
Collapse
|
21
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|
22
|
Reckelhoff JF. Sex Differences in Regulation of Blood Pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:139-151. [PMID: 30051382 DOI: 10.1007/978-3-319-77932-4_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypertension is one of the leading risk factors for cardiovascular disease, myocardial infarction, and stroke. There are gender differences in the prevalence of hypertension and in the mechanisms responsible for hypertension in humans. This review will discuss the mechanisms for regulation of blood pressure, sex differences that have been identified in animal studies, and the gender differences that have been identified in humans.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology and Women's Health Research Center and The Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
23
|
Effects of Intrauterine Growth Restriction and Female Sex on Future Blood Pressure and Cardiovascular Disease. Curr Hypertens Rep 2017; 19:13. [PMID: 28233240 DOI: 10.1007/s11906-017-0712-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF THE REVIEW It is well-established that the age-related increase in blood pressure is augmented after menopause. Yet, the prevalence of hypertension is enhanced in low birth weight women relative to normal birth weight counterparts by 60 years of age suggesting that adverse influences during fetal life heighten cardiovascular risk in later life. RECENT FINDINGS A changing hormonal milieu may contribute to increased cardiovascular risk that occurs after the menopausal transition. Low birth weight is associated with early age at menopause. A recent study indicates that a shift towards testosterone excess following early reproductive senescence may contribute to the etiology of age-dependent increases in blood pressure in a rodent model of low birth weight. This review will highlight current findings related to postmenopausal hypertension and discuss potential mechanisms that may contribute to the enhanced cardiovascular risk that develops with age in low birth weight women.
Collapse
|
24
|
Elmarakby AA, Bhatia K, Crislip R, Sullivan JC. Hemodynamic responses to acute angiotensin II infusion are exacerbated in male versus female spontaneously hypertensive rats. Physiol Rep 2016; 4:4/1/e12677. [PMID: 26755738 PMCID: PMC4760407 DOI: 10.14814/phy2.12677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously reported that male spontaneously hypertensive rats (SHRs) are more sensitive to chronic angiotensin (Ang) II‐induced hypertension compared with female rats. This study was designed to test the hypothesis that anesthetized male SHRs are also more responsive to acute Ang II‐induced increases in blood pressure and renal hemodynamic changes when compared with female SHRs. Baseline mean arterial pressure (MAP) was higher in male SHRs than in female SHRs (135 ± 2 vs. 124 ± 4 mmHg, P < 0.05). Acute intravenous infusion of Ang II (5 ng/kg/min) for 60 minutes significantly increased MAP to 148 ± 2 mmHg in male SHRs (P < 0.05) without a significant change in MAP in female SHRs. Baseline glomerular filtration rate (GFR) was also higher in male SHRs than in female SHRs (2.6 ± 0.3 vs. 1.3 ± 0.1 mL/min, P < 0.05). Ang II infusion for 60 min significantly decreased GFR in male SHRs (2.0 ± 0.2 mL/min; P < 0.05) without significant changes in urine flow rate, sodium, or chloride excretion. In contrast, Ang II infusion increased GFR in female SHRs (1.9 ± 0.2 mL/min; P < 0.05). The increase in GFR upon Ang II infusion in female SHRs was associated with increases in urine flow rate (4.3 ± 0.3 to 7.1 ± 0.9 μL/min), sodium excretion (0.16 ± 0.04 to 0.4 ± 0.1 μmol/min), and chloride excretion (0.7 ± 0.08 to 1.1 ± 0.1 μmol/min; for all P < 0.05). These findings support the hypothesis that there is sex difference in response to acute Ang II infusion in SHRs with females being less responsive to Ang II‐induced elevations in blood pressure and decreases in GFR relative to male SHRs.
Collapse
Affiliation(s)
- Ahmed A Elmarakby
- Departments of Oral Biology, Augusta University, Augusta, Georgia Departments of Pharmacology & Toxicology, Augusta University, Augusta, Georgia
| | - Kanchan Bhatia
- Departments of Physiology, Augusta University, Augusta, Georgia
| | - Ryan Crislip
- Departments of Physiology, Augusta University, Augusta, Georgia
| | | |
Collapse
|
25
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
26
|
Dasinger JH, Intapad S, Rudsenske BR, Davis GK, Newsome AD, Alexander BT. Chronic Blockade of the Androgen Receptor Abolishes Age-Dependent Increases in Blood Pressure in Female Growth-Restricted Rats. Hypertension 2016; 67:1281-90. [PMID: 27113045 DOI: 10.1161/hypertensionaha.116.07548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023]
Abstract
Intrauterine growth restriction induced via placental insufficiency programs a significant increase in blood pressure at 12 months of age in female growth-restricted rats that is associated with early cessation of estrous cyclicity, indicative of premature reproductive senescence. In addition, female growth-restricted rats at 12 months of age exhibit a significant increase in circulating testosterone with no change in circulating estradiol. Testosterone is positively associated with blood pressure after menopause in women. Thus, we tested the hypothesis that androgen receptor blockade would abolish the significant increase in blood pressure that develops with age in female growth-restricted rats. Mean arterial pressure was measured in animals pretreated with and without the androgen receptor antagonist, flutamide (8 mg/kg/day, SC for 2 weeks). Flutamide abolished the significant increase in blood pressure in growth-restricted rats relative to control at 12 months of age. To examine the mechanism(s) by which androgens contribute to increased blood pressure in growth-restricted rats, blood pressure was assessed in rats untreated or treated with enalapril (250 mg/L for 2 weeks). Enalapril eliminated the increase in blood pressure in growth-restricted relative to vehicle- and flutamide-treated controls. Furthermore, the increase in medullary angiotensin type 1 receptor mRNA expression was abolished in flutamide-treated growth-restricted relative to untreated counterparts and controls; cortical angiotensin-converting enzyme mRNA expression was reduced in flutamide-treated growth-restricted versus untreated counterparts. Thus, these data indicate that androgens, via activation of the renin-angiotensin system, are important mediators of increased blood pressure that develops by 12 months of age in female growth-restricted rats.
Collapse
Affiliation(s)
- John Henry Dasinger
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Suttira Intapad
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Benjamin R Rudsenske
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Gwendolyn K Davis
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Ashley D Newsome
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson
| | - Barbara T Alexander
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
27
|
Zimmerman MA, Harris RA, Sullivan JC. Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT1 receptor blockade than males. Am J Physiol Renal Physiol 2014; 306:F1136-42. [PMID: 24647710 DOI: 10.1152/ajprenal.00677.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ANG (1-7) contributes to the blood pressure (BP)-lowering effect of angiotensin receptor blockers (ARBs) in male experimental animals. Females have greater ANG (1-7) concentrations than males; however, the contribution of ANG (1-7) to ARB-mediated decreases in BP in females is unknown. The current study tested the hypothesis that female spontaneously hypertensive rats (SHR) have a larger ANG (1-7) contribution to the BP-lowering effects of the ARB candesartan than male SHR. Twelve-week-old male and female SHR were randomized to receive candesartan (0.5 mg·kg(-1)·day(-1); 7 days), candesartan plus ANG II (200 ng·kg(-1)·min(-1); 7 days), the ANG (1-7) antagonist A-779 (48 μg·kg(-1)·h(-1)) plus candesartan and ANG II. Candesartan decreased basal BP in males and females (baseline vs. candesartan: 142 ± 2 vs. 122 ± 3 and 129 ± 1 vs. 115 ± 1 mmHg, respectively; P < 0.05); however, the decrease was greater in males. ANG II increased BP in males in the presence of candesartan (149 ± 2 mmHg; P < 0.05); candesartan blocked ANG II-induced increases in BP in females (116 ± 1 mmHg). Pretreatment with A-779 abolished candesartan-mediated decreases in BP in females, but not males. A-779 also exacerbated ANG II-induced proteinuria (26 ± 6 vs. 77 ± 11 μg·kg(-1)·day(-1), respectively; P < 0.05) and nephrinuria (20 ± 5 vs. 202 ± 58 μg·kg(-1)·day(-1), respectively; P < 0.05) in candesartan-treated female SHR, with no effect in males. In conclusion, females are more sensitive to the BP-lowering effect of ARBs during ANG II infusion, whereas males are more sensitive under basal conditions. In addition, ANG (1-7) has a greater contribution to ARB-mediated decreases in BP, protein, and nephrin excretion in females relative to males.
Collapse
Affiliation(s)
| | - Ryan A Harris
- Georgia Prevention Center, Georgia Regents University, Augusta, Georgia; and Sport and Exercise Science Research Institute, University of Ulster, Northern Ireland, United Kingdom
| | | |
Collapse
|
28
|
Maranon RO, Lima R, Mathbout M, do Carmo JM, Hall JE, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of the sympathetic nervous system in an animal model. Am J Physiol Regul Integr Comp Physiol 2013; 306:R248-56. [PMID: 24381180 DOI: 10.1152/ajpregu.00490.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In postmenopausal women the mechanisms responsible for hypertension have not been completely elucidated, and there are no gender-specific guidelines for women despite studies showing that blood pressure is not as well controlled to goal in women as in men. In the present study we tested the hypotheses that the sympathetic nervous system and the renal sympathetic nerves contribute to hypertension in aging female rats, that sympathetic activation may be mediated by the melanocortin 3/4 receptor (MC3/4R), and that MC3/4R activation may be due to increases in leptin. α-1, β-1,2-Adrenergic blockade reduced blood pressure in both young (3-4 mo) and old (18-19 mo) female spontaneously hypertensive rats (SHR). Renal denervation attenuated the hypertension more in old females than young females. MC3/4R antagonism with SHU-9119 given intracerebroventricularly had no effect on blood pressure in either young or old females but significantly reduced blood pressure in old males. Plasma leptin levels were similar in old male and female SHR and in old versus young females. These data suggest that the hypertension in old female SHR is in part due to activation of the sympathetic nervous system, that the renal nerves contribute to the hypertension, and that the mechanism responsible for sympathetic activation in old females is independent of the MC3/4R.
Collapse
|
29
|
Abstract
In recent years, the interest in studying the impact of sex steroids and gender on the regulation of blood pressure and cardiovascular disease has been growing. Women are protected from most cardiovascular events compared with men until after menopause, and postmenopausal women are at increased risk of cardiovascular complications compared with premenopausal women. The pathophysiological mechanisms have not been elucidated, but are not likely to be as simple as the presence or absence of oestrogens, since hormone replacement therapy in elderly women in the Women's Health Initiative or HERS (Heart and Estrogen/progestin Replacement Study) did not provide primary or secondary prevention against cardiovascular events. Men are also thought to be at risk of cardiovascular disease at earlier ages than women, and these mechanisms too are not likely to be as simple as the presence of testosterone, since androgen levels fall in men with cardiovascular and other chronic diseases. In fact, many investigators now believe that it is the reduction in androgen levels that frequently accompanies chronic disease and may exacerbate cardiovascular disease in men. In the present review, the roles of sex steroids and gender in mediating or protecting against hypertension and cardiovascular disease will be discussed.
Collapse
Affiliation(s)
- Rodrigo Maranon
- Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | |
Collapse
|
30
|
Singh RR, Lankadeva YR, Denton KM, Moritz KM. Improvement in renal hemodynamics following combined angiotensin II infusion and AT1R blockade in aged female sheep following fetal unilateral nephrectomy. PLoS One 2013; 8:e68036. [PMID: 23840884 PMCID: PMC3698080 DOI: 10.1371/journal.pone.0068036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/24/2013] [Indexed: 01/13/2023] Open
Abstract
Renin-angiotensin system (RAS) is a powerful modulator of renal hemodynamic and fluid homeostasis. Up-regulation in components of intra-renal RAS occurs with ageing. Recently we reported that 2 year old uninephrectomised (uni-x) female sheep have low renin hypertension and reduced renal function. By 5 years of age, these uni-x sheep had augmented decrease in renal blood flow (RBF) compared to sham. We hypothesised that this decrease in RBF in 5 year old uni-x sheep was due to an up-regulation in components of the intra-renal RAS. In this study, renal responses to angiotensin II (AngII) infusion and AngII type 1 receptor (AT1R) blockade were examined in the same 5 year old sheep. We also administered AngII in the presence of losartan to increase AngII bioavailability to the AT2R in order to understand AT2R contribution to renal function in this model. Uni-x animals had significantly lower renal cortical content of renin, AngII (∼40%) and Ang 1-7 (∼60%) and reduced cortical expression of AT1R gene than sham animals. In response to both AngII infusion and AT1R blockade via losartan, renal hemodynamic responses and tubular sodium excretion were significantly attenuated in uni-x animals compared to sham. However, AngII infusion in the presence of losartan caused ∼33% increase in RBF in uni-x sheep compared to ∼14% in sham (P<0.05). This was associated with a significant decrease in renal vascular resistance in the uni-x animals (22% vs 15%, P<0.05) without any changes in systemic blood pressure. The present study shows that majority of the intra-renal RAS components are suppressed in this model of low renin hypertension. However, increasing the availability of AngII to AT2R by AT1R blockade improved renal blood flow in uni-x sheep. This suggests that manipulation of the AT2R maybe a potential therapeutic target for treatment of renal dysfunction associated with a congenital nephron deficit.
Collapse
Affiliation(s)
- Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | |
Collapse
|
31
|
Whitney JL, Bilkan CM, Sandberg K, Myers AK, Mulroney SE. Growth hormone exacerbates diabetic renal damage in male but not female rats. Biol Sex Differ 2013; 4:12. [PMID: 23805912 PMCID: PMC3698039 DOI: 10.1186/2042-6410-4-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Human and animal studies support the idea that there are sex differences in the development of diabetic renal disease. Our lab and others have determined that in addition to Ang II (through the AT1R), growth hormone (GH) contributes to renal damage in models of renal failure; however, the impact of sex and GH on the mechanisms initiating diabetic renal disease is not known. This study examined the effect of sex and GH on parameters of renal damage in early, uncontrolled streptozotocin (STZ)-induced diabetes. METHODS Adult male and female Sprague-Dawley rats were injected with vehicle (control), STZ, or STZ + GH and euthanized after 8 weeks. RESULTS Mild but significant glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) was observed in both kidneys from male and female diabetic rats, with GH significantly increasing GS and TIF by 30% and 25% in male rats, but not in female rats. STZ increased TGF-β expression in both kidneys from male and female rats; however, while GH had no further effect on TGF-β protein in diabetic females, GH increased TGF-β protein in the male rat's kidneys by an additional 30%. This sex-specific increase in renal injury following GH treatment was marked by increased MCP-1 and CD-68+ cell density. STZ also reduced renal MMP-2 and MMP-9 protein expression in both kidneys from male and female rats, but additional decreases were only observed in GH-treated diabetic male rats. The sex differences were independent of AT1R activity. CONCLUSIONS These studies indicate that GH affects renal injury in diabetes in a sex-specific manner and is associated with an increase in pro-inflammatory mediators.
Collapse
Affiliation(s)
- Jennifer L Whitney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
| | - Christine Maric Bilkan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn Sandberg
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Adam K Myers
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Susan E Mulroney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
32
|
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol 2013; 167:298-312. [PMID: 22582712 DOI: 10.1111/j.1476-5381.2012.02036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately one third of all deaths are attributed to cardiovascular disease (CVD), making it the biggest killer worldwide. Despite a number of therapeutic options available, the burden of CVD morbidity continues to grow indicating the need for continued research to address this unmet need. In this respect, investigation of the mechanisms underlying the protection that premenopausal females enjoy from cardiovascular-related disease and mortality is of interest. In this review, we discuss the essential role that rodent animal models play in enabling this field of research. In particular, we focus our discussion on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
33
|
Lima R, Yanes LL, Davis DD, Reckelhoff JF. Roles played by 20-HETE, angiotensin II and endothelin in mediating the hypertension in aging female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2012; 304:R248-51. [PMID: 23220478 DOI: 10.1152/ajpregu.00380.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevalence of hypertension (HT) increases in women after menopause, and there is evidence that HT is not as well controlled in postmenopausal women as men. The reasons for this are not clear but may be related to the lack of adequate blockade of the systems contributing to HT in women. This study aimed to determine the roles of three of the systems known to contribute to HT in animal studies: angiotensin II (ANG II; enalapril inhibitor), eicosanoids [1-aminobenzotriazole (1-ABT) inhibitor], and endothelin (ET(A) receptor antagonist), on blood pressure (BP) in three groups of female spontaneously hypertensive rats (SHR), aged 18 mos (postmenopausal rat, PMR). After baseline telemetry BP, three drug periods were performed for 5 days each: single blockade (ABT or enalapril), double blockade (ABT+enalapril or enalapril+ABT), and triple blockade (all 3 drugs). Controls received no treatment until the third period when they received ET(A) receptor antagonist alone. Single drug blockade reduced BP in PMR to similar levels. Double blockade reduced mean arterial pressure more in ABT+enalapril rats than in the other group (enalapril+ABT). Triple drug blockade reduced BP to similar levels in both groups, but the BP remained ∼110 mmHg. The data suggest that these three systems, ANG II, eicosanoids, and endothelin, contribute together and independently to BP control in old female SHR. However, other systems also contribute to the HT since the BP was not normalized, supporting the notion that HT in postmenopausal women may require complex multidrug therapy to be better controlled and that may require the development of additional drugs.
Collapse
Affiliation(s)
- Roberta Lima
- Women's Health Research Center, Departments of Physiology, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | |
Collapse
|
34
|
Loria AS, Yamamoto T, Pollock DM, Pollock JS. Early life stress induces renal dysfunction in adult male rats but not female rats. Am J Physiol Regul Integr Comp Physiol 2012; 304:R121-9. [PMID: 23174859 DOI: 10.1152/ajpregu.00364.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal separation (MatSep) is a model of behavioral stress during early life. We reported that MatSep exacerbates ANG II-induced hypertension in adult male rats. The aims of this study were to determine whether exposure to MatSep in female rats sensitizes blood pressure to ANG II infusion similar to male MatSep rats and to elucidate renal mechanisms involved in the response in MatSep rats. Wistar Kyoto (WKY) pups were exposed to MatSep 3 h/day from days 2 to 14, while control rats remained with their mothers. ANG II-induced mean arterial pressure (MAP; telemetry) was enhanced in female MatSep rats compared with control female rats but delayed compared with male MatSep rats. Creatinine clearance (Ccr) was reduced in male MatSep rats compared with control rats at baseline and after ANG II infusion. ANG II infusion significantly increased T cells in the renal cortex and greater histological damage in the interstitial arteries of male MatSep rats compared with control male rats. Plasma testosterone was greater and estradiol was lower in male MatSep rats compared with control rats with ANG II infusion. ANG II infusion failed to increase blood pressure in orchidectomized male MatSep and control rats. Female MatSep and control rats had similar Ccr, histological renal analysis, and sex hormones at baseline and after ANG II infusion. These data indicate that during ANG II-induced hypertension, MatSep sensitizes the renal phenotype in male but not female rats.
Collapse
Affiliation(s)
- Analia S Loria
- Section of Experimental Medicine, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
35
|
Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. ACTA ACUST UNITED AC 2012; 9:207-18. [PMID: 22795463 DOI: 10.1016/j.genm.2012.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system contributes to hypertension by regulating sodium and water reabsorption throughout the nephron. Sex differences in the intrarenal components of the renin-angiotensin system have been involved in the greater incidence of high blood pressure and progression to kidney damage in males than females. OBJECTIVE This study investigated whether there is a sex difference in the intrarenal gene expression and urinary excretion of angiotensinogen (AGT) during angiotensin II (Ang II)-dependent hypertension and high-salt (HS) diet. METHODS Male and female Sprague-Dawley rats were divided into 5 groups for each sex: Normal-salt control, HS diet (8% NaCl), Ang II-infused (80 ng/min), Ang II-infused plus HS diet, and Ang II-infused plus HS diet and treatment with the Ang II receptor blocker, candesartan (25 mg/L in the drinking water). Rats were evaluated for systolic blood pressure (SBP), kidney AGT mRNA expression, urinary AGT excretion, and proteinuria at different time points during a 14-day protocol. RESULTS Both male and female rats exhibited similar increases in urinary AGT, with increases in SBP during chronic Ang II infusion. HS diet greatly exacerbated the urinary AGT excretion in Ang II-infused rats; males had a 9-fold increase over Ang II alone and females had a 2.5-fold increase. Male rats displayed salt-sensitive SBP increases during Ang II infusion and HS diet, and female rats did not. In the kidney cortex, males displayed greater AGT gene expression than females during all treatments. During Ang II infusion, both sexes exhibited increases in AGT gene message compared with same-sex controls. In addition, HS diet combined with Ang II infusion exacerbated the proteinuria in both sexes. Concomitant Ang II receptor blocker treatment during Ang II infusion and HS diet decreased SBP and urinary AGT similarly in both sexes; however, the decrease in proteinuria was greater in the females. CONCLUSION During Ang II-dependent hypertension and HS diet, higher intrarenal renin-angiotensin system activation in males, as reflected by higher AGT gene expression and urinary excretion, indicates a mechanism for greater progression of high blood pressure and might explain the sex disparity in development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Vicky F Rands
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
36
|
Reckelhoff JF. Response to Testosterone and Blood Pressure: Is the Decreased Sodium Excretion the Missing Link? Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.192427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jane F. Reckelhoff
- Department of Physiology and Biophysics
University of Mississippi Medical Center
Jackson, MS (Reckelhoff)
| |
Collapse
|
37
|
Gupte M, Thatcher SE, Boustany-Kari CM, Shoemaker R, Yiannikouris F, Zhang X, Karounos M, Cassis LA. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol 2012; 32:1392-9. [PMID: 22460555 DOI: 10.1161/atvbaha.112.248559] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Obesity promotes hypertension, but it is unclear if sex differences exist in obesity-related hypertension. Angiotensin converting enzyme 2 (ACE2) converts angiotensin II (AngII) to angiotensin-(1-7) (Ang-[1-7]), controlling peptide balance. We hypothesized that tissue-specific regulation of ACE2 by high-fat (HF) feeding and sex hormones contributes to sex differences in obesity-hypertension. METHODS AND RESULTS HF-fed females gained more body weight and fat mass than males. HF-fed males exhibiting reduced kidney ACE2 activity had increased plasma angiotensin II levels and decreased plasma Ang-(1-7) levels. In contrast, HF-fed females exhibiting elevated adipose ACE2 activity had increased plasma Ang-(1-7) levels. HF-fed males had elevated systolic and diastolic blood pressure that were abolished by losartan. In contrast, HF-fed females did not exhibit increased systolic blood pressure until females were administered the Ang-(1-7) receptor antagonist, D-Ala-Ang-(1-7). Deficiency of ACE2 increased systolic blood pressure in HF-fed males and females, which was abolished by losartan. Ovariectomy of HF-fed female mice reduced adipose ACE2 activity and plasma Ang-(1-7) levels, and promoted obesity-hypertension. Finally, estrogen, but not other sex hormones, increased adipocyte ACE2 mRNA abundance. CONCLUSIONS These results demonstrate that tissue-specific regulation of ACE2 by diet and sex hormones contributes to sex differences in obesity-hypertension.
Collapse
Affiliation(s)
- Manisha Gupte
- Graduate Center for Nutritional Sciences, University of Kentucky, Room 521b, Wethington Building, 900 S. Limestone, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yanes LL, Romero DG, Iliescu R, Reckelhoff JF. A single pill to treat postmenopausal hypertension? Not yet. Curr Top Med Chem 2011; 11:1736-41. [PMID: 21463249 DOI: 10.2174/156802611796117667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 08/14/2010] [Indexed: 11/22/2022]
Abstract
Postmenopausal women make up one of the fastest growing populations in the United States. Women typically have a higher incidence of cardiovascular disease following menopause. One of the major risk factors for cardiovascular disease is hypertension, and after menopause, blood pressure (BP) increases progressively in women. Also after menopause, the progression of renal disease increases in women compared with aged matched men. However, the mechanism(s) responsible for the post-menopausal increase in BP and renal injury are yet to be elucidated. Moreover the best therapeutic options to treat postmenopausal hypertension in women are not clear. Hypertension in postmenopausal women are usually associated with other cardiovascular risk factors, such as dyslipidemias, visceral obesity and endothelial dysfunction. Recently it became apparent that in a large number of hypertensive postmenopausal women, their BP is not well controlled with conventional antihypertensive medications. A clear understanding of the complex pathogenesis of postmenopausal hypertension is needed in order to offer the best therapeutic options for these women.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
39
|
Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 2011; 59:129-35. [PMID: 22124434 DOI: 10.1161/hypertensionaha.111.178715] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Awareness of sex differences in the pathology of cardiovascular disease is increasing. Previously, we have shown a role for the angiotensin type 2 receptor (AT(2)R) in the sex differences in the arterial pressure response to Ang II. Tubuloglomerular feedback (TGF) contributes in setting pressure-natriuresis properties, and its responsiveness is closely coupled to renal Ang II levels. We hypothesize that, in females, the attenuated pressor response to Ang II is mediated via an enhanced AT(2)R mechanism that, in part, offsets Ang II-induced sensitization of the TGF mechanism. Mean arterial pressure was measured via telemetry in male and female wild-type (WT) and AT(2)R knockout (AT(2)R-KO) mice receiving Ang II (600 ng/kg per minute SC). Basal 24-hour mean arterial pressure did not differ among the 4 groups. After 10 days of Ang II infusion, mean arterial pressure increased in the male WT (28±6 mm Hg), male AT(2)R-KO (26±2 mm Hg), and female AT(2)R-KO (26±4 mm Hg) mice, however, the response was attenuated in female WT mice (12±4 mm Hg; P between sex and genotype=0.016). TGF characteristics were determined before and during acute subpressor Ang II infusion (100 ng/kg per minute IV). Basal TGF responses did not differ between groups. The expected increase in maximal change in stop-flow pressure and enhancement of TGF sensitivity in response to Ang II was observed in the male WT, male AT(2)R-KO, and female AT(2)R-KO but not in the female WT mice (P between sex and genotype <0.05; both). In conclusion, these data indicate that an enhanced AT(2)R-mediated pathway counterbalances the hypertensive effects of Ang II and attenuates the Ang II-dependent resetting of TGF activity in females. Thus, the enhancement of the AT(2)R may, in part, underlie the protection that premenopausal women demonstrate against cardiovascular disease.
Collapse
Affiliation(s)
- Russell D Brown
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Yanes LL, Lima R, Moulana M, Romero DG, Yuan K, Ryan MJ, Baker R, Zhang H, Fan F, Davis DD, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of 20-HETE. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1543-8. [PMID: 21474427 DOI: 10.1152/ajpregu.00387.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood pressure (BP) increases after menopause. However, the mechanisms responsible have not been elucidated. In this study we tested the hypothesis that 20-hydroxyeicosatetraenoic acids (20-HETE), produced by cytochrome P-450 (CYP450) ω-hydroxylase, contributes to the hypertension in a model of postmenopausal hypertension, aged female spontaneously hypertensive rats (PMR). 1-Aminobenzotriazole, a nonselective inhibitor of arachidonic acid metabolism, for 7 days, reduced BP in PMR but had no effect in young females. Acute intravenous infusion of HET-0016, a specific inhibitor of 20-HETE, over 3 h, also reduced BP in PMR. CYP4A isoform mRNA expression showed no difference in renal CYP4A1 or CYP4A3 but increases in CYP4A2 and decreases in CYP4A8. CYP4A protein expression was decreased in kidney of PMR compared with young females. Endogenous 20-HETE was significantly higher in cerebral vessels of PMR than young females (YF) but was significantly lower in renal vessels of PMR. Omega-hydroxylase activity in cerebral vessels was also higher in PMR but was similar in kidney vessels in both groups. In renal microsomal preparations, endogenous 20-HETE was not different in PMR and young females, but ω-hydroxylase activity was significantly lower in PMR than YF. The data with blockers suggest that 20-HETE contributes to postmenopausal hypertension in SHR. The data also suggest that cerebral production of 20-HETE may be increased and renal tubular production may be decreased in PMR, thus both contributing to their elevated BP.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, 39216-4505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yanes LL, Romero DG, Moulana M, Lima R, Davis DD, Zhang H, Lockhart R, Racusen LC, Reckelhoff JF. Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome. GENDER MEDICINE 2011; 8:103-15. [PMID: 21536229 PMCID: PMC3093922 DOI: 10.1016/j.genm.2010.11.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/02/2010] [Accepted: 03/03/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common reproductive dysfunction in premenopausal women. PCOS is also associated with increased risk of cardiovascular disease when PCOS first occurs and later in life. Hypertension, a common finding in women with PCOS, is a leading risk factor for cardiovascular disease. The mechanisms responsible for hypertension in women with PCOS have not been elucidated. OBJECTIVE This study characterized the cardiovascular-renal consequences of hyperandrogenemia in a female rat model. METHODS Female Sprague-Dawley rats (aged 4-6 weeks) were implanted with dihydrotestosterone or placebo pellets lasting 90 days. After 10 to 12 weeks, blood pressure (by radiotelemetry), renal function (glomerular filtration rate, morphology, protein, and albumin excretion), metabolic parameters (plasma insulin, glucose, leptin, cholesterol, and oral glucose tolerance test), inflammation (plasma tumor necrosis factor-α), oxidative stress (mRNA expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, p22(phox), p47(phox), gp91(phox), and NOX4), nitrate/nitrite excretion and mRNA expression of components of the renin-angiotensin system (angiotensinogen, angiotensin-I-converting enzyme [ACE], and AT1 receptor) were determined. RESULTS Plasma dihydrotestosterone increased 3-fold in hyperandrogenemic female (HAF) rats, whereas plasma estradiol levels did not differ compared with control females. HAF rats exhibited estrus cycle dysfunction. They also had increased food intake and body weight, increased visceral fat, glomerular filtration rate, renal injury, insulin resistance and metabolic dysfunction, oxidative stress, and increased expression of angiotensinogen and ACE and reduced AT1 receptor expression. CONCLUSIONS The HAF rat is a unique model that exhibits many of the characteristics of PCOS in women and is a useful model to study the mechanisms responsible for PCOS-mediated hypertension.
Collapse
Affiliation(s)
- Licy L Yanes
- Women's Health Research Center, Center of Excellence in Cardiovascular-Renal Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yanes LL, Romero DG, Iliescu R, Zhang H, Davis D, Reckelhoff JF. Postmenopausal hypertension: role of the Renin-Angiotensin system. Hypertension 2010; 56:359-63. [PMID: 20679182 PMCID: PMC3001249 DOI: 10.1161/hypertensionaha.110.152975] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/12/2010] [Indexed: 12/14/2022]
Abstract
After menopause, blood pressure increases in women. However, the underlying mechanisms responsible for postmenopausal hypertension are not completely understood. This study was conducted to determine the role that the renin-angiotensin system (RAS) plays in post-menopausal hypertension. Post-estrous cycling (postmenopausal) spontaneously hypertensive rats or young female controls were treated with losartan, an angiotensin (Ang) II type 1 receptor blocker, for 25 days. Mean arterial pressure was recorded continuously by radiotelemetry. Losartan significantly decreased blood pressure in postmenopausal rats and young female controls but failed to normalize blood pressure in postmenopausal rats to levels found in young controls. Plasma renin activity and plasma angiotensinogen were significantly elevated, and intrarenal Ang II type 1 receptor and renin mRNA expression were significantly downregulated in postmenopausal rats. Therefore, RAS only partially contributes to hypertension in postcycling spontaneously hypertensive rats, whereas hypertension in young females is mediated mainly by the RAS. The data suggest that other mechanisms besides activation of the RAS are likely involved in postmenopausal hypertension.
Collapse
Affiliation(s)
- Licy L. Yanes
- Department of Physiology and Biophysics, Women Health Research Center, University of Mississippi Medical Center Jackson, MS 39216-4505
| | - Damian G. Romero
- Department of Biochemistry, University of Mississippi Medical Center Jackson, MS 39216-4505
| | - Radu Iliescu
- Department of Physiology and Biophysics, Women Health Research Center, University of Mississippi Medical Center Jackson, MS 39216-4505
| | - Huimin Zhang
- Department of Physiology and Biophysics, Women Health Research Center, University of Mississippi Medical Center Jackson, MS 39216-4505
| | - Deborah Davis
- Department of Physiology and Biophysics, Women Health Research Center, University of Mississippi Medical Center Jackson, MS 39216-4505
| | - Jane F. Reckelhoff
- Department of Physiology and Biophysics, Women Health Research Center, University of Mississippi Medical Center Jackson, MS 39216-4505
| |
Collapse
|
43
|
Yanes LL, Sartori-Valinotti JC, Iliescu R, Romero DG, Racusen LC, Zhang H, Reckelhoff JF. Testosterone-dependent hypertension and upregulation of intrarenal angiotensinogen in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2009; 296:F771-9. [PMID: 19211690 DOI: 10.1152/ajprenal.90389.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Blood pressure (BP) is more salt sensitive in men than in premenopausal women. In Dahl salt-sensitive rats (DS), high-salt (HS) diet increases BP more in males than females. In contrast to the systemic renin-angiotensin system, which is suppressed in response to HS in male DS, intrarenal angiotensinogen expression is increased, and intrarenal levels of ANG II are not suppressed. In this study, the hypothesis was tested that there is a sexual dimorphism in HS-induced upregulation of intrarenal angiotensinogen mediated by testosterone that also causes increases in BP and renal injury. On a low-salt (LS) diet, male DS had higher levels of intrarenal angiotensinogen mRNA than females. HS diet for 4 wk increased renal cortical angiotensinogen mRNA and protein only in male DS, which was prevented by castration. Ovariectomy of female DS had no effect on intrarenal angiotensinogen expression on either diet. Radiotelemetric BP was similar between males and castrated rats on LS diet. HS diet for 4 wk caused a progressive increase in BP, protein and albumin excretion, and glomerular sclerosis in male DS rats, which were attenuated by castration. Testosterone replacement in castrated DS rats increased BP, renal injury, and upregulation of renal angiotensinogen associated with HS diet. Testosterone contributes to the development of hypertension and renal injury in male DS rats on HS diet possibly through upregulation of the intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Licy L Yanes
- Univ. of Mississippi Medical Center, Dept. of Physiology and Biophysics, 2500 N. State St., Jackson, MS 39216-4505, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ebrahimian T, Sairam MR, Schiffrin EL, Touyz RM. Cardiac hypertrophy is associated with altered thioredoxin and ASK-1 signaling in a mouse model of menopause. Am J Physiol Heart Circ Physiol 2008; 295:H1481-8. [PMID: 18676690 DOI: 10.1152/ajpheart.00163.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is implicated in menopause-associated hypertension and cardiovascular disease. The role of antioxidants in this process is unclear. We questioned whether the downregulation of thioredoxin (TRX) is associated with oxidative stress and the development of hypertension and target-organ damage (cardiac hypertrophy) in a menopause model. TRX is an endogenous antioxidant that also interacts with signaling molecules, such as apoptosis signal-regulated kinase 1 (ASK-1), independently of its antioxidant function. Aged female wild-type (WT) and follitropin receptor knockout (FORKO) mice (20-24 wk), with hormonal imbalances, were studied. Mice were infused with ANG II (400 ng x kg(-1) x min(-1); 14 days). Systolic blood pressure was increased by ANG II in WT (166+/-8 vs. 121+/-5 mmHg) and FORKO (176+/-7 vs. 115+/-5 mmHg; P<0.0001; n=9/group) mice. In ANG II-infused FORKO mice, cardiac mass was increased by 42% (P<0.001). This was associated with increased collagen content and augmented ERK1/2 phosphorylation (2-fold). Cardiac TRX expression and activity were decreased by ANG II in FORKO but not in WT (P<0.01) mice. ASK-1 expression, cleaved caspase III content, and Bax/Bcl-2 content were increased in ANG II-infused FORKO (P<0.05). ANG II had no effect on cardiac NAD(P)H oxidase activity or on O(2)(*-) levels in WT or FORKO. Cardiac ANG II type 1 receptor expression was similar in FORKO and WT. These findings indicate that in female FORKO, ANG II-induced cardiac hypertrophy and fibrosis are associated with the TRX downregulation and upregulation of ASK-1/caspase signaling. Our data suggest that in a model of menopause, protective actions of TRX may be blunted, which could contribute to cardiac remodeling independently of oxidative stress and hypertension.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
45
|
Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1220-6. [PMID: 18287217 DOI: 10.1152/ajpregu.00864.2007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this review is to examine sex differences in response to stimulation and inhibition of the renin-angiotensin system (RAS). The RAS plays a prominent role in the development of chronic renal disease, and there are known sex differences not only in the expression level of components of the RAS but also in how males and females respond to perturbations of the RAS. In men, renal injury increases in parallel with increased activation of the RAS, while in women, increases in ANG II do not necessarily translate into increases in renal injury. Moreover, both epidemiological and experimental studies have noted sex differences in the therapeutic benefits following angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment. Despite these differences, RAS inhibitors are the most commonly prescribed drugs for the treatment of chronic renal disease, irrespective of sex. This review will examine how males and females respond to stimulation and inhibition of the RAS, with a focus on renal disease.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
46
|
Sartori-Valinotti JC, Iliescu R, Yanes LL, Dorsett-Martin W, Reckelhoff JF. Sex differences in the pressor response to angiotensin II when the endogenous renin-angiotensin system is blocked. Hypertension 2008; 51:1170-6. [PMID: 18259017 DOI: 10.1161/hypertensionaha.107.106922] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study determined whether there are sex differences in the pressor response to angiotensin II (Ang II) when the endogenous renin-angiotensin system (RAS) is blocked by enalapril (ACEI), and whether this pressor response is changed in the presence of high salt (HS). Telemetry BP was measured in rats treated with ACEI (250 mg/L drinking water) (n=6 to 7/grp), or with ACEI and Ang II (150 ng/kg/min, sc; n=5 to 6/grp), for 3 wk. For the last 2 wk of the study, rats received HS (4% NaCl). MAP was lower in females during baseline (100.8+/-1.1 versus 105.2+/-1.3; P<0.05), and with ACEI the last 3 days on normal salt diet (78.8+/-1.2 versus 88.5+/-0.9; P<0.05), but increased to higher levels than in males on day 6 of Ang II (129.0+/-2.2 versus 117.3+/-2.9; P<0.05). One week of Ang II increased albuminuria in males, but not females, and urinary 8-iso-PGF2alpha (F2-isoP) was not increased in either males or females. MAP was salt-sensitive in both sexes receiving ACEI, but was only salt-sensitive in males with Ang II (129.3+/-3.7 versus 145.1+/-5.7; P<0.05). Albuminuria continued to increase with HS and Ang II in males, but not in females. F2-isoP excretion increased with MAP during the last week of HS and Ang II in males but was independent of MAP in females. With ACEI, MAP in females on normal salt is more responsive to Ang II but is independent of oxidative stress or renal injury. MAP in males is salt-sensitive with Ang II, which may be mediated by oxidative stress and renal injury.
Collapse
Affiliation(s)
- Julio C Sartori-Valinotti
- Department of Physiology and Biophysics, The Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
47
|
Sullivan JC, Semprun-Prieto L, Boesen EI, Pollock DM, Pollock JS. Sex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1573-9. [PMID: 17699561 DOI: 10.1152/ajpregu.00429.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a sex difference in hypertensive renal injury, with men experiencing greater severity and a more rapid progression of renal disease than women; however, the molecular mechanisms protecting against renal injury in women are unknown. The goal of this study was to determine whether sex hormones modulate blood pressure and the progression of albuminuria during the developmental phase of hypertension in male and female spontaneously hypertensive rats (SHR). Studies were also performed to examine how sex and sex hormones influence two major risk factors for albuminuria, overactivation of the renin-angiotensin system and oxidative stress. Blood pressure was measured by telemetry in gonad-intact and gonadectomized male and female SHR. Microalbumin excretion, measured over time, and macrophage infiltration were used to assess renal health. Male SHR had significantly higher blood pressures than female SHR, and gonadectomy decreased blood pressures in males with no effect in females. Male SHR displayed a gonad-sensitive increase in albuminuria over time, and female SHR had a gonad-sensitive suppression in macrophage infiltration. Female SHR had greater plasma ANG II levels and similar levels of renal cortical ANG II vs. levels shown in males but less AT(1)-receptor protein expression in the renal cortex. Female SHR also had a gonad-sensitive decrease in renal oxidative stress. Therefore, the renal protection afforded to female SHR is associated with lower blood pressure, decreased macrophage infiltration, and decreased levels of oxidative stress.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss the impact of male and female sex hormones on renal function and to develop the concept that salt-sensitivity of renal function behaves independently of the systemic blood pressure response to salt and may contribute to renal sex-specific differences. RECENT FINDINGS Men exhibit a more rapid age-related decline in renal function than women and some renal diseases are clearly sex dependent. Recent studies have shown that gonadal steroids have an important influence on sodium handling and renal hemodynamics that may offer a key for understanding the sexual dimorphism of the renal function. It has been found that androgens increase proximal sodium reabsorption and intraglomerular pressure by modulating afferent and efferent arteriolar tonus via angiotensin II, endothelin and oxidative stress. In contrast, female sex hormones lead to a renal vasodilation and decrease filtration fraction. SUMMARY Some newly discovered mechanisms triggering the salt-sensitivity of the renal function and the interaction between gonadal steroids and components of the renin cascade may play an important role in the dimorphism of renal response to salt.
Collapse
Affiliation(s)
- Antoinette Pechere-Bertschi
- Medical Policlinic and Service of Endocrinology, Diabetology and Nutrition, University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
49
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:52-7. [PMID: 17143072 DOI: 10.1097/mnh.0b013e32801271d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|