1
|
Burnett KG, Burnett LE. Immune Defense in Hypoxic Waters: Impacts of CO 2 Acidification. THE BIOLOGICAL BULLETIN 2022; 243:120-133. [PMID: 36548972 DOI: 10.1086/721322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractPeriodic episodes of low oxygen (hypoxia) and elevated CO2 (hypercapnia) accompanied by low pH occur naturally in estuarine environments. Under the influence of climate change, the geographic range and intensity of hypoxia and hypercapnic hypoxia are predicted to increase, potentially jeopardizing the survival of economically and ecologically important organisms that use estuaries as habitat and nursery grounds. In this review we synthesize data from published studies that evaluate the impact of hypoxia and hypercapnic hypoxia on the ability of crustaceans and bivalve molluscs to defend themselves against potential microbial pathogens. Available data indicate that hypoxia generally has suppressive effects on host immunity against bacterial pathogens as measured by in vitro and in vivo assays. Few studies have documented the effects of hypercapnic hypoxia on crustaceans or bivalve immune defense, with a range of outcomes suggesting that added CO2 might have additive, negative, or no interactions with the effects of hypoxia alone. This synthesis points to the need for more partial pressure of O2 × low pH factorial design experiments and recommends the development of new host∶pathogen challenge models incorporating natural transmission of a wide range of viruses, bacteria, and parasites, along with novel in vivo tracking systems that better quantify how pathogens interact with their hosts in real time under laboratory and field conditions.
Collapse
|
2
|
Ericson JA, Venter L, Welford MRV, Kumanan K, Alfaro AC, Ragg NLC. Effects of seawater temperature and acute Vibriosp. challenge on the haemolymph immune and metabolic responses of adult mussels (Perna canaliculus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:664-675. [PMID: 35981703 DOI: 10.1016/j.fsi.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an endemic bivalve species with cultural importance, that is harvested recreationally and commercially. However, production is currently hampered by increasing incidences of summer mortality in farmed and wild populations. While the causative factors for these mortality events are still unknown, it is believed that increasing seawater temperatures and pathogen loads are potentially at play. To improve our understanding of these processes, challenge experiments were conducted to investigate the combined effects of increased seawater temperature and Vibrio infection on the immune and metabolic responses of adult mussels. Biomarkers that measure the physiological response of mussels to multiple-stressors can be utilised to study resilience in a changing environment, and support efforts to strengthen biosecurity management. Mussels acclimated to two temperatures (16 °C and 24 °C) were injected with either autoclaved, filtered seawater (control) or Vibriosp. DO1 (infected). Then, haemolymph was sampled 24 h post-injection and analysed to quantify haemocyte immune responses (via flow-cytometry), antioxidant capacity (measured electrochemically) and metabolic responses (via gas chromatography-mass spectrometry) to bacterial infection. Both seawater temperature and injection type significantly influenced the immune and metabolite status of mussels. A lack of interaction effects between temperature and injection type indicated that the effects of Vibrio sp. 24 h post-infection were similar between seawater temperatures. Infected mussels had a higher proportion of dead haemocytes and lower overall haemocyte counts than uninfected controls. The proportion of haemocytes showing evidence of apoptosis was higher in mussels held at 24 °C compared with those held at 16 °C. The proportion of haemocytes producing reactive oxygen species did not differ between temperatures or injection treatments. Mussels held at 24 °C exhibited elevated levels of metabolites linked to the glycolysis pathway to support energy production. The saccharopin-lysine pathway metabolites were also increased in these mussels, indicating the role of lysine metabolism. A decrease in metabolic activity (decreases in BCAAs, GABA, urea cycle metabolites, oxidative stress metabolites) was largely seen in mussels injected with Vibrio sp. Itaconate increased as seen in previous studies, suggesting that antimicrobial activity may have been activated in infected mussels. This study highlights the complex nature of immune and metabolic responses in mussels exposed to multiple stressors and gives an insight into Vibrio sp. infection mechanisms at different seawater temperatures.
Collapse
Affiliation(s)
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mena R V Welford
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karthiga Kumanan
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
3
|
Li J, Zhang G, Yin D, Li Y, Zhang Y, Cheng J, Zhang K, Ji J, Wang T, Jia Y, Yin S. Integrated application of multi-omics strategies provides insights into the environmental hypoxia response in Pelteobagrus vachelli muscle. Mol Cell Proteomics 2022; 21:100196. [PMID: 35031490 PMCID: PMC8938323 DOI: 10.1016/j.mcpro.2022.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1β production via inflammasome activation. In turn, interleukin-1β further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis–related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species. First multiomics analysis of mRNA, miRNA, protein, and metabolite in fishes. Liver and muscle were tissue-specific induced by hypoxia. About 70 genes and 16 miRNAs related to hypoxia adaptation were detected. Hypoxia affects muscle function by mediating energy metabolism via HIF pathway.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Guosong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Danqing Yin
- School of Computer Science, University of Sydney, Sydney, 2006, Australia
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Buchberger AR, Vu NQ, Johnson J, DeLaney K, Li L. A Simple and Effective Sample Preparation Strategy for MALDI-MS Imaging of Neuropeptide Changes in the Crustacean Brain Due to Hypoxia and Hypercapnia Stress. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1058-1065. [PMID: 32150406 PMCID: PMC7467133 DOI: 10.1021/jasms.9b00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-MS imaging has been utilized to image a variety of biomolecules, including neuropeptides. Washing a tissue section is an effective way to eliminate interfering background and improve detection of low concentration target analyte molecules; however, many previous methods have not been tested for neuropeptide analysis via MALDI-MS imaging. Using crustaceans as a neurological model organism, we developed a new, simple washing procedure and applied this method to characterize neuropeptide changes due to hypoxia stress. With a 10 s 50:50 EtOH:H2O wash, neuropeptide coverage was improved by 1.15-fold, while normalized signal intensities were increased by 5.28-fold. Specifically, hypoxia and hypercapnia stress conditions were investigated due to their environmental relevance to marine invertebrates. Many neuropeptides, including RFamides, pyrokinin, and cardioactive peptides, showed distinct up- and down-regulation for specific neuropeptide isoforms. Since crustacean neuropeptides are homologous to those found in humans, results from these studies can be applied to understand potential roles of neuropeptides involved in medical hypoxia and hypercapnia.
Collapse
Affiliation(s)
- Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705
- Address reprint requests to: Lingjun Li. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53706; Phone: (608)265-8491; Fax: (608)262-5345;
| |
Collapse
|
5
|
Collins M, Tills O, Turner LM, Clark MS, Spicer JI, Truebano M. Moderate reductions in dissolved oxygen may compromise performance in an ecologically-important estuarine invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133444. [PMID: 31362229 DOI: 10.1016/j.scitotenv.2019.07.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Coastal ecosystems, including estuaries, are increasingly pressured by expanding hypoxic regions as a result of human activities such as increased release of nutrients and global warming. Hypoxia is often defined as oxygen concentrations below 2 mL O2 L-1. However, taxa vary markedly in their sensitivity to hypoxia and can be affected by a broad spectrum of low oxygen levels. To better understand how reduced oxygen availability impacts physiological and molecular processes in invertebrates, we investigated responses of an estuarine amphipod to an ecologically-relevant level of moderate hypoxia (~2.6 mL O2 L-1) or severe hypoxia (~1.3 mL O2 L-1). Moderate hypoxia elicited a reduction in aerobic scope, and widespread changes to gene expression, including upregulation of metabolic genes and stress proteins. Under severe hypoxia, a marked hyperventilatory response associated with maintenance of aerobic performance was accompanied by a muted transcriptional response. This included a return of metabolic genes to baseline levels of expression and downregulation of transcripts involved in protein synthesis, most of which indicate recourse to hypometabolism and/or physiological impairment. We conclude that adverse ecological effects may occur under moderate hypoxia through compromised individual performance and, therefore, even modest declines in future oxygen levels may pose a significant challenge to coastal ecosystems.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lucy M Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Velázquez-Lizárraga AE, Juárez-Morales JL, Racotta IS, Villarreal-Colmenares H, Valdes-Lopez O, Luna-González A, Rodríguez-Jaramillo C, Estrada N, Ascencio F. Transcriptomic analysis of Pacific white shrimp (Litopenaeus vannamei, Boone 1931) in response to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. PLoS One 2019; 14:e0220993. [PMID: 31408485 PMCID: PMC6692014 DOI: 10.1371/journal.pone.0220993] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by marine bacteria Vibrio Parahaemolyticus, is a huge problem in shrimp farms. The V. parahaemolyticus infecting material is contained in a plasmid which encodes for the lethal toxins PirABVp, whose primary target tissue is the hepatopancreas, causing sloughing of epithelial cells, necrosis, and massive hemocyte infiltration. To get a better understanding of the hepatopancreas response during AHPND, juvenile shrimp Litopenaeus vannamei were infected by immersion with V. parahaemolyticus. We performed transcriptomic mRNA sequencing of infected shrimp hepatopancreas, at 24 hours post-infection, to identify novel differentially expressed genes a total of 174,098 transcripts were examined of which 915 transcripts were found differentially expressed after comparative transcriptomic analysis: 442 up-regulated and 473 down-regulated transcripts. Gene Ontology term enrichment analysis for up-regulated transcripts includes metabolic process, regulation of programmed cell death, carbohydrate metabolic process, and biological adhesion, whereas for down-regulated transcripts include, microtubule-based process, cell activation, and chitin metabolic process. The analysis of protein- protein network between up and down-regulated genes indicates that the first gene interactions are connected to oxidation-processes and sarcomere organization. Additionally, protein-protein networks analysis identified 20-top highly connected hub nodes. Based on their immunological or metabolic function, ten candidate transcripts were selected to measure their mRNA relative expression levels in AHPND infected shrimp hepatopancreas by RT-qPCR. Our results indicate a close connection between the immune and metabolism systems during AHPND infection. Our RNA-Seq and RT-qPCR data provide the possible immunological and physiological scenario as well as the molecular pathways that take place in the shrimp hepatopancreas in response to an infectious disease.
Collapse
Affiliation(s)
- Adrián E. Velázquez-Lizárraga
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - José Luis Juárez-Morales
- Programa de Cátedras CONACyT, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Ilie S. Racotta
- Laboratorio de Metabolismo Energético, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Humberto Villarreal-Colmenares
- Parque de Innovación Tecnológica, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Oswaldo Valdes-Lopez
- Departamento de Bioquímica, Facultad de Estudios Superiores – Universidad Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Antonio Luna-González
- Departamento de Acuacultura. Instituto Politécnico Nacional-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa (IPN-CIIDIR Sinaloa), Guasave, Sinaloa, México
| | - Carmen Rodríguez-Jaramillo
- Laboratorio de Histología, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Norma Estrada
- Programa de Cátedras CONACyT, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| |
Collapse
|
7
|
Truebano M, Tills O, Collins M, Clarke C, Shipsides E, Wheatley C, Spicer JI. Short-term acclimation in adults does not predict offspring acclimation potential to hypoxia. Sci Rep 2018; 8:3174. [PMID: 29453345 PMCID: PMC5816618 DOI: 10.1038/s41598-018-21490-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of hypoxic areas in coastal waters is predicted to increase and lead to reduced biodiversity. While the adult stages of many estuarine invertebrates can cope with short periods of hypoxia, it remains unclear whether that ability is present if animals are bred and reared under chronic hypoxia. We firstly investigated the effect of moderate, short-term environmental hypoxia (40% air saturation for one week) on metabolic performance in adults of an estuarine amphipod, and the fitness consequences of prolonged exposure. We then reared the offspring of hypoxia-exposed parents under hypoxia, and assessed their oxyregulatory ability under declining oxygen tensions as juveniles and adults. Adults from the parental generation were able to acclimate their metabolism to hypoxia after one week, employing mechanisms typically associated with prolonged exposure. Their progeny, however, did not develop the adult pattern of respiratory regulation when reared under chronic hypoxia, but instead exhibited a poorer oxyregulatory ability than their parents. We conclude that species apparently hypoxia-tolerant when tested in short-term experiments, could be physiologically compromised as adults if they develop under hypoxia. Consequently, we propose that the increased prevalence of hypoxia in coastal regions will have marked effects in some species currently considered hypoxia tolerant.
Collapse
Affiliation(s)
- Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK.
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| | - Michael Collins
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| | - Charlotte Clarke
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| | - Emma Shipsides
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| | - Charlotte Wheatley
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, UK
| |
Collapse
|
8
|
Lehtonen MP, Burnett LE. Effects of Hypoxia and Hypercapnic Hypoxia on Oxygen Transport and Acid-Base Status in the Atlantic Blue Crab, Callinectes sapidus, During Exercise. ACTA ACUST UNITED AC 2016; 325:598-609. [PMID: 27901314 DOI: 10.1002/jez.2054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022]
Abstract
The responses of estuarine invertebrates to hypoxic conditions are well established. However, many studies have investigated hypoxia as an isolated condition despite its frequent co-occurrence with hypercapnia (elevated CO2 ). Although many studies suggest deleterious effects, hypercapnia has been observed to improve blue crab walking performance in hypoxia. To investigate the physiological effects of combined hypercapnic hypoxia, we measured Po2 , pH, [l-lactate], Pco2 , and total O2 in pre- and postbranchial hemolymph sampled from blue crabs during walking exercise. Crabs walked at 8 m min-1 on an aquatic treadmill in normoxic (100% air saturation), moderately hypoxic (50%), and severely hypoxic (20%) seawater with and without the addition of hypercapnia (about 2% CO2 ). Respiration was almost completely aerobic in normoxic conditions, with little buildup of lactate. During exercise under severe hypoxia, lactate increased from 1.4 to 11.0 mM, indicating a heavy reliance on anaerobic respiration. The O2 saturation of arterial hemocyanin was 47% in severe hypoxia after 120 min, significantly lower than in normoxia (80%). However, the addition of hypercapnia significantly increased the percentage saturation of arterial hemocyanin in severe hypoxia to 92% after 120 min of exercise, equivalent to normoxic levels. Hypercapnia in severe hypoxia also caused a marked increase in hemolymph Pco2 (around 1.1 kPa), but caused only a minor decrease in pH of 0.1 units. We suggest that the improved O2 saturation at the gills results from a specific effect of molecular CO2 on hemocyanin oxygen binding affinity, which works independently of and counter to the effects of decreased pH.
Collapse
Affiliation(s)
- Mark P Lehtonen
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina.,Hollings Marine Laboratory, Charleston, South Carolina
| | - Louis E Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina.,Hollings Marine Laboratory, Charleston, South Carolina
| |
Collapse
|
9
|
Lu Y, Zhang D, Wang F, Dong S. Hypothermal effects on survival, energy homeostasis and expression of energy-related genes of swimming crabs Portunus trituberculatus during air exposure. J Therm Biol 2016; 60:33-40. [DOI: 10.1016/j.jtherbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023]
|
10
|
Johnson JG, Burnett LE, Burnett KG. Uncovering Hemocyanin Subunit Heterogeneity in Penaeid Shrimp using RNA-Seq. Integr Comp Biol 2016; 56:1080-1091. [DOI: 10.1093/icb/icw088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
ATP-consuming processes in hepatocytes of river lamprey Lampetra fluviatilis on the course of prespawning starvation. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:95-100. [PMID: 27399971 DOI: 10.1016/j.cbpa.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
The work was performed to establish which of the major ATP-consuming processes is the most important for surviving of hepatocytes of female lampreys on the course of prespawning starvation. The requirements of protein synthesis and Na(+)-K(+)-ATPase for ATP in the cells were monitored by the changes in mitochondrial membrane potential (MMP) in the presence of corresponding inhibitors from the peak of metabolic depression (January-February) to the time of recovery from it (March-April) and spawning (May). Integrity of lamprey liver cells was estimated by catalytic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in blood plasma. In January-February, the share of ATP necessary for protein synthesis was 20-22%, whereas before spawning it decreased to 8-11%. Functioning of Na(+)-K(+)-pump required 22% of cellular ATP at the peak of metabolic depression, but 38% and 62% of ATP in March-April and May, respectively. Progression of prespawning period was accompanied by 3.75- and 1.6-fold rise of ALT and AST activities in blood plasma, respectively, whereas de Ritis coefficient decreased from 2.51±0.34 to 0.81±0.08, what indicates severe damage of hepatocyte membranes. Thus, the adaptive strategy of lamprey hepatocytes to develop metabolic depression under conditions of energy limitation is the selective production of proteins necessary for spawning, most probably vitellogenins. As spawning approaches, the maintenance of transmembrane ion gradients, membrane potential and cell volume to prevent premature cell death becomes the priority cell function.
Collapse
|
12
|
Qin F, Shi M, Yuan H, Yuan L, Lu W, Zhang J, Tong J, Song X. Dietary nano-selenium relieves hypoxia stress and, improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2016; 54:481-8. [PMID: 27153751 DOI: 10.1016/j.fsi.2016.04.131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 05/08/2023]
Abstract
Hypoxia is a relevant physiological challenge for crab culture, and the hemolymph plays a crucial role in response to the hypoxia. In a 60 d feeding trial, Chinese mitten crabs (Eriocheir sinensis) fed a diet containing 0.2 mg/kg nano-selenium (nanoSe) showed a significantly increased weight gain rate (WGR) and a reduced feed coefficient (FC) compared to those fed diets with 0, 0.1, 0.4, 0.8, and 1.6 mg/kg nanoSe. Another 90 d feeding trial was conducted to determine the influence of dietary nanoSe on the immune response in juvenile Chinese mitten crabs kept under the condition of hypoxia. The results showed that hypoxia stress resulted in significantly increased hemocyte counts (THC, LGC, SGC, and HC), expression levels of the hemocyanin gene and protein, lactic acid level, and antioxidant capacity (T-AOC activities, SOD activities, GSH-Px and GSH content) in hemolymph supernatant. When these crabs were infected with Aeromonas hydrophila bacteria, hypoxia exposure increased mortality, but it was alleviated by a diet supplemented with 0.2 mg/kg nanoSe. The up-regulative effects of nanoSe (0.2 mg/kg) on antioxidant capacity, hemocyte counts, and hemocyanin expression under hypoxia exposure were further strengthened throughout, whereas lactic acid levels induced by hypoxia stress were restored. Thus, the observations in this study indicate that the level of dietary nanoSe is important in regulating immunity and disease resistance in crabs kept under hypoxia stress.
Collapse
Affiliation(s)
- Fenju Qin
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Miaomiao Shi
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hongxia Yuan
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Linxi Yuan
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou 215123, China
| | - Wenhao Lu
- Taicang Fishery Guidance Station, Suzhou 215400, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Li S, Peng W, Chen X, Geng X, Sun J. Identification and characterization of nascent polypeptide-associated complex alpha from Chinese mitten crab (Eriocheir sinensis): A novel stress and immune response gene in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2016; 48:54-61. [PMID: 26578251 DOI: 10.1016/j.fsi.2015.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/16/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Disease in aquatic animals is tightly linked to environmental challenges and their immune responses are greatly modified by their external environment. The chaperone protein nascent polypeptide-associated complex alpha (NACA) has been suggested to play important roles in the cellular response to stress and immune challenges, while the related biological functions remain largely unknown in invertebrates. In the present study we identified a NACA gene (termed EsNACA) from Chinese mitten crab Eriocheir sinensis and analyzed its expression changes in response to ambient (salinity and pH) stresses and immune challenges. The EsNACA protein is comprised of 209 amino acid residues with a conserved DNA binding domain, a C-Jun binding domain, a NAC domain and an ubiquitin-associated domain and shows the highest sequence identity (87%) with its counterpart in shrimp Penaeus monodon. EsNACA mRNA transcripts are presented in all tested normal tissues with predominant expression in hepatopancreas and lower expression in hemocytes. In addition, EsNACA expression was significantly altered in response to the ambient salinity (15‰ and 30‰ salinities) and pH (pH 6 and 8.5) stresses in gill, hepatopancreas, muscle, hemocytes and intestine tissues. Furthermore, EsNACA gene expression was substantially induced upon LPS and Poly(I:C) immune stimulations in E. sinensis hemocytes in vitro. Finally, EsNACA expression was up-regulated in E. sinensis hemocytes, gill, hepatopancreas, intestine and muscle tissues in response to Vibrio anguillarum challenges in vivo. Taken together, our findings for the first time show that EsNACA is an inducible gene involved in stress and immune response in crustaceans.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
14
|
Johnson JG, Paul MR, Kniffin CD, Anderson PE, Burnett LE, Burnett KG. High CO2 alters the hypoxia response of the Pacific whiteleg shrimp (Litopenaeus vannamei) transcriptome including known and novel hemocyanin isoforms. Physiol Genomics 2015; 47:548-58. [DOI: 10.1152/physiolgenomics.00031.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
Acclimation to low O2 in many organisms involves changes at the level of the transcriptome. Here we used high-throughput RNA sequencing (RNA-Seq) to explore the global transcriptomic response and specific involvement of a suite of hemocyanin (Hc) subunits to low O2 alone and in combination with high CO2, which naturally co-occurs with low O2. Hepatopancreas mRNA of juvenile L. vannamei exposed to air-saturated water, low O2, or low O2/high CO2 for 4 or 24 h was pooled, sequenced (HiSeq 2500) and assembled (Trinity: 52,190 contigs) to create a deep strand-specific reference transcriptome. Annotation of the assembly revealed sequences encoding the previously described small Hc subunit (HcS), and three full-length isoforms of the large subunit (HcL1-3). In addition to this, a previously unidentified full-length Hc subunit was discovered. Phylogenetic analysis demonstrated the subunit to be a β-type Hc subunit (denoted HcB), making this the first report of a β-type hemocyanin subunit in the Penaeoidea. RNAs of individual shrimp were sequenced; regulated genes identified from pairwise comparisons demonstrated a distinct pattern of regulation between prolonged low O2 and low O2/high CO2 treatments by GO term enrichment analysis (Roff-Bentzen, P < 0.0001), showcasing the stabilization of energetically costly translational machinery, mobilization of energy stores, and downregulation of the ubiquitin/proteasomal degradation machinery. Exposure to hypoxia for 24 h resulted in an increase in all of the full-length hemocyanin subunits (HcS, HcL1, HcL2, HcL3, and HcB). The addition of CO2 to hypoxia muted the transcriptomic response of all the Hc subunits to low O2, except for the β-type subunit.
Collapse
Affiliation(s)
- Jillian G. Johnson
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Matthew R. Paul
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Casey D. Kniffin
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Paul E. Anderson
- Department of Computer Science, College of Charleston, Charleston, South Carolina
| | - Louis E. Burnett
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| |
Collapse
|
15
|
Burnett KG, Burnett LE. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects? Integr Comp Biol 2015. [DOI: 10.1093/icb/icv094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Tommerdahl AP, Burnett KG, Burnett LE. Respiratory Properties of Hemocyanin From Wild and Aquacultured Penaeid Shrimp and the Effects of Chronic Exposure to Hypoxia. THE BIOLOGICAL BULLETIN 2015; 228:242-252. [PMID: 26124450 DOI: 10.1086/bblv228n3p242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Properties of hemocyanins vary greatly among crustaceans due to environmental conditions, lifestyle, and genetic variation. These properties can also be modified to maintain aerobic respiration in response to ambient hypoxia, as experienced by both aquacultured and wild populations of penaeid shrimp. Under normoxic conditions, hemocyanin concentrations were significantly higher (P < 0.001) in aquacultured Pacific whiteleg shrimp, Litopenaeus vannamei (10.3 g/100 ml ± 0.23 SEM, n = 49), compared to those in individuals of wild-caught L. vannamei (7.0 g/100 ml ± 0.52 SEM, n = 10), wild Farfantepenaeus aztecus (7.10 g/100 ml ± 0.48 SEM, n = 28), and wild Litopenaeus setiferus (8.0 g/100 ml ± 0.22 SEM, n = 37). Oxygen affinity of hemocyanin at 25 °C in both populations of L. vannamei was higher (Kruskal-Wallis ANOVA on ranks, P < 0.001) (aquacultured P50 = 1.47 kPa ± 0.03 SEM; wild P50 = 1.72 kPa ± 0.01 SEM at pH 7.4) than that of both Atlantic species (F. aztecus P50 = 3.94 kPa ± 0.06 SEM, L. setiferus P50 = 3.98 kPa ± 0.04 SEM at pH 7.4). The effect of l-lactate on oxygen affinity was similar among all wild groups, but significantly smaller in the aquacultured L. vannamei. Total hemocyanin concentration and oxygen binding properties were measured after exposure to 12 days and 25-31 days of hypoxia (30% air saturation). Aquacultured L. vannamei showed no change in hemocyanin concentration for up to 31 days, but both wild F. aztecus and wild L. setiferus displayed a significant increase over the same time period. No discernible change in oxygen affinity of hemocyanin was detected in any of the three species. Hypoxia tolerance appears to differ among these species of penaeid shrimp, due to either an inherent difference among the species, domestication by aquaculture, or a combination of both.
Collapse
Affiliation(s)
- Anna P Tommerdahl
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd., Charleston, South Carolina 29412, and Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, South Carolina 29412
| | - Karen G Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd., Charleston, South Carolina 29412, and Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, South Carolina 29412
| | - Louis E Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd., Charleston, South Carolina 29412, and Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, South Carolina 29412
| |
Collapse
|
17
|
Sandberg K, Verbalis JG, Yosten GLC, Samson WK. Sex and basic science. A Title IX position. Am J Physiol Regul Integr Comp Physiol 2014; 307:R361-5. [PMID: 24944252 PMCID: PMC5504397 DOI: 10.1152/ajpregu.00251.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease and Department of Medicine, Georgetown University, Washington, DC; and
| | - Joseph G Verbalis
- Center for the Study of Sex Differences in Health, Aging and Disease and Department of Medicine, Georgetown University, Washington, DC; and
| | - Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, Missouri
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|