1
|
Oura M, Son BK, Song Z, Toyoshima K, Nanao-Hamai M, Ogawa S, Akishita M. Testosterone/androgen receptor antagonizes immobility-induced muscle atrophy through Inhibition of myostatin transcription and inflammation in mice. Sci Rep 2025; 15:10568. [PMID: 40148525 PMCID: PMC11950163 DOI: 10.1038/s41598-025-95115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Sarcopenia is caused by excessive muscle protein degradation owing to various factors, including disuse. Although testosterone supplementation is an effective treatment, the underlying molecular mechanisms, particularly the role of the androgen receptor (AR), remain unclear. In this study, we examined the preventive actions of testosterone/AR against muscle atrophy in a murine model of immobilization-induced muscle atrophy. The bilateral hindlimbs of 8-week-old male C57BL/6J mice were immobilized using a wire. Testosterone deficiency and supplementation (50 µg/mL) were conducted by castration and intraperitoneal injection (twice a week for a month), respectively. The results showed a remarkable decline in muscle mass and strength after wire-induced immobilization for 14 days. The expression of muscle atrophic factors (Atrogin1 and MuRF1) and inflammatory factors (F4/80 and interleukin-6 (IL-6)) significantly increased (p < 0.001). Notably, muscular AR expression significantly decreased, whereas myostatin and CCAAT/enhancer-binding protein delta (C/EBPδ), a transcriptional activator of myostatin, were significantly elevated (p < 0.05). After castration, AR expression further decreased, and muscular changes with wire-induced immobilization deteriorated. These exacerbations were completely ameliorated by testosterone supplementation and AR upregulation. Our study provides important therapeutic insights into testosterone/AR in muscular atrophy caused by immobilization and shows that muscular AR in a testosterone-dependent manner regulates C/EBPδ/myostatin and inflammation.
Collapse
Affiliation(s)
- Miya Oura
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Bo-Kyung Son
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute for Future Initiatives, Institute of Gerontology, The University of Tokyo, Engineering 8th Building 709, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Zehan Song
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichi Toyoshima
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Michiko Nanao-Hamai
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Global Deletion of 11β-HSD1 Prevents Muscle Wasting Associated with Glucocorticoid Therapy in Polyarthritis. Int J Mol Sci 2021; 22:ijms22157828. [PMID: 34360594 PMCID: PMC8346140 DOI: 10.3390/ijms22157828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11β-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11β-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11β-HSD1 global knock-out (11βKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11β-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11βKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11βKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11βKO compared to TNF-tg mice. In summary, 11β-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11β-HSD1 may offer a strategy to refine the safety of glucocorticoids.
Collapse
|
3
|
Matsukawa S, Kai S, Seo H, Suzuki K, Fukuda K. Activation of the β-adrenergic receptor exacerbates lipopolysaccharide-induced wasting of skeletal muscle cells by increasing interleukin-6 production. PLoS One 2021; 16:e0251921. [PMID: 34003837 PMCID: PMC8130926 DOI: 10.1371/journal.pone.0251921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscle mass has been shown to be affected by catecholamines, such as epinephrine (Epi), norepinephrine (NE), and isoproterenol (ISO). On the other hand, lipopolysaccharide (LPS), one of the causative substances of sepsis, induces muscle wasting via toll-like receptors expressed in skeletal muscle. Although catecholamines are frequently administered to critically ill patients, it is still incompletely understood how these drugs affect skeletal muscle during critical illness, including sepsis. Herein, we examined the direct effects of catecholamines on LPS-induced skeletal muscle wasting using the C2C12 myoblast cell line. Muscle wasting induced by catecholamines and/or LPS was analyzed by the use of the differentiated C2C12 myotubes, and its underlying mechanism was explored by immunoblotting analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and the TransAM kit for p-65 NF-κB. Epi augmented myosin heavy chain (MHC) protein loss and reduction of the myotube diameter induced by LPS. LPS induced C/EBPδ protein, Atrogin-1 and inteleukin-6 (IL-6), and these responses were potentiated by Epi. An IL-6 inhibitor, LMT28, suppressed the potentiating effect of Epi on the LPS-induced responses. NF-κB activity was induced by LPS, but was not affected by Epi and recombinant IL-6, and the NF-κB inhibitor, Bay 11–7082, abolished Atrogin-1 mRNA expression induced by LPS with or without Epi. NE and ISO also potentiated LPS-induced IL-6 and Atroign-1 mRNA expression. Carvedilol, a nonselective β-adrenergic receptor antagonist, suppressed the facilitating effects of Epi on the Atrogin-1 mRNA induction by LPS, and abolished the effects of Epi on the MHC protein loss in the presence of LPS. It was concluded that Epi activates the β-adrenergic receptors in C2C12 myotubes and the IL-6-STAT3 pathway, leading to the augmentation of LPS-induced activation of the NF-κB- C/EBPδ-Atrogin-1 pathway and to the exacerbation of myotube wasting.
Collapse
Affiliation(s)
- Shino Matsukawa
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
- * E-mail:
| | - Hideya Seo
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Kengo Suzuki
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
5
|
Skibsted S, Bhasin MK, Henning DJ, Jaminet SC, Lewandowski J, Kirkegaard H, Aird WC, Shapiro NI. Leukocyte Transcriptional Response in Sepsis. Shock 2019; 52:166-173. [PMID: 30211758 PMCID: PMC10608800 DOI: 10.1097/shk.0000000000001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The complex host response to sepsis is incompletely understood. The aim of this investigation is to use leukocyte RNA sequencing to characterize biological functions, cellular pathways, and key regulatory molecules driving sepsis pathophysiology. METHODS This was a prospective, observational study of emergency department patients with sepsis, at an urban, academic, tertiary care center. In the derivation cohort, we collected blood at enrollment and 90 days after hospital discharge allowing each patient to serve as an internal control. We performed RNA sequencing to quantify transcriptional expression changes during sepsis and non-sepsis states. We then performed unsupervised and supervised analyses, as well as functional and pathway analyses. We selected the top down and upregulated genes and key regulatory molecules for validation. Validation occurred in a cohort of septic and non-septic using real-time PCR. RESULTS The derivation cohort included 5 patients, and RNA sequencing revealed 916 unique mRNA transcripts differentially expressed during sepsis. Among these, 673 (73%) genes were upregulated, and 243 (27%) were downregulated. Functional enrichment analysis revealed a highly dynamic downstream effect of the transcriptional activity during sepsis. Of the 43 functional cellular pathways activated during sepsis, the top pathways were closely associated with inflammation and response to infection. Validation occurred in 18 septic and 25 non-septic control patients, with 34/45 (76%) of identified genes validated. The regulatory analysis identified several key regulators of sepsis. CONCLUSIONS Highly dynamic transcriptional activity occurs in leukocytes during sepsis, activating key cellular pathways and master regulatory molecules that drive the sepsis process.
Collapse
Affiliation(s)
- Simon Skibsted
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Center for Emergency Medicine Research, Aarhus University Hospital & Aarhus University, Aarhus, Denmark
| | - Manoj K. Bhasin
- Center for Genomics, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Daniel J. Henning
- Division of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Shou Ching Jaminet
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Jeffrey Lewandowski
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Hans Kirkegaard
- Center for Emergency Medicine Research, Aarhus University Hospital & Aarhus University, Aarhus, Denmark
| | - William C. Aird
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Samant SA, Pillai VB, Gupta MP. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol 2019; 97:235-245. [PMID: 30407871 DOI: 10.1139/cjpp-2018-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many chronic diseases are associated with unintentional loss of body weight, which is termed "cachexia". Cachexia is a complex multifactorial syndrome associated with the underlying primary disease, and characterized by loss of skeletal muscle with or without loss of fat tissue. Patients with cachexia face dire symptoms like dyspnea, fatigue, edema, exercise intolerance, and low responsiveness to medical therapy, which worsen quality of life. Because cachexia is not a stand-alone disorder, treating primary disease - such as cancer - takes precedence for the physician, and it remains mostly a neglected illness. Existing clinical trials have demonstrated limited success mostly because of their monotherapeutic approach and late detection of the syndrome. To conquer cachexia, it is essential to identify as many molecular targets as possible using the latest technologies we have at our disposal. In this review, we have discussed different aspects of cachexia, which include various disease settings, active molecular pathways, and recent novel advances made in this field to understand consequences of this illness. We also discuss roles of the sirtuins, the NAD+-dependent lysine deacetylases, microRNAs, certain dietary options, and epigenetic drugs as potential approaches, which can be used to tackle cachexia as early as possible in its course.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Kuenzler MB, Nuss K, Karol A, Schär MO, Hottiger M, Raniga S, Kenkel D, von Rechenberg B, Zumstein MA. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model. J Shoulder Elbow Surg 2017; 26:733-744. [PMID: 28131694 DOI: 10.1016/j.jse.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. METHODS PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. RESULTS The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. DISCUSSION Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks.
Collapse
Affiliation(s)
- Michael B Kuenzler
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Agnieszka Karol
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Michael O Schär
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sumit Raniga
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Kenkel
- Department of Diagnostic and Interventional Radiology, University Hospital of Zürich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Matthias A Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Shoulder & Elbow Unit, SportsClinic #1 AG, Bern, Switzerland.
| |
Collapse
|
8
|
Sun R, Zhang S, Lu X, Hu W, Lou N, Zhao Y, Zhou J, Zhang X, Yang H. Comparative molecular analysis of early and late cancer cachexia-induced muscle wasting in mouse models. Oncol Rep 2016; 36:3291-3302. [PMID: 27748895 DOI: 10.3892/or.2016.5165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/14/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer-induced muscle wasting, which commonly occurs in cancer cachexia, is characterized by impaired quality of life and poor patient survival. To identify an appropriate treatment, research on the mechanism underlying muscle wasting is essential. Thus far, studies on muscle wasting using cancer cachectic models have generally focused on early cancer cachexia (ECC), before severe body weight loss occurs. In the present study, we established models of ECC and late cancer cachexia (LCC) and compared different stages of cancer cachexia using two cancer cachectic mouse models induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC). In each model, tumor-bearing (TB) and control (CN) mice were injected with cancer cells and PBS, respectively. The TB and CN mice, which were euthanized on the 24th day or the 36th day after injection, were defined as the ECC and ECC-CN mice or the LCC and LCC-CN mice. In addition, the tissues were harvested and analyzed. We found that both the ECC and LCC mice developed cancer cachexia. The amounts of muscle loss differed between the ECC and LCC mice. Moreover, the expression of some molecules was altered in the muscles from the LCC mice but not in those from the ECC mice compared with their CN mice. In conclusion, the molecules with altered expression in the muscles from the ECC and LCC mice were not exactly the same. These findings may provide some clues for therapy which could prevent the muscle wasting in cancer cachexia from progression to the late stage.
Collapse
Affiliation(s)
- Rulin Sun
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Santao Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing Lu
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Trukhachev V, Skripkin V, Kvochko A, Kulichenko A, Kovalev D, Pisarenko S, Volynkina A, Selionova M, Aybazov M, Golovanova N, Yatsyk O, Krivoruchko A. Associations Between Newly Discovered Polymorphisms of the CEBPD GENE LOCUS and Body Parameters in Sheep. Anim Biotechnol 2016; 27:217-22. [PMID: 27565864 DOI: 10.1080/10495398.2016.1168304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An understanding of what effects particular genes can have on body parameters in productive animals is particularly significant for the process of marker-assisted selection. The gene of transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD gene) is involved in the process of growth in animals and is known to be a promising candidate for use as a genomic marker. The structure of the CEBPD gene locus was determined using NimbleGen sequencing technology (Roche, USA). The effect of polymorphisms, which were identified using the aforementioned technology, was investigated in 30 rams of the Manych Merino sheep breed. Twenty-two single nucleotide polymorphisms (SNP) were detected in the CEBPD gene locus. Significantly, two SNPs, namely, g.315T>G and g.327C>T, have been identified for the first time. It was demonstrated that the complex of linked SNPs, consisting of g.301A>T, g.426T>C, and g.1226T>C, had a negligible effect on body parameters in Manych Merino sheep. Animals with the heterozygous type of SNP g.1142C>T exhibited changes solely in the chest and croup width. The newly discovered SNP g.327C>T was proven to have a negative effect on live weight and body size (p < 0.05) in Manych Merino sheep. Sheep with the heterozygous type of g.562G>A and g.3112C>G SNP complex showed an increase in live weight and dimensions (p < 0.05) compared with those of wild homozygous type. Consequently, SNPs g.327C>T, g.562G>A, and g.3112C>G in the CEBPD gene locus can be successfully used as markers in sheep breeding. Future research will evaluate the influence of the aforementioned SNPs on slaughter indicators for sheep meat production.
Collapse
Affiliation(s)
- Vladimir Trukhachev
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| | - Valentin Skripkin
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| | - Andrey Kvochko
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| | | | - Dmitry Kovalev
- b Stavropol Research Anti-plague Institute , Stavropol , Russian Federation
| | - Sergey Pisarenko
- b Stavropol Research Anti-plague Institute , Stavropol , Russian Federation
| | - Anna Volynkina
- b Stavropol Research Anti-plague Institute , Stavropol , Russian Federation
| | - Marina Selionova
- c All-Russian Research Institute Of Sheep and Goat Breeding , Stavropol , Russian Federation
| | - Magomet Aybazov
- c All-Russian Research Institute Of Sheep and Goat Breeding , Stavropol , Russian Federation
| | - Natalia Golovanova
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| | - Olesya Yatsyk
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| | - Alexander Krivoruchko
- a Faculty of Veterinary Medicine , Stavropol State Agrarian University , Stavropol , Russian Federation
| |
Collapse
|
10
|
Characterization of miR-206 Promoter and Its Association with Birthweight in Chicken. Int J Mol Sci 2016; 17:559. [PMID: 27089330 PMCID: PMC4849015 DOI: 10.3390/ijms17040559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
miRNAs have been widely investigated in terms of cell proliferation and differentiation. However, little is known about their effects on bird growth. Here we characterized the promoter of miR-206 in chicken and found that the preferable promoter was located in 1200 bp upstream of pri-miR-206. In this region, many key transcription factors, including MyoD, c-Myb, CEBPα/β, AP-4, RAP1, Brn2, GATA-1/2/3, E47, Sn, upstream stimulatory factor (USF) and CdxA, were predicted to bind and interact with miR-206 promoter. Overexpression of MyoD sharply increased miR-206 expression in both fibroblast and myoblast cells, and also the regulation in the myoblast cells was much stronger, indicating that miR-206 was regulated by MyoD combined with other muscle specific transcriptional factors. Aiming to further investigate the relationship between miR-206 mutation and transcriptional expression, total of 23 SNPs were identified in the two distinct bird lines by sequencing. Interestingly, the motif bound by MyoD was individually destroyed by G-to-C mutation located at 419 bp upstream of miR-206 precursor. Co-transfecting MyoD and miR-206 promoter in DF-1 cells, the luciferase activity of promoter containing homozygous GG types was significantly higher than CC ones (p < 0.05). Thus, this mutation caused low expression of miR-206. Consistently, eight variants including G-419C mutation exhibited a great effect on birthweight through maker-trait association analysis in F2 population (p < 0.05). Additionally, the regulation of miR-206 on embryo muscle mass mainly by increasing MyoG and muscle creatine kinase (MCK) expression (p < 0.05) with little change in MyoD, TMEM8C and myosin heavy chain (MHC). In conclusion, our findings provide a novel mutation destroying the promoter activity of miR-206 in birds and shed new light to understand the regulation mechanism of miR-206 on the embryonic muscle growth.
Collapse
|
11
|
Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol 2016; 36:95-104. [PMID: 26804424 PMCID: PMC4761518 DOI: 10.1016/j.semcancer.2016.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA; iTRI Hamad Medical Corporation, Doha, Qatar
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
13
|
Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab 2013; 18:368-79. [PMID: 24011072 PMCID: PMC3794464 DOI: 10.1016/j.cmet.2013.07.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Abstract
Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models with CKD or acute diabetes. A small-molecule that inhibits Stat3 activation produced similar responses, suggesting a potential for translation strategies. Using CCAAT/enhancer-binding protein δ (C/EBPδ) KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ, and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting.
Collapse
Affiliation(s)
- Liping Zhang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Horai N, Nagaoka T, Higuchi I, Kasai H, Yoshioka T, Umekita Y, Fukuzaki K, Nagata R, Miyata A, Abeyama K. Muscle wasting associated with pathologic change is a risk factor for the exacerbation of joint swelling in collagen-induced arthritis in cynomolgus monkeys. BMC Musculoskelet Disord 2013; 14:205. [PMID: 23834772 PMCID: PMC3710207 DOI: 10.1186/1471-2474-14-205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/05/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Not only joint destruction but also muscle wasting due to rheumatoid cachexia has been problem in terms of quality of life of patients with rheumatoid arthritis (RA). In the present study, we performed histopathological examination and assessed relationships between characteristic parameters relating to muscle and joint swelling in a collagen-induced arthritis (CIA) model using cynomolgus monkeys (CMs). METHODS Female CMs were used and CIA was induced by twice immunizations using bovine type II collagen with Freund's complete adjuvant. Arthritis level was evaluated from the degree of swelling at the peripheral joints of the fore and hind limbs. Food consumption, body weight, and serum biochemical parameters were measured sequentially. Five or 6 animals per time point were sacrificed at 2, 3, 5 and 9 weeks after the first immunization to obtain quadriceps femoris specimens for histopathology. Pimonidazole hydrochloride was intravenously administered to determine tissue hypoxia in skeletal muscle. RESULTS Gradual joint swelling was observed and the maximum arthritis score was noted at Week 5. In histopathology, necrosis of muscle fiber in the quadriceps femoris was observed only at Week 2 and the most significant findings such as degeneration, atrophy, and regeneration of muscle fiber were mainly observed at Week 5. Food consumption was decreased up to Week 4 but recovered thereafter. Body weight decreased up to Week 5 and did not completely recover thereafter. A biphasic increase in serum cortisol was also observed at Weeks 2 and 5. Histopathology showed that muscle lesions were mainly composed of degeneration and atrophy of the muscle fibers, and ATPase staining revealed that the changes were more pronounced in type II muscle fiber than type I muscle fiber. In the pimonidazole experiment, mosaic pattern in skeletal muscle was demonstrated in the intact animal, but not the CIA animal. Increased arthritis score was accompanied by a decrease in serum creatinine, a marker that reflects muscle mass. CONCLUSIONS Muscle wasting might exacerbate joint swelling in a collagen-induced arthritis model of cynomolgus monkeys.
Collapse
|
15
|
Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45:2163-72. [PMID: 23806868 DOI: 10.1016/j.biocel.2013.05.036] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 12/11/2022]
Abstract
Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoids (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy is characterized by fast-twitch, glycolytic muscles atrophy illustrated by decreased fiber cross-sectional area and reduced myofibrillar protein content. GC-induced muscle atrophy results from increased protein breakdown and decreased protein synthesis. Increased muscle proteolysis, in particular through the activation of the ubiquitin proteasome and the lysosomal systems, is considered to play a major role in the catabolic action of GC. The stimulation by GC of these two proteolytic systems is mediated through the increased expression of several Atrogenes ("genes involved in atrophy"), such as FOXO, Atrogin-1, and MuRF-1. The inhibitory effect of GC on muscle protein synthesis is thought to result mainly from the inhibition of the mTOR/S6 kinase 1 pathway. These changes in muscle protein turnover could be explained by changes in the muscle production of two growth factors, namely Insulin-like Growth Factor (IGF)-I, a muscle anabolic growth factor and Myostatin, a muscle catabolic growth factor. This review will discuss the recent progress made in the understanding of the mechanisms involved in GC-induced muscle atrophy and consider the implications of these advancements in the development of new therapeutic approaches for treating GC-induced myopathy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
|
16
|
Alamdari N, Aversa Z, Castillero E, Hasselgren PO. Acetylation and deacetylation--novel factors in muscle wasting. Metabolism 2013; 62:1-11. [PMID: 22626763 PMCID: PMC3430797 DOI: 10.1016/j.metabol.2012.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
Abstract
We review recent evidence that acetylation and deacetylation of cellular proteins, including transcription factors and nuclear cofactors, may be involved in the regulation of muscle mass. The level of protein acetylation is balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) and studies suggest that this balance is perturbed in muscle wasting. Hyperacetylation of transcription factors and nuclear cofactors regulating gene transcription in muscle wasting may influence muscle mass. In addition, hyperacetylation may render proteins susceptible to degradation by different mechanisms, including intrinsic ubiquitin ligase activity exerted by HATs and by dissociation of proteins from cellular chaperones. In recent studies, inhibition of p300/HAT expression and activity and stimulation of SIRT1-dependent HDAC activity reduced glucocorticoid-induced catabolic response in skeletal muscle, providing further evidence that hyperacetylation plays a role in muscle wasting. It should be noted, however, that although several studies advocate a role of hyperacetylation in muscle wasting, apparently contradictory results have also been reported. For example, muscle atrophy caused by denervation or immobilization may be associated with reduced, rather than increased, protein acetylation. In addition, whereas hyperacetylation results in increased degradation of certain proteins, other proteins may be stabilized by increased acetylation. Thus, the role of acetylation and deacetylation in the regulation of muscle mass may be both condition- and protein-specific. The influence of HATs and HDACs on the regulation of muscle mass, as well as methods to modulate protein acetylation, is an important area for continued research aimed at preventing and treating muscle wasting.
Collapse
Affiliation(s)
- Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
17
|
Marchildon F, Lala N, Li G, St-Louis C, Lamothe D, Keller C, Wiper-Bergeron N. CCAAT/Enhancer Binding Protein Beta is Expressed in Satellite Cells and Controls Myogenesis. Stem Cells 2012; 30:2619-30. [DOI: 10.1002/stem.1248] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
|
18
|
Alamdari N, Toraldo G, Aversa Z, Smith I, Castillero E, Renaud G, Qaisar R, Larsson L, Jasuja R, Hasselgren PO. Loss of muscle strength during sepsis is in part regulated by glucocorticoids and is associated with reduced muscle fiber stiffness. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1090-9. [PMID: 23019215 DOI: 10.1152/ajpregu.00636.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sepsis is associated with impaired muscle function but the role of glucocorticoids in sepsis-induced muscle weakness is not known. We tested the role of glucocorticoids in sepsis-induced muscle weakness by treating septic rats with the glucocorticoid receptor antagonist RU38486. In addition, normal rats were treated with dexamethasone to further examine the role of glucocorticoids in the regulation of muscle strength. Sepsis was induced in rats by cecal ligation and puncture, and muscle force generation (peak twitch and tetanic tension) was determined in lower extremity muscles. In other experiments, absolute and specific force as well as stiffness (reflecting the function of actomyosin cross bridges) were determined in isolated skinned muscle fibers from control and septic rats. Sepsis and treatment with dexamethasone resulted in reduced maximal twitch and tetanic force in intact isolated extensor digitorum longus muscles. The absolute and specific maximal force in isolated muscle fibers was reduced during sepsis together with decreased fiber stiffness. These effects of sepsis were blunted (but not abolished) by RU38486. The results suggest that muscle weakness during sepsis is at least in part regulated by glucocorticoids and reflects loss of contractility at the cellular (individual muscle fiber) level. In addition, the results suggest that reduced function of the cross bridges between actin and myosin (documented as reduced muscle fiber stiffness) may be involved in sepsis-induced muscle weakness. An increased understanding of mechanisms involved in loss of muscle strength will be important for the development of new treatment strategies in patients with this debilitating consequence of sepsis.
Collapse
Affiliation(s)
- Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Effect of insulin on dexamethasone-induced ultrastructural changes in skeletal and cardiac muscle. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0031-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Chamberlain W, Gonnella P, Alamdari N, Aversa Z, Hasselgren PO. Multiple muscle wasting-related transcription factors are acetylated in dexamethasone-treated muscle cells. Biochem Cell Biol 2012; 90:200-8. [DOI: 10.1139/o11-082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that the expression and activity of the histone acetyltransferase p300 are upregulated in catabolic muscle allowing for acetylation of cellular proteins. The function of transcription factors is influenced by posttranslational modifications, including acetylation. It is not known if transcription factors involved in the regulation of muscle mass are acetylated in atrophying muscle. We determined cellular levels of acetylated C/EBPβ, C/EBPδ, FOXO1, FOXO3a, and NF-kB/p65 in dexamethasone-treated L6 muscle cells, a commonly used in vitro model of muscle wasting. The role of p300 in dexamethasone-induced transcription factor acetylation and myotube atrophy was examined by transfecting muscle cells with p300 siRNA. Treatment of L6 myotubes with dexamethasone resulted in increased cellular levels of acetylated C/EBPβ and δ, FOXO1 and 3a, and p65. Downregulation of p300 with p300 siRNA reduced acetylation of transcription factors and decreased dexamethasone-induced myotube atrophy and expression of the ubiquitin ligase MuRF1. The results suggest that several muscle wasting-related transcription factors are acetylated supporting the concept that posttranslational modifications of proteins regulating gene transcription may be involved in the loss of muscle mass. The results also suggest that acetylation of the transcription factors is at least in part regulated by p300 and plays a role in glucocorticoid-induced muscle atrophy. Targeting molecules that regulate acetylation of transcription factors may help reduce the impact of muscle wasting.
Collapse
Affiliation(s)
- Wei Chamberlain
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Gonnella
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- 330 Brookline Avenue, ST 919, Boston, MA 02215, USA
| |
Collapse
|
21
|
Viguerie N, Picard F, Hul G, Roussel B, Barbe P, Iacovoni JS, Valle C, Langin D, Saris WHM. Multiple effects of a short-term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiol Genomics 2011; 44:141-51. [PMID: 22108209 DOI: 10.1152/physiolgenomics.00032.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids are frequently prescribed drugs with important side-effects such as glucose intolerance and tissue remodeling. The goal was to explore the molecular basis of the response of skeletal muscle and adipose tissue during a short-term dexamethasone treatment to better understand the induction of side-effects of glucocorticoids on these metabolic tissues. Fifteen healthy male subjects were assigned to a 4-day treatment with dexamethasone at 4 mg/day. The primary outcome measures were changes in gene expression profiling of subcutaneous skeletal muscle and adipose tissue. Urinary cortisol, plasma, and metabolic biochemistry were also assessed. In both tissues the prominent observation was a response to stress and increased inflammatory responses. An upregulation of the serum amyloid A was detected in skeletal muscle, adipose tissue, and plasma, whereas circulating levels of C reactive protein, another acute phase protein, decreased along with a worsened insulin sensitivity index. As tissue-specific features, tissue remodeling was shown in skeletal muscle while the adipose tissue exhibited a decreased energy metabolism. Several limitations might be raised due to the small number of subjects investigated: a possible cross talk with the mineralocorticoid receptor, and a single time point may not identify regulations occurring during longitudinal treatment. In line with the known physiological effect of glucocorticoids the early modulation of stress response genes was observed. An unexpected feature was the upregulation of the inflammatory and immune pathways. The identification of novel impact on two glucocorticoid target tissues provides a molecular basis for the design of more specific glucocorticoids devoid of adverse effects.
Collapse
Affiliation(s)
- Nathalie Viguerie
- Inserm, UMR1048, Obesity Research Laboratory, Institut des Maladies Métaboliques et Cardiovasculaires, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 2011; 26:987-1000. [PMID: 22102632 DOI: 10.1096/fj.11-189977] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Physical Therapy, 101 S. Newell Dr., University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
23
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
C/EBPβ mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J 2011; 30:4323-35. [PMID: 21847090 DOI: 10.1038/emboj.2011.292] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/22/2011] [Indexed: 11/09/2022] Open
Abstract
Upregulation of ubiquitin ligase atrogin1/MAFbx and muscle wasting are hallmarks of cancer cachexia; however, the underlying mechanism is undefined. Here, we describe a novel signalling pathway through which Lewis lung carcinoma (LLC) induces atrogin1/MAFbx upregulation and muscle wasting. C2C12 myotubes treated with LLC-conditioned medium (LCM) rapidly activates p38 MAPK and AKT while inactivating FoxO1/3, resulting in atrogin1/MAFbx upregulation, myosin heavy chain loss, and myotube atrophy. The p38α/β MAPK inhibitor SB202190 blocks the catabolic effects. Upon activation, p38 associates with C/EBPβ resulting in its phosphorylation and binding to a C/EBPβ-responsive cis-element in the atrogin1/MAFbx gene promoter. The promoter activity is stimulated by LCM via p38β-mediated activation of the C/EBPβ-responsive cis-element, independent of the adjacent FoxO1/3-responsive cis-elements in the promoter. In addition, p38 activation is observed in the muscle of LLC tumour-bearing mice, and SB202190 administration blocks atrogin1/MAFbx upregulation and muscle protein loss. Furthermore, C/EBPβ(-/-) mice are resistant to LLC tumour-induced atrogin1/MAFbx upregulation and muscle wasting. Therefore, activation of the p38β MAPK-C/EBPβ signalling pathway appears a key component of the pathogenesis of LLC tumour-induced cachexia.
Collapse
|
25
|
Gonnella P, Alamdari N, Tizio S, Aversa Z, Petkova V, Hasselgren PO. C/EBPβ regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1. J Cell Biochem 2011; 112:1737-48. [PMID: 21381078 PMCID: PMC3111873 DOI: 10.1002/jcb.23093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Muscle wasting in catabolic patients is in part mediated by glucocorticoids and is associated with increased expression and activity of the transcription factor C/EBPβ. It is not known, however, if C/EBPβ is causally linked to glucocorticoid-induced muscle atrophy. We used dexamethasone-treated L6 myoblasts and myotubes to test the role of C/EBPβ in glucocorticoid-induced expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1, protein degradation, and muscle atrophy by transfecting cells with C/EBPβ siRNA. In myoblasts, silencing C/EBPβ expression with siRNA inhibited dexamethasone-induced increase in protein degradation, atrogin-1 and MuRF1 expression, and muscle cell atrophy. Similar effects of C/EBPβ siRNA were seen in myotubes except that the dexamethasone-induced increase in MuRF1 expression was not affected by C/EBPβ siRNA in myotubes. In additional experiments, overexpressing C/EBPβ did not influence atrogin-1 or MuRF1 expression in myoblasts or myotubes. Taken together, our observations suggest that glucocorticoid-induced muscle wasting is at least in part regulated by C/EBPβ. Increased C/EBPβ expression alone, however, is not sufficient to upregulate atrogin-1 and MuRF1 expression.
Collapse
Affiliation(s)
- Patricia Gonnella
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Steven Tizio
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Victoria Petkova
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1194] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Endocrinology Unit, Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
27
|
Menconi MJ, Arany ZP, Alamdari N, Aversa Z, Gonnella P, O'Neal P, Smith IJ, Tizio S, Hasselgren PO. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1beta in skeletal muscle. Am J Physiol Endocrinol Metab 2010; 299:E533-43. [PMID: 20647557 PMCID: PMC2957862 DOI: 10.1152/ajpendo.00596.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscle wasting during sepsis is at least in part regulated by glucocorticoids and is associated with increased transcription of genes encoding the ubiquitin ligases atrogin-1 and muscle-specific RING-finger protein-1 (MuRF1). Recent studies suggest that muscle atrophy caused by denervation is associated with reduced expression of the nuclear cofactor peroxisome proliferator-activated receptor-γ coactivator (PGC)-1β and that PGC-1β may be a repressor of the atrogin-1 and MuRF1 genes. The influence of other muscle-wasting conditions on the expression of PGC-1β is not known. We tested the influence of sepsis and glucocorticoids on PGC-1β and examined the potential link between downregulated PGC-1β expression and upregulated atrogin-1 and MuRF1 expression in skeletal muscle. Sepsis in rats and mice and treatment with dexamethasone resulted in downregulated expression of PGC-1β and increased expression of atrogin-1 and MuRF1 in the fast-twitch extensor digitorum longus muscle, with less pronounced changes in the slow-twitch soleus muscle. In additional experiments, adenoviral gene transfer of PGC-1β into cultured C2C12 myotubes resulted in a dose-dependent decrease in atrogin-1 and MuRF1 mRNA levels. Treatment of cultured C2C12 myotubes with dexamethasone or PGC-1β small interfering RNA (siRNA) resulted in downregulated PGC-1β expression and increased protein degradation. Taken together, our results suggest that sepsis- and glucocorticoid-induced muscle wasting may, at least in part, be regulated by decreased expression of the nuclear cofactor PGC-1β.
Collapse
Affiliation(s)
- Michael J Menconi
- Departmentof Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 2215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Allen DL, Cleary AS, Hanson AM, Lindsay SF, Reed JM. CCAAT/enhancer binding protein-delta expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription in vitro. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1592-601. [PMID: 20844262 DOI: 10.1152/ajpregu.00247.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that mRNA levels of three members of the CCAAT/enhancer binding factor (C/EBP) family of transcription factors are increased in skeletal muscle following 12 days of spaceflight. In the present study, we further explored the expression of C/EBP-δ in atrophying fast skeletal muscle by examining its expression in muscle from food-deprived (FD) mice, and investigated its role in regulating the expression of the secreted antigrowth factor myostatin. C/EBP-δ mRNA and protein levels were significantly increased by 2 days of food deprivation in the tibialis anterior (TA) muscle, and expression of both myostatin and C/EBP-δ mRNA during food deprivation was attenuated by injection with the glucocorticoid inhibitor RU486. The increase in myostatin mRNA levels with food deprivation appears to be at least partially transcriptionally driven, since levels of myostatin pre-mRNA were significantly increased in the TA muscle. C/EBP-δ mRNA levels and promoter activity were significantly increased by transfection of C(2)C(12) myotubes with a glucocorticoid receptor construct and 24 h of treatment with the synthetic glucocorticoid dexamethasone. Furthermore, activity of the C/EBP-δ promoter was significantly increased with as little as 1 h of dexamethasone treatment, while activity of the mouse myostatin promoter was only significantly increased with longer treatment periods of 24 h or more. Activity of the myostatin promoter-reporter construct was significantly increased in C(2)C(12) myotubes by cotransfection with expression constructs for C/EBP-α, -β, and -δ, with C/EBP-δ having the greatest effect. The myostatin promoter contains two potential C/EBP binding sequences, a CCAAT box, and a C/EBP binding element (CBE). Mutation of the CCAAT box attenuated basal myostatin promoter activity but potentiated C/EBP-δ-activated myostatin promoter activity in C(2)C(12) myotubes in vitro, while mutation of the CBE abolished glucocorticoid receptor and C/EBP-δ responsiveness. The present results support a model in which glucocorticoid-induced increases in C/EBP-δ expression may contribute to myostatin transcription during atrophic states.
Collapse
Affiliation(s)
- David L Allen
- Dept. of Integrative Physiology, Univ. of Colorado, Boulder, Campus Box 354, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
29
|
Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 2010; 13:423-8. [PMID: 20473154 PMCID: PMC2911625 DOI: 10.1097/mco.0b013e32833a5107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss novel insight into mechanisms of glucocorticoid-regulated muscle wasting, in particular the role of transcription factors and nuclear cofactors. In addition, novel strategies that may become useful in the treatment or prevention of glucocorticoid-induced muscle wasting are reviewed. RECENT FINDINGS Studies suggest that glucocorticoid-induced upregulation of the transcription factors Forkhead box O 1 and CCAAT/enhancer-binding protein beta and downregulation of MyoD and myogenin are involved in glucocorticoid-induced muscle wasting. In addition, glucocorticoid-induced hyperacetylation caused by increased expression of the nuclear cofactor p300 and its histone acetyl transferase activity and decreased expression and activity of histone deacetylases plays an important role in glucocorticoid-induced muscle proteolysis and wasting. Other mechanisms may also be involved in glucocorticoid-induced muscle wasting, including insulin resistance and store-operated calcium entry. Novel potential strategies to prevent or treat glucocorticoid-induced muscle wasting include the use of small molecule histone deacetylase activators, dissociated glucocorticoid receptor agonists, and 11beta-hydroxysteroid dehydrogenase type 1 inhibitors. SUMMARY An increased understanding of molecular mechanisms regulating glucocorticoid-induced muscle wasting will help develop new strategies to prevent and treat this debilitating condition.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Alamdari N, Smith IJ, Aversa Z, Hasselgren PO. Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R509-20. [PMID: 20538901 DOI: 10.1152/ajpregu.00858.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Muscle wasting during sepsis is in part regulated by glucocorticoids. In recent studies, treatment of cultured muscle cells in vitro with dexamethasone upregulated expression and activity of p300, a histone acetyl transferase (HAT), and reduced expression and activity of the histone deacetylases-3 (HDAC3) and -6, changes that favor hyperacetylation. Here, we tested the hypothesis that sepsis and glucocorticoids regulate p300 and HDAC3 and -6 in skeletal muscle in vivo. Because sepsis-induced metabolic changes are particularly pronounced in white, fast-twitch skeletal muscle, most experiments were performed in extensor digitorum longus muscles. Sepsis in rats upregulated p300 mRNA and protein levels, stimulated HAT activity, and reduced HDAC6 expression and HDAC activity. The sepsis-induced changes in p300 and HDAC expression were prevented by the glucocorticoid receptor antagonist RU38486. Treatment of rats with dexamethasone increased expression of p300 and HAT activity, reduced expression of HDAC3 and -6, and inhibited HDAC activity. Finally, treatment with the HDAC inhibitor trichostatin A resulted in increased muscle proteolysis and expression of the ubiquitin ligase atrogin-1. Taken together, our results suggest for the first time that sepsis-induced muscle wasting may be regulated by glucocorticoid-dependent hyperacetylation caused by increased p300 and reduced HDAC expression and activity. The recent development of pharmacological HDAC activators may provide a novel avenue to prevent and treat muscle wasting in sepsis and other catabolic conditions.
Collapse
Affiliation(s)
- Nima Alamdari
- Dept. of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
31
|
Zanchi NE, Filho MADS, Felitti V, Nicastro H, Lorenzeti FM, Lancha AH. Glucocorticoids: Extensive physiological actions modulated through multiple mechanisms of gene regulation. J Cell Physiol 2010; 224:311-5. [DOI: 10.1002/jcp.22141] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Abstract
PURPOSE OF REVIEW The present investigation is devoted to uncovering the different signaling pathways - particularly transcriptional factors - involved in muscle wasting. RECENT FINDINGS Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. In this review we describe recent findings about the tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, TWEAK and myostatin actions in cancer cachexia models. SUMMARY The main aim of the present review is to summarize and evaluate the different molecular mechanisms and catabolic mediators (mainly cytokines) involved in cancer cachexia since they may represent targets for future promising clinical investigations.
Collapse
|
33
|
Smith IJ, Alamdari N, O'Neal P, Gonnella P, Aversa Z, Hasselgren PO. Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism. Int J Biochem Cell Biol 2010; 42:701-11. [PMID: 20079455 DOI: 10.1016/j.biocel.2010.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/18/2009] [Accepted: 01/06/2010] [Indexed: 12/18/2022]
Abstract
Sepsis-induced muscle wasting has severe clinical consequences, including muscle weakness, need for prolonged ventilatory support and stay in the intensive care unit, and delayed ambulation with risk for pulmonary and thromboembolic complications. Understanding molecular mechanisms regulating loss of muscle mass in septic patients therefore has significant clinical implications. Forkhead Box O (FOXO) transcription factors have been implicated in muscle wasting, partly reflecting upregulation of the ubiquitin ligases atrogin-1 and MuRF1. The influence of sepsis on FOXO transcription factors in skeletal muscle is poorly understood. We tested the hypothesis that sepsis upregulates expression and activity of FOXO transcription factors in skeletal muscle by a glucocorticoid-dependent mechanism. Sepsis in rats increased muscle FOXO1 and 3a mRNA and protein levels but did not influence FOXO4 expression. Nuclear FOXO1 levels and DNA binding activity were increased in septic muscle whereas FOXO3a nuclear levels were not increased during sepsis. Sepsis-induced expression of FOXO1 was reduced by the glucocorticoid receptor antagonist RU38486 and treatment of rats with dexamethasone increased FOXO1 mRNA levels suggesting that the expression of FOXO1 is regulated by glucocorticoids. Reducing FOXO1, but not FOXO3a, expression by siRNA in cultured L6 myotubes inhibited dexamethasone-induced atrogin-1 and MuRF1 expression, further supporting a role of FOXO1 in glucocorticoid-regulated muscle wasting. Results suggest that sepsis increases FOXO1 expression and activity in skeletal muscle by a glucocorticoid-dependent mechanism and that glucocorticoid-dependent upregulation of atrogin-1 and MuRF1 in skeletal muscle is regulated by FOXO1. The study is significant because it provides novel information about molecular mechanisms involved in sepsis-induced muscle wasting.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue ST919, Boston, MA, United States
| | | | | | | | | | | |
Collapse
|
34
|
Newberry EP, Kennedy SM, Xie Y, Luo J, Davidson NO. Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice. Mol Cell Biochem 2009; 326:79-86. [PMID: 19116776 PMCID: PMC3004673 DOI: 10.1007/s11010-008-0002-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 06/04/2008] [Indexed: 12/15/2022]
Abstract
Liver fatty acid binding protein (L-FABP) is highly expressed in both enterocytes and hepatocytes and binds multiple ligands, including saturated (SFA), unsaturated fatty acids (PUFA), and cholesterol. L-fabp (-/-) mice were protected against obesity and hepatic steatosis on a high saturated fat (SF), high cholesterol "Western" diet and manifested a similar phenotype when fed with a high SF, low cholesterol diet. There were no significant differences in fecal fat content or food consumption between the genotypes, and fatty acid (FA) oxidation was reduced, rather than increased, in SF-fed L-fabp (-/-) mice as evidenced by decreased heat production and serum ketones. In contrast to mice fed with a SF diet, L-fabp (-/-) mice fed with a high PUFA diet were not protected against obesity and hepatic steatosis. These observations together suggest that L-fabp (-/-) mice exhibit a specific defect in the metabolism of SFA, possibly reflecting altered kinetics of FA utilization. In support of this possibility, microarray analysis of muscle from Western diet-fed mice revealed alterations in genes regulating glucose uptake and FA synthesis. In addition, intestinal cholesterol absorption was decreased in L-fabp (-/-) mice. On the other hand, and in striking contrast to other reports, female L-fabp (-/-) mice fed with low fat, high cholesterol diets gained slightly less weight than control mice, with minor reductions in hepatic triglyceride content. Together these data indicate a role for L-FABP in intestinal trafficking of both SFA and cholesterol.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan M. Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianyang Luo
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
Abstract
Up to 50% of cancer patients suffer from a progressive atrophy of adipose tissue and skeletal muscle, called cachexia, resulting in weight loss, a reduced quality of life, and a shortened survival time. Anorexia often accompanies cachexia, but appears not to be responsible for the tissue loss, particularly lean body mass. An increased resting energy expenditure is seen, possibly arising from an increased thermogenesis in skeletal muscle due to an increased expression of uncoupling protein, and increased operation of the Cori cycle. Loss of adipose tissue is due to an increased lipolysis by tumor or host products. Loss of skeletal muscle in cachexia results from a depression in protein synthesis combined with an increase in protein degradation. The increase in protein degradation may include both increased activity of the ubiquitin-proteasome pathway and lysosomes. The decrease in protein synthesis is due to a reduced level of the initiation factor 4F, decreased elongation, and decreased binding of methionyl-tRNA to the 40S ribosomal subunit through increased phosphorylation of eIF2 on the alpha-subunit by activation of the dsRNA-dependent protein kinase, which also increases expression of the ubiquitin-proteasome pathway through activation of NFkappaB. Tumor factors such as proteolysis-inducing factor and host factors such as tumor necrosis factor-alpha, angiotensin II, and glucocorticoids can all induce muscle atrophy. Knowledge of the mechanisms of tissue destruction in cachexia should improve methods of treatment.
Collapse
Affiliation(s)
- Michael J Tisdale
- Nutritional Biomedicine, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
36
|
Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuik PJ, Morony S, Lacey DL, Hammond TG, Leinwand LL, Argraves WS, Bateman TA, Barth JL. Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol (1985) 2008; 106:582-95. [PMID: 19074574 DOI: 10.1152/japplphysiol.90780.2008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice flown on the 11-day, 19-h STS-108 shuttle flight and from normal gravity controls. Spaceflight data also were compared with the ground-based unloading model of hindlimb suspension, with one group of pure suspension and one of suspension followed by 3.5 h of reloading to mimic the time between landing and euthanization of the spaceflight mice. Analysis of microarray data revealed that 272 mRNAs were significantly altered by spaceflight, the majority of which displayed similar responses to hindlimb suspension, whereas reloading tended to counteract these responses. Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase regulatory subunit p85alpha, insulin response substrate-1, the forkhead box O1 transcription factor, and MAFbx/atrogin1. Moreover, myostatin mRNA expression tended to increase, whereas mRNA levels of the myostatin inhibitor FSTL3 tended to decrease, in response to spaceflight. In addition, mRNA levels of the slow oxidative fiber-associated transcriptional coactivator peroxisome proliferator-associated receptor (PPAR)-gamma coactivator-1alpha and the transcription factor PPAR-alpha were significantly decreased in spaceflight gastrocnemius. Finally, spaceflight resulted in a significant decrease in levels of the microRNA miR-206. Together these data demonstrate that spaceflight induces significant changes in mRNA expression of genes associated with muscle growth and fiber type.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tobimatsu K, Noguchi T, Hosooka T, Sakai M, Inagaki K, Matsuki Y, Hiramatsu R, Kasuga M. Overexpression of the transcriptional coregulator Cited2 protects against glucocorticoid-induced atrophy of C2C12 myotubes. Biochem Biophys Res Commun 2008; 378:399-403. [PMID: 19032942 DOI: 10.1016/j.bbrc.2008.11.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 11/19/2022]
Abstract
In patients with various catabolic conditions, glucocorticoid excess induces skeletal muscle wasting by accelerating protein degradation via the ubiquitin-proteasome pathway. Although the transcriptional coactivator p300 has been implicated in this pathological process, regulatory mechanisms and molecular targets of its action remain unclear. Here we show that CREB-binding protein (CBP)/p300-interacting transactivator with ED-rich tail 2 (Cited2), which binds to the cysteine-histidine-rich region 1 of p300 and CBP, regulates muscle mass in vitro. Adenovirus-mediated overexpression of wild-type Cited2 significantly blocked morphological alterations of C2C12 myotubes with a concomitant decrease in myosin heavy chain protein in response to synthetic glucocorticoid dexamethasone, which were attributable to the reduced induction of atrophy-related ubiquitin ligases MuRF1 and MAFbx. These myotube-sparing effects were less pronounced, however, with a carboxyl-terminally truncated mutant of Cited2 that lacked the ability to bind p300. These results suggest that the gain of Cited2 function counteracts glucocorticoid-induced muscle atrophy through inhibition of proteolysis mediated by p300-dependent gene transcription.
Collapse
Affiliation(s)
- Kazutoshi Tobimatsu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Is there a common mechanism linking muscle wasting in various disease types? Curr Opin Support Palliat Care 2008; 1:287-92. [PMID: 18685377 DOI: 10.1097/spc.0b013e3282f35238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW There have been a number of recent developments in our understanding of the cellular mechanisms leading to muscle atrophy, which are likely to be of major importance in the design of therapeutic agents. RECENT FINDINGS Muscle atrophy in a range of conditions is thought to be due to an increased expression of the ubiquitin-proteasome proteolytic pathway. The main transcription factors involved in muscle atrophy are nuclear factor-kappaB and the forkhead type transcription factors, as determined from experiments with transgenic mice. Catabolic agents such as cytokines, proteolysis-inducing factor and angiotensin II induce activation of nuclear factor-kappaB through an increase in reactive oxygen species, causing an increased gene expression of proteasome subunits and the ubiquitin ligase MuRF1. Glucocorticoids cause activation of forkhead type transcription factors possibly through an increase in expression of myostatin, which leads to an increased expression of the E3 ligase atrogin-1/MAFbx and cathepsin L. Forkhead type transcription factors is regulated by its state of phosphorylation induced by Akt, while activation of nuclear factor-kappaB requires reactive oxygen species and activation of the dsRNA-dependent protein kinase. Activation of dsRNA-dependent protein kinase also inhibits translational initiation of protein synthesis through phosphorylation of eukaryotic initiation factor 2 on the alpha-subunit. SUMMARY These results suggest a common mechanism leading to muscle atrophy, which has important implications in the clinical treatment of wasting diseases.
Collapse
|
39
|
Abstract
Muscle wasting in sepsis reflects activation of multiple proteolytic mechanisms, including lyosomal and ubiquitin-proteasome-dependent protein breakdown. Recent studies suggest that activation of the calpain system also plays an important role in sepsis-induced muscle wasting. Perhaps the most important consequence of calpain activation in skeletal muscle during sepsis is disruption of the sarcomere, allowing for the release of myofilaments (including actin and myosin) that are subsequently ubiquitinated and degraded by the 26S proteasome. Other important consequences of calpain activation that may contribute to muscle wasting during sepsis include degradation of certain transcription factors and nuclear cofactors, activation of the 26S proteasome, and inhibition of Akt activity, allowing for downstream activation of Foxo transcription factors and GSK-3beta. The role of calpain activation in sepsis-induced muscle wasting suggests that the calpain system may be a therapeutic target in the prevention and treatment of muscle wasting during sepsis. Furthermore, because calpain activation may also be involved in muscle wasting caused by other conditions, including different muscular dystrophies and cancer, calpain inhibitors may be beneficial not only in the treatment of sepsis-induced muscle wasting but in other conditions causing muscle atrophy as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
41
|
Fuster G, Busquets S, Ametller E, Olivan M, Almendro V, de Oliveira CCF, Figueras M, López-Soriano FJ, Argilés JM. Are Peroxisome Proliferator-Activated Receptors Involved in Skeletal Muscle Wasting during Experimental Cancer Cachexia? Role of β2-Adrenergic Agonists. Cancer Res 2007; 67:6512-9. [PMID: 17616713 DOI: 10.1158/0008-5472.can-07-0231] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Implantation of the Yoshida AH-130 ascites hepatoma to rats resulted in a decrease in muscle weight 7 days after the inoculation of the tumor. These changes were associated with increases in the mRNA content for both peroxisome proliferator-activated receptor (PPAR) gamma and PPAR delta in skeletal muscle. The increase in gene expression for these transcription factors was related to increases in the expression of several genes involved in fatty acid transport, activation, and oxidation. Tumor burden also resulted in increases in PPAR gamma coactivator-1 alpha gene expression and pyruvate dehydrogenase kinase 4. All these changes in lipid metabolism genes suggest that a metabolic shift occurs in skeletal muscle of tumor-bearing rats toward a more oxidative phenotype. Formoterol treatment to tumor-bearing rats resulted in an amelioration of all the changes observed as a result of tumor burden. Administration of this beta(2)-adrenergic agonist also resulted in a decrease in mRNA content of muscle PPAR alpha, PPAR delta, and PPAR gamma, as well as in mRNA levels of many of the genes involved in both lipid and mitochondrial metabolism. All these results suggest an involvement of the different PPARs as transcription factors related with muscle wasting and also indicate that a possible mode of action of the anticachectic compound formoterol may involve a normalization of the levels of these transcription factors.
Collapse
Affiliation(s)
- Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wei W, Yang H, Menconi M, Cao P, Chamberlain CE, Hasselgren PO. Treatment of cultured myotubes with the proteasome inhibitor β-lactone increases the expression of the transcription factor C/EBPβ. Am J Physiol Cell Physiol 2007; 292:C216-26. [PMID: 16987992 DOI: 10.1152/ajpcell.00282.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the proteasome in the regulation of cellular levels of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is poorly understood. We tested the hypothesis that C/EBPβ levels in cultured myotubes are regulated, at least in part, by proteasome activity. Treatment of cultured L6 myotubes, a rat skeletal muscle cell line, with the specific proteasome inhibitor β-lactone resulted in increased nuclear levels of C/EBPβ as determined by Western blotting and immunofluorescent detection. This effect of β-lactone reflected inhibited degradation of C/EBPβ. Surprisingly, the increased C/EBPβ levels in β-lactone-treated myotubes did not result in increased DNA-binding activity. In additional experiments, treatment of the myotubes with β-lactone resulted in increased nuclear levels of growth arrest DNA damage/C/EBP homologous protein (Gadd153/CHOP), a dominant-negative member of the C/EBP family that can form heterodimers with other members of the C/EBP family and block DNA binding. Coimmunoprecipitation and immunofluorescent detection provided evidence that C/EBPβ and Gadd153/CHOP interacted and colocalized in the nuclei of the β-lactone-treated myotubes. When Gadd153/CHOP expression was downregulated by transfection of myotubes with siRNA targeting Gadd153/CHOP, C/EBPβ DNA-binding activity was restored in β-lactone-treated myotubes. The results suggest that C/EBPβ is degraded by a proteasome-dependent mechanism in skeletal muscle cells and that Gadd153/CHOP can interact with C/EBPβ and block its DNA-binding activity. The observations are important because they increase the understanding of the complex regulation of the expression and activity of C/EBPβ in skeletal muscle.
Collapse
Affiliation(s)
- Wei Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue ST 919, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
43
|
Borger P, Matsumoto H, Boustany S, Gencay MMC, Burgess JK, King GG, Black JL, Tamm M, Roth M. Disease-specific expression and regulation of CCAAT/enhancer-binding proteins in asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2006; 119:98-105. [PMID: 17208590 DOI: 10.1016/j.jaci.2006.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/17/2022]
Abstract
BACKGROUND CCAAT/enhancer-binding proteins (C/EBPs) control cell proliferation; lack of C/EBPalpha correlates with increased proliferation of bronchial smooth muscle cells (BSMCs) of asthmatic patients. OBJECTIVE We sought to assess disease-specific expression of C/EBPalpha, beta, delta, and epsilon and the effects of budesonide (10(-8) mol/L) and formoterol (10(-8) mol/L). METHODS Expression and function of C/EBPalpha, beta, delta, and epsilon BSMCs of control subjects (n = 9), asthmatic patients (n = 12), and patients with chronic obstructive pulmonary disease (COPD; n = 10) were determined. RESULTS The control group expressed C/EBPalpha, beta, delta, and epsilon, which were upregulated by serum (5%). Budesonide completely inhibited C/EBPalpha and beta expression; formoterol increased C/EBPalpha expression (2-fold). C/EBPdelta and epsilon expression were not affected by the drugs. The asthmatic group did not appropriately express C/EBPalpha. Basal levels of C/EBPbeta, delta, and epsilon were upregulated by serum (5%). Budesonide and formoterol increased C/EBPbeta levels (3.4-fold and 2.5-fold, respectively), leaving C/EBPalpha, delta, and epsilon levels unaffected. The COPD group normally expressed C/EBPalpha, beta, and epsilon, which were upregulated by serum treatment (5%). Basal levels of C/EBPdelta were downregulated by serum in 7 of 10 BSMC lines. Budesonide inhibited C/EBPalpha and beta expression, upregulated C/EBPdelta (3.2-fold), and had no effect on C/EBPepsilon. Formoterol upregulated C/EBPalpha expression (3-fold) but not the other C/EBPs. Protein analysis and electrophoretic mobility shift assay confirmed the disease-specific expression pattern of C/EBPalpha in asthmatic patients and C/EBPdelta in patients with COPD. CONCLUSIONS The expression and regulation of C/EBPs in BSMCs of asthmatic patients and patients with COPD seems disease specific. Budesonide and formoterol modulate C/EBP expression in a drug- and disease-specific pattern. CLINICAL IMPLICATIONS The data could provide a method to discriminate between asthma and COPD at an early disease stage.
Collapse
Affiliation(s)
- Peter Borger
- Pulmonary Cell Research, Department of Research and Pneumology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang H, Wei W, Menconi M, Hasselgren PO. Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT dependent. Am J Physiol Regul Integr Comp Physiol 2006; 292:R337-4. [PMID: 16973938 DOI: 10.1152/ajpregu.00230.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Muscle proteolysis during sepsis and other catabolic conditions is, at least in part, regulated by glucocorticoids. Dexamethasone-treated myotubes are a commonly used in vitro model of muscle wasting. We reported recently that treatment of cultured L6 myotubes with dexamethasone resulted in increased gene and protein expression of the nuclear cofactor p300 but it is not known whether glucocorticoids upregulate p300 histone acetyl transferase (HAT) activity in muscle and whether p300/HAT activity regulates glucocorticoid-induced muscle proteolysis. Here, we found that treatment of cultured L6 myotubes with dexamethasone resulted in increased nuclear p300/HAT activity. Treatment of myotubes with p300 siRNA or transfection of muscle cells with a plasmid expressing p300 that was mutated in its HAT activity domain blocked the dexamethasone-induced increase in protein degradation, supporting a role of p300/HAT in glucocorticoid-induced muscle proteolysis. In addition to increased HAT activity, treatment of the myotubes with dexamethasone resulted in reduced nuclear expression and activity of histone deacetylases (HDACs) 3 and 6. When myotubes were treated with the HDAC inhibitor trichostatin A, protein degradation increased to the same degree as in dexamethasone-treated myotubes. The results suggest that glucocorticoids increase HAT and decrease HDAC activities in muscle, changes that both favor hyperacetylation. The results also provide evidence that dexamethasone-induced protein degradation in cultured myotubes is, at least in part, regulated by p300/HAT activity.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
45
|
Salem M, Kenney PB, Rexroad CE, Yao J. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 2006; 28:33-45. [PMID: 16882886 DOI: 10.1152/physiolgenomics.00114.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy is a physiological response to diverse physiological and pathological conditions that trigger muscle deterioration through specific cellular mechanisms. Despite different signals, the biochemical changes in atrophying muscle share many common cascades. Muscle deterioration as a physiological response to the energetic demands of fish vitellogenesis represents a unique model for studying the mechanisms of muscle degradation in non-mammalian animals. A salmonid microarray, containing 16,006 cDNAs, was used to study the transcriptome response to atrophy of fast-switch muscles from gravid rainbow trout compared with sterile fish. Eighty-two unique transcripts were upregulated and 120 transcripts were downregulated in atrophying muscles. Transcripts having gene ontology identifiers were grouped according to their functions. Muscle deterioration was associated with elevated expression of genes involved in the catheptic and collagenase proteolytic pathways; the aerobic production, buffering, and utilization of ATP; and growth arrest; whereas atrophying muscle showed downregulation of genes encoding a serine proteinase inhibitor, enzymes of anaerobic respiration, muscle proteins as well as genes required for RNA and protein biosynthesis/processing. Therefore, gene transcription of the trout muscle atrophy changed in a manner similar to mammalian muscle atrophy. These changes result in an arrest of normal cell growth, protein degradation, and decreased glycolytic cellular respiration that is characteristic of the fast-switch muscle. For the first time, other changes/mechanisms unique to fish were discussed including genes associated with muscle atrophy.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|
46
|
Almon RR, Dubois DC, Jin JY, Jusko WJ. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol 2005; 184:219-32. [PMID: 15642798 PMCID: PMC2574435 DOI: 10.1677/joe.1.05953] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elevated systemic levels of glucocorticoids are causally related to peripheral insulin resistance. The pharmacological use of synthetic glucocorticoids (corticosteroids) often results in insulin resistance/type II diabetes. Skeletal muscle is responsible for close to 80% of the insulin-induced systemic disposal of glucose and is a major target for glucocorticoid-induced insulin resistance. We used Affymetrix gene chips to profile the dynamic changes in mRNA expression in rat skeletal muscle in response to a single bolus dose of the synthetic glucocorticoid methyl-prednisolone. Temporal expression profiles (analyzed on individual chips) were obtained from tissues of 48 drug-treated animals encompassing 16 time points over 72 h following drug administration along with four vehicle-treated controls. Data mining identified 653 regulated probe sets out of 8799 present on the chip. Of these 653 probe sets we identified 29, which represented 22 gene transcripts, that were associated with the development of insulin resistance. These 29 probe sets were regulated in three fundamental temporal patterns. 16 probe sets coding for 12 different genes had a profile of enhanced expression. 10 probe sets coding for eight different genes showed decreased expression and three probe sets coding for two genes showed biphasic temporal signatures. These transcripts were grouped into four general functional categories: signal transduction, transcription regulation, carbohydrate/fat metabolism, and regulation of blood flow to the muscle. The results demonstrate the polygenic nature of transcriptional changes associated with insulin resistance that can provide a temporal scaffolding for translational and post-translational data as they become available.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | |
Collapse
|
47
|
Busquets S, Figueras MT, Fuster G, Almendro V, Moore-Carrasco R, Ametller E, Argilés JM, López-Soriano FJ. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res 2004; 64:6725-31. [PMID: 15374990 DOI: 10.1158/0008-5472.can-04-0425] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In cancer cachexia both cardiac and skeletal muscle suffer an important protein mobilization as a result of increased proteolysis. Administration of the beta2-agonist formoterol to both rats and mice bearing highly cachectic tumors resulted in an important reversal of the muscle-wasting process. The anti-wasting effects of the drug were based on both an activation of the rate of protein synthesis and an inhibition of the rate of muscle proteolysis. Northern blot analysis revealed that formoterol treatment resulted in a decrease in the mRNA content of ubiquitin and proteasome subunits in gastrocnemius muscles; this, together with the decreased proteasome activity observed, suggest that the main anti-proteolytic action of the drug may be based on an inhibition of the ATP-ubiquitin-dependent proteolytic system. Interestingly, the beta2-agonist was also able to diminish the increased rate of muscle apoptosis (measured as DNA laddering as well as caspase-3 activity) present in tumor-bearing animals. The present results indicate that formoterol exerted a selective, powerful protective action on heart and skeletal muscle by antagonizing the enhanced protein degradation that characterizes cancer cachexia, and it could be revealed as a potential therapeutic tool in pathologic states wherein muscle protein hypercatabolism is a critical feature such as cancer cachexia or other wasting diseases.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cachexia/drug therapy
- Cachexia/metabolism
- Cachexia/pathology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Disease Models, Animal
- Eating/drug effects
- Ethanolamines/pharmacology
- Formoterol Fumarate
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Wistar
- Sarcoma, Yoshida/metabolism
- Sarcoma, Yoshida/pathology
Collapse
Affiliation(s)
- Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18:39-51. [PMID: 14718385 DOI: 10.1096/fj.03-0610com] [Citation(s) in RCA: 1193] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific mRNAs in muscles atrophying from different causes. We compared muscles from fasted mice, from rats with cancer cachexia, streptozotocin-induced diabetes mellitus, uremia induced by subtotal nephrectomy, and from pair-fed control rats. Although the content of >90% of mRNAs did not change, including those for the myofibrillar apparatus, we found a common set of genes (termed atrogins) that were induced or suppressed in muscles in these four catabolic states. Among the strongly induced genes were many involved in protein degradation, including polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-1/MAFbx and MuRF-1, multiple but not all subunits of the 20S proteasome and its 19S regulator, and cathepsin L. Many genes required for ATP production and late steps in glycolysis were down-regulated, as were many transcripts for extracellular matrix proteins. Some genes not previously implicated in muscle atrophy were dramatically up-regulated (lipin, metallothionein, AMP deaminase, RNA helicase-related protein, TG interacting factor) and several growth-related mRNAs were down-regulated (P311, JUN, IGF-1-BP5). Thus, different types of muscle atrophy share a common transcriptional program that is activated in many systemic diseases.
Collapse
Affiliation(s)
- Stewart H Lecker
- Renal Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Argilés JM, Moore-Carrasco R, Busquets S, López-Soriano FJ. Catabolic mediators as targets for cancer cachexia. Drug Discov Today 2003; 8:838-44. [PMID: 12963320 DOI: 10.1016/s1359-6446(03)02826-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cachexia syndrome, characterized by a marked weight loss, anorexia, asthenia and anaemia, is invariably associated with the growth of a tumour and leads to a malnutrition status caused by the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumour and the host results in an accelerated catabolism state, which promotes severe metabolic disturbances in the patient. The search for the cachectic factor(s) started a long time ago, and many scientific and economic efforts have been devoted to its discovery, but we are still a long way from a complete answer. The present review aims to evaluate the different molecular mechanisms and catabolic mediators (both humoural and tumoural) that are involved in cancer cachexia and to discuss their potential as targets for future clinical investigations.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 2003; 285:E363-71. [PMID: 12721153 DOI: 10.1152/ajpendo.00487.2002] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P < 0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P < 0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P < 0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.
Collapse
Affiliation(s)
- Kun Ma
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.
| | | | | | | | | | | | | | | |
Collapse
|