1
|
The Effects of Fenugreek Seed Consumption on Blood Pressure: A Systematic Review and Meta-analysis of Randomized Controlled Trials. High Blood Press Cardiovasc Prev 2023; 30:123-133. [PMID: 36763260 DOI: 10.1007/s40292-023-00565-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) are growing health issues worldwide. Hypertension (HTN) is one of the most common among CVDs in all populations. Fenugreek has recently been the center of multiple investigations. AIM In this systematic review and meta-analysis, we aimed at gathering and summing up the existing literature regarding the impact of fenugreek seed on systolic blood pressure (SBP) and diastolic blood pressure (DBP). METHODS All major databases (MEDLINE, Cochrane library, EMBASE, and Web of Science) were searched from inception up to 28 June 2022. Relevant randomized controlled trials (RCTs) meeting the inclusion criteria were included and the required data was extracted. The pooled effects were reported as weighted mean differences (WMDs). I-squared test was used to detect between-study heterogeneities. Subgroup analyses were conducted to find sources of heterogeneities. P-values < 0.05 were considered as statistically significant. RESULTS Six RCTs including a total of 373 participants were included in the final meta-analysis. Fenugreek seed supplementation significantly reduced SBP (WMD: 3.46 mmHg, 95% CI - 6.33, - 0.59, P=0.018), but not DBP (WMD: 3.19 mmHg; 95% CI, - 5.82 to 12.21, P=0.488). Subgroup analyses showed that fenugreek seed administered in dosages ≥ 15 g/day and durations ≤ 12 weeks significantly reduced SBP and DBP. CONCLUSION Supplementation with fenugreek seed, especially in dosages ≥ 15 g/day and durations ≤ 12 weeks, might play a role in reducing SBP, but not DBP. However, further investigations are warranted to ensure the clinical relevance of these findings.
Collapse
|
2
|
Al-Shamasi AA, Elkaffash R, Mohamed M, Rayan M, Al-Khater D, Gadeau AP, Ahmed R, Hasan A, Eldassouki H, Yalcin HC, Abdul-Ghani M, Mraiche F. Crosstalk between Sodium-Glucose Cotransporter Inhibitors and Sodium-Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. Int J Mol Sci 2021; 22:12677. [PMID: 34884494 PMCID: PMC8657861 DOI: 10.3390/ijms222312677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.
Collapse
Affiliation(s)
- Al-Anood Al-Shamasi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Rozina Elkaffash
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meram Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Dhabya Al-Khater
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alain-Pierre Gadeau
- INSERM, Biology of Cardiovascular Disease, University of Bordeaux, U1034 Pessac, France;
| | - Rashid Ahmed
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Anwarul Hasan
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussein Eldassouki
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 7703, USA;
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Li H, Cheng J, Yuan Y, Luo R, Zhu Z. Age-related intestinal monosaccharides transporters expression and villus surface area increase in broiler and layer chickens. J Anim Physiol Anim Nutr (Berl) 2019; 104:144-155. [PMID: 31556184 DOI: 10.1111/jpn.13211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 11/27/2022]
Abstract
In the chicken small intestine, glucose is mainly transported by the apically located sodium/glucose cotransporter 1 (SGLT1) and the basolaterally located glucose transporter 2 (GLUT2). Fructose is transported by the apically located glucose transporter 5 (GLUT5) and similarly by GLUT2. During the early post-hatching period, the intestinal villus surface area (VSA) should be considered as an important factor related to the monosaccharide absorption capacity. Our objective here was to study intestinal monosaccharide absorption by analyzing the effects of age, diet, and breed on monosaccharide transporters and the VSA. The mRNA expression patterns of SGLT1, GLUT2 and GLUT5 genes in broiler and layer chickens were measured from the day of hatching to day 28 using the absolute quantitative real-time PCR. Both the intestinal mRNA expression levels of these genes and the VSA were affected by age. The mRNA expression levels of SGLT1 and GLUT2 were significantly increased from day 1 to day 3 and then decreased from day 3 to day 28. The expression levels of GLUT5 decreased from day 1 to day 7. The broiler chickens VSAs were significantly larger than those of the layer chickens from days 7 to 28. The effect of diet on the gene expression patterns of these monosaccharide transporters and the VSA were not significant. Our results suggest that the expression levels of these monosaccharide transporters are increased rapidly at the beginning of intestinal growth to meet the demands for monosaccharides to support the fast growth of the chick before day 7. As intestinal maturation and VSA increased, the expression levels of these monosaccharide genes decreased to a certain expression level to maintain the intestinal transport capacity and the absorption balance of all other nutrients.
Collapse
Affiliation(s)
- Huifeng Li
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
| | - Jin Cheng
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
| | - Yitong Yuan
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
| | - Rong Luo
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
| | - Zhiwei Zhu
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
4
|
Xiong S, Li Q, Liu D, Zhu Z. Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Curr Hypertens Rep 2018; 19:31. [PMID: 28349378 DOI: 10.1007/s11906-017-0726-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathogenesis of hypertension remains elusive. Current treatments on hypertension have only achieved modest reductions. Facilitating theoretical research and looking for new therapeutic strategy are urgently needed. Besides food digestion and nutrients absorption, the gastrointestinal tract (GI) has been shown to influence the status of the central nervous system, immune system, metabolism, and cardiovascular homeostasis. Emerging findings demonstrate that endogenous factors derived from GI including gut hormones, autonomic nerve, and gut microbiota play important roles in the regulation of vascular function and/or blood pressure. Meanwhile, evidences from clinical practice and experimental study have found that intervention in GI through metabolic surgery, probiotics consumption, and dietary modification can efficiently ameliorate or even remit hypertension and related cardiometabolic diseases. Thus, we propose that GI might be an initiating organ of hypertension and a promising target for the management of hypertension. Further, illuminating this concept may aid to understand the pathogenesis and control of hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. RECENT FINDINGS Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. SUMMARY SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2.
Collapse
|
6
|
Chan LKY, Leung PS. Multifaceted interplay among mediators and regulators of intestinal glucose absorption: potential impacts on diabetes research and treatment. Am J Physiol Endocrinol Metab 2015; 309:E887-99. [PMID: 26487007 DOI: 10.1152/ajpendo.00373.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022]
Abstract
Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.
Collapse
Affiliation(s)
- Leo Ka Yu Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Influence of two depuration periods on the activity and transcription of antioxidant enzymes in tilapia exposed to repeated doses of cylindrospermopsin under laboratory conditions. Toxins (Basel) 2014; 6:1062-79. [PMID: 24632554 PMCID: PMC3968377 DOI: 10.3390/toxins6031062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022] Open
Abstract
The cyanobacterial toxin Cylindrospermopsin (CYN), a potent protein synthesis inhibitor, is increasingly being found in freshwater bodies infested by cyanobacterial blooms worldwide. Moreover, it has been reported to be implicated in human intoxications and animal mortality. Recently, the alteration of the activity and gene expression of some glutathione related enzymes in tilapias (Oreochromis niloticus) exposed to a single dose of CYN has been reported. However, little is known about the effects induced by repeated doses of this toxin in tilapias exposed by immersion and the potential reversion of these biochemical alterations after two different depuration periods (3 or 7 days). In the present study, tilapias were exposed by immersion to repeated doses of a CYN-containing culture of Aphanizomenon ovalisporum during 14 days, and then were subjected to depuration periods (3 or 7 days) in clean water in order to examine the potential reversion of the effects observed. The activity and relative mRNA expression by real-time polymerase chain reaction (PCR) of the antioxidant enzymes glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST), and also the sGST protein abundance by Western blot analysis were evaluated in liver and kidney of fish. Results showed significant alterations in most of the parameters evaluated and their recovery after 3 days (GPx activity, sGST relative abundance) or 7 days (GPx gene expression, sGST activity). These findings not only confirm the oxidative stress effects produced in fish by cyanobacterial cells containing CYN, but also show the effectiveness of depuration processes in mitigating the CYN-containing culture toxic effects.
Collapse
|
8
|
Regulation of sodium glucose co-transporter SGLT1 through altered glycosylation in the intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1208-14. [PMID: 24412219 DOI: 10.1016/j.bbamem.2014.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
Inhibition of constitutive nitric oxide (cNO) production inhibits SGLT1 activity by a reduction in the affinity for glucose without a change in Vmax in intestinal epithelial cells (IEC-18). Thus, we studied the intracellular pathway responsible for the posttranslational modification/s of SGLT1. NO is known to mediate its effects via cGMP which is diminished tenfold in L-NAME treated cells. Inhibition of cGMP production at the level of guanylyl cyclase or inhibition of protein kinase G also showed reduced SGLT1 activity demonstrating the involvement of PKG pathway in the regulation of SGLT1 activity. Metabolic labeling and immunoprecipitation with anti-SGLT1 specific antibodies did not show any significant changes in phosphorylation of SGLT1 protein. Tunicamycin to inhibit glycosylation reduced SGLT1 activity comparable to that seen with L-NAME treatment. The mechanism of inhibition was secondary to decreased affinity without a change in Vmax. Immunoblots of luminal membranes from tunicamycin treated or L-NAME treated IEC-18 cells showed a decrease in the apparent molecular size of SGLT1 protein to 62 and 67 kD, respectively suggesting an alteration in protein glycosylation. The deglycosylation assay with PNGase-F treatment reduced the apparent molecular size of the specific immunoreactive band of SGLT1 from control and L-NAME treated IEC-18 cells to approximately 62 kD from their original molecular size of 75 kD and 67 kD, respectively. Thus, the posttranslational mechanism responsible for the altered affinity of SGLT1 when cNO is diminished is secondary to altered glycosylation of SGLT1 protein. The intracellular pathway responsible for this alteration is cGMP and its dependent kinase.
Collapse
|
9
|
Gutiérrez-Praena D, Jos A, Pichardo S, Puerto M, Cameán AM. Influence of the exposure way and the time of sacrifice on the effects induced by a single dose of pure Cylindrospermopsin on the activity and transcription of glutathione peroxidase and glutathione-S-transferase enzymes in Tilapia (Oreochromis niloticus). CHEMOSPHERE 2013; 90:986-992. [PMID: 22850279 DOI: 10.1016/j.chemosphere.2012.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/28/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Cylindrospermopsin is a cyanobacterial toxin frequently implicated in cyanobacterial blooms that is approaching an almost cosmopolitan distribution pattern. Moreover, the predominant extracellular availability of this cyanotoxin makes it particularly likely to be taken up by a variety of aquatic organisms including fish. Recently, Cylindrospermopsin has shown to alter the activity and gene expression of some of the glutathione related enzymes in tilapias (Oreochromis niloticus), but little is known about the influence of the route of exposure and the time of sacrifice after a single exposure to Cylindrospermopsin on these biomarkers. With this aim, tilapias were exposed by gavage or by intraperitoneal injection to a single dose of 200 μg kg(-1) bw of pure Cylindrospermopsin and after 24h or 5d they were sacrificed. The activity and relative mRNA expression by real-time PCR of antioxidant enzymes glutathione peroxidase and soluble glutathione-S-transferases (sGST) and the sGST protein abundance by Western blot analysis were evaluated in liver and kidney. Results showed differential responses in dependence on the variables considered with a higher toxicity with the intraperitoneal exposure and with 5d as time of sacrifice.
Collapse
|
10
|
Reichardt SD, Föller M, Rexhepaj R, Pathare G, Minnich K, Tuckermann JP, Lang F, Reichardt HM. Glucocorticoids enhance intestinal glucose uptake via the dimerized glucocorticoid receptor in enterocytes. Endocrinology 2012; 153:1783-94. [PMID: 22294744 DOI: 10.1210/en.2011-1747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GR(villinCre) mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GR(dim) mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na(+)/H(+) exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GR(villinCre) mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GR(dim) mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.
Collapse
Affiliation(s)
- Sybille D Reichardt
- Department of Cellular and Molecular Immunology, University of Göttingen Medical School, Göttingen 37073, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Puerto M, Jos A, Pichardo S, Gutiérrez-Praena D, Cameán AM. Acute effects of pure cylindrospermopsin on the activity and transcription of antioxidant enzymes in tilapia (Oreochromis niloticus) exposed by gavage. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1852-1860. [PMID: 21695509 DOI: 10.1007/s10646-011-0723-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2011] [Indexed: 05/30/2023]
Abstract
The cyanobacterial toxin cylindrospermopsin (CYN) is a widely distributed contaminant of freshwater systems with the consequent risk for human and wildlife, particularly fish. However, CYN toxicity data on fish are still scarce. It is known that CYN inhibits glutathione synthesis and this could contribute to oxidative damage. In the present work tilapia (Oreochromis niloticus) were exposed by gavage to 200 and 400 μg/kg bw of pure CYN and sacrificed after 24 h. The activity and relative mRNA expression by real-time PCR of antioxidant enzymes glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST) and the sGST protein abundance by Western blot analysis were evaluated in liver and kidney. Also the induction of lipid peroxidation (LPO) was assayed. Results show an increase of LPO products in both organs. Moreover, CYN altered the activity, gene expression and protein abundance of the enzymes, indicating the importance of GPx and sGST in CYN pathogenicity. This is the first time that CYN is reported to affect these enzymes in fish and they have shown to be responsive biomarkers of CYN toxicity.
Collapse
Affiliation(s)
- María Puerto
- Faculty of Pharmacy, Area of Toxicology, Profesor García González 2, 41012, Seville, Spain
| | | | | | | | | |
Collapse
|
12
|
Puerto M, Gutiérrez-Praena D, Prieto AI, Pichardo S, Jos A, Miguel-Carrasco JL, Vazquez CM, Cameán AM. Subchronic effects of cyanobacterial cells on the transcription of antioxidant enzyme genes in tilapia (Oreochromis niloticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:479-490. [PMID: 21279735 DOI: 10.1007/s10646-011-0600-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The increasing occurrence of toxic cyanobacterial blooms in eutrophic water bodies is nowadays of worldwide concern due to their ability to produce toxins such as microcystins (MCs). These cyanobacterial toxins have been shown to affect aquatic organisms such as fish, resulting in oxidative stress. Among the antioxidant enzymes, glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST) play an important role in the detoxification of MCs. In the present work tilapia (Oreochromis niloticus) were orally exposed to cyanobacterial cells containing MCs and non-containing MCs for 21 days. The activity and relative mRNA expression by real-time PCR of both enzymes and the GST protein abundance by Western blot analysis were evaluated in liver and kidney. Also the induction of lipid peroxidation (LPO) was assayed. MCs containing cyanobacterial cells induced an increase of LPO products in both organs, and MCs containing and MCs non-containing cyanobacterial cells altered the activity, gene expression and protein abundance of the enzymes, indicating the importance of GPx and sGST in MCs detoxification. Moreover, liver, the main organ involved in biodegradation and biotransformation, experienced an adaptative response to the toxic insult. These results show for the first time that the subchronic exposure to cyanobacterial cells causes changes in antioxidant and detoxification enzymes and that GPx and GST gene expression are good markers of these alterations in tilapia.
Collapse
Affiliation(s)
- María Puerto
- Area of Toxicology, Faculty of Pharmacy, Profesor García González 2, 41012, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Miguel-Carrasco JL, Zambrano S, Blanca AJ, Mate A, Vázquez CM. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. JOURNAL OF INFLAMMATION-LONDON 2010; 7:21. [PMID: 20462420 PMCID: PMC2879251 DOI: 10.1186/1476-9255-7-21] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/12/2010] [Indexed: 01/07/2023]
Abstract
Background Captopril is an angiotensin-converting enzyme (ACE) inhibitor widely used in the treatment of arterial hypertension and cardiovascular diseases. Our objective was to study whether captopril is able to attenuate the cardiac inflammatory process associated with arterial hypertension. Methods Left ventricle mRNA expression and plasma levels of pro-inflammatory (interleukin-1β (IL-1β) and IL-6) and anti-inflammatory (IL-10) cytokines, were measured in spontaneously hypertensive rats (SHR) and their control normotensive, Wistar-Kyoto (WKY) rats, with or without a 12-week treatment with captopril (80 mg/Kg/day; n = six animals per group). To understand the mechanisms involved in the effect of captopril, mRNA expression of ACE, angiotensin II type I receptor (AT1R) and p22phox (a subunit of NADPH oxidase), as well as NF-κB activation and expression, were measured in the left ventricle of these animals. Results In SHR, the observed increases in blood pressures, heart rate, left ventricle relative weight, plasma levels and cardiac mRNA expression of IL-1β and IL-6, as well as the reductions in the plasma levels and in the cardiac mRNA expression of IL-10, were reversed after the treatment with captopril. Moreover, the mRNA expressions of ACE, AT1R and p22phox, which were enhanced in the left ventricle of SHR, were reduced to normal values after captopril treatment. Finally, SHR presented an elevated cardiac mRNA expression and activation of the transcription nuclear factor, NF-κB, accompanied by a reduced expression of its inhibitor, IκB; captopril administration corrected the observed changes in all these parameters. Conclusion These findings show that captopril decreases the inflammation process in the left ventricle of hypertensive rats and suggest that NF-κB-driven inflammatory reactivity might be responsible for this effect through an inactivation of NF-κB-dependent pro-inflammatory factors.
Collapse
Affiliation(s)
- José L Miguel-Carrasco
- Departamento de Fisiología y Zoología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
14
|
Luo X, Yin P, Reierstad S, Ishikawa H, Lin Z, Pavone ME, Zhao H, Marsh EE, Bulun SE. Progesterone and mifepristone regulate L-type amino acid transporter 2 and 4F2 heavy chain expression in uterine leiomyoma cells. J Clin Endocrinol Metab 2009; 94:4533-9. [PMID: 19808856 PMCID: PMC2775649 DOI: 10.1210/jc.2009-1286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Progesterone and its receptor (PR) play key roles in uterine leiomyoma growth. Previously, using chromatin immunoprecipitation-based cloning, we uncovered L-type amino acid transporter 2 (LAT2) as a novel PR target gene. LAT2 forms heterodimeric complexes with 4F2 heavy chain (4F2hc), a single transmembrane domain protein essential for LAT2 to exert its function in the plasma membrane. Until now, little is known about the roles of LAT2/4F2hc in the regulation of the growth of human uterine leiomyoma. OBJECTIVE The aim of the study is to investigate the regulation of LAT2 and 4F2hc by progesterone and the antiprogestin mifepristone and their functions in primary human uterine leiomyoma smooth muscle (LSM) cells and tissues from 39 premenopausal women. RESULTS In primary LSM cells, progesterone significantly induced LAT2 mRNA levels, and this was blocked by cotreatment with mifepristone. Progesterone did not alter 4F2hc mRNA levels, whereas mifepristone significantly induced 4F2hc mRNA expression. Small interfering RNA knockdown of LAT2 or 4F2hc markedly increased LSM cell proliferation. LAT2, PR-B, and PR-A levels were significantly higher in freshly isolated LSM cells vs. adjacent myometrial cells. In vivo, mRNA levels of LAT2 and PR but not 4F2hc were significantly higher in leiomyoma tissues compared with matched myometrial tissues. CONCLUSION We present evidence that progesterone and its antagonist mifepristone regulate the amino acid transporter system LAT2/4F2hc in leiomyoma tissues and cells. Our findings suggest that products of the LAT2/4F2hc genes may play important roles in leiomyoma cell proliferation. We speculate that critical ratios of LAT2 to 4F2hc regulate leiomyoma growth.
Collapse
Affiliation(s)
- Xia Luo
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem 2008; 313:1-10. [PMID: 18347756 DOI: 10.1007/s11010-008-9735-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/25/2008] [Indexed: 01/11/2023]
Abstract
Overexpression of renal LAT2, a Na+ -independent L-amino acid transporter, in spontaneous hypertensive rats (SHR) is organ specific and precedes the onset of hypertension (Pinho et al., Hypertension, 42:613-618, 2003). However, the expression of LAT2 correlates negatively with plasma aldosterone levels after high sodium intake (Pinho et al., Am J Physiol Ren Physiol 292:F1452-F1463, 2007). The present study evaluated the expression of Na+ -independent LAT1, LAT2, and 4F2hc and Na+ -dependent ASCT2 amino acid transporters in the intestine of normotensive Wistar rats chronically treated with aldosterone. In conditions of high salt intake, to keep endogenous aldosterone to a minimum, rats were implanted with aldosterone or spironolactone tablets. In aldosterone-treated and aldosterone + spironolactone-treated rats, aldosterone plasma levels were increased by fourfold. At the protein level, aldosterone treatment significantly increased LAT1 (62%), LAT2 (49%), 4F2hc (48%), and ASCT2 (65%) expression. The effect of aldosterone upon LAT1, LAT2, 4F2hc, and ASCT2 protein abundance was completely reversed by spironolactone. Aldosterone significantly increased intestinal LAT2 and 4F2hc mRNA levels (27% and 35% increase, respectively), with no changes in LAT1 and ASCT2 transcript levels. In conclusion, increases in intestinal Na+ -independent LAT1 and LAT2 and Na+ -dependent ASCT2 transcript and protein abundance during chronic treatment with aldosterone occur through a spironolactone-sensitive genomic mechanism.
Collapse
Affiliation(s)
- João S Amaral
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
16
|
Aouameur R, Da Cal S, Bissonnette P, Coady MJ, Lapointe JY. SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1300-7. [PMID: 17932225 DOI: 10.1152/ajpgi.00422.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study presents the characterization of myo-inositol (MI) uptake in rat intestine as evaluated by use of purified membrane preparations. Three secondary active MI cotransporters have been identified; two are Na(+) coupled (SMIT1 and SMIT2) and one is H(+) coupled (HMIT). Through inhibition studies using selective substrates such as d-chiro-inositol (DCI, specific for SMIT2) and l-fucose (specific for SMIT1), we show that SMIT2 is exclusively responsible for apical MI transport in rat intestine; rabbit intestine appears to lack apical transport of MI. Other sugar transport systems known to be present in apical membranes, such as SGLT1 or GLUT5, lacked any significant contribution to MI uptake. Functional analysis of rat SMIT2 activity, via electrophysiological studies in Xenopus oocytes, demonstrated similarities to the activities of SMIT2 from other species (rabbit and human) displaying high affinities for MI (0.150 +/- 0.040 mM), DCI (0.31 +/- 0.06 mM), and phlorizin (Pz; 0.016 +/- 0.007 mM); low affinity for glucose (36 +/- 7 mM); and no affinity for l-fucose. Although these functional characteristics essentially confirmed those found in rat intestinal apical membranes, a unique discrepancy was seen between the two systems studied in that the affinity constant for glucose was approximately 40-fold lower in vesicles (K(i) = 0.94 +/- 0.35 mM) than in oocytes. Finally, the transport system responsible for the basolateral efflux transporter of glucose in intestine, GLUT2, did not mediate any significant radiolabeled MI uptake in oocytes, indicating that this transport system does not participate in the basolateral exit of MI from small intestine.
Collapse
Affiliation(s)
- Rym Aouameur
- Groupe d'étude des protéines membranaires (GEPROM), Département de Physiologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7
| | | | | | | | | |
Collapse
|
17
|
Gómez-Amores L, Mate A, Miguel-Carrasco JL, Jiménez L, Jos A, Cameán AM, Revilla E, Santa-María C, Vázquez CM. l-Carnitine attenuates oxidative stress in hypertensive rats. J Nutr Biochem 2007; 18:533-40. [PMID: 17142029 DOI: 10.1016/j.jnutbio.2006.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/08/2006] [Accepted: 10/02/2006] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate whether l-carnitine (LC) protects the vascular endothelium and tissues against oxidative damage in hypertension. Antioxidant enzyme activities, glutathione and lipid peroxidation were measured in the liver and heart of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Nitrite and nitrate levels and total antioxidant status (TAS) were evaluated in plasma, and the expression of endothelial nitric oxide synthase (eNOS) and p22phox subunit of NAD(P)H oxidase was determined in aorta. Glutathione peroxidase activity was lower in SHR than in WKY rats, and LC increased this activity in SHR up to values close to those observed in normotensive animals. Glutathione reductase and catalase activities, which were higher in SHR, tended to increase after LC treatment. No differences were found in the activity of superoxide dismutase among any animal group. The ratio between reduced and oxidized glutathione and the levels of lipid peroxidation were respectively decreased and increased in hypertensive rats, and both parameters were normalized after the treatment. Similarly, LC was able to reverse the reduced plasma nitrite and nitrate levels and TAS observed in SHR. We found no alterations in the expression of aortic eNOS among any group; however, p22phox mRNA levels showed an increase in SHR that was reversed by LC. In conclusion, chronic administration of LC leads to an increase in hepatic and cardiac antioxidant defense and a reduction in the systemic oxidative process in SHR. Therefore, LC might increase NO availability in SHR aorta by a reduction in superoxide anion production.
Collapse
Affiliation(s)
- Lucía Gómez-Amores
- Department of Physiology and Zoology, Faculty of Pharmacy, University of Seville, E-41012 Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sironi C, Bodega F, Porta C, Zocchi L, Agostoni E. Expression of Na+-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura. Respir Physiol Neurobiol 2007; 159:68-75. [PMID: 17652034 DOI: 10.1016/j.resp.2007.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/21/2007] [Accepted: 05/25/2007] [Indexed: 11/25/2022]
Abstract
Indirect evidence for a solute-coupled liquid absorption from rabbit pleural space indicated that it should be caused by a Na(+)/H(+)-Cl(-)/HCO(3)(-) double exchanger and a Na(+)-glucose cotransporter [Agostoni, E., Zocchi, L., 1998. Mechanical coupling and liquid exchanges in the pleural space. In: Antony, V.B. (Ed.), Clinics in Chest Medicine: Diseases of the Pleura, vol. 19. Saunders, Philadelphia, pp. 241-260]. In this research we tried to obtain molecular evidence for Na(+)-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura. To this end we performed immunoblot assays on total protein extracts of scraped visceral or parietal mesothelium of rabbits. These showed two bands: one at 72kDa (m.w. of SGLT1), and one at 55kDa (which should also provide Na(+)-glucose cotransport). Both bands disappeared in assays in which SGLT1 antibody was preadsorbed with specific antigen. Molecular evidence for Na(+)/K(+) ATPase (alpha1 subunit) was also provided. Immunoblot assays for SGLT1 on cultured mesothelial cells of rabbit pleura showed a band at 72kDa, and in some cases also at 55kDa, irrespectively of treatment with a differentiating agent. Solute-coupled liquid absorption hinders liquid filtration through parietal mesothelium caused by Starling forces, and favours liquid absorption through visceral mesothelium caused by these forces.
Collapse
Affiliation(s)
- Chiara Sironi
- Istituto di Fisiologia Umana I, Università di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|