1
|
Farmer GE, Cunningham JT. Spontaneous and evoked angiotensin II sniffer cell activity in the lamina terminalis in vitro. Am J Physiol Regul Integr Comp Physiol 2024; 327:R486-R496. [PMID: 39133776 PMCID: PMC11563642 DOI: 10.1152/ajpregu.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 10/11/2024]
Abstract
Angiotensin II (ANG II) has been shown to have central nervous system effects. Although tissue renin-angiotensin systems (RAS) have been demonstrated in multiple tissues, the existence of a brain RAS is still a matter of debate. These studies test for angiotensin release from brain slices prepared from adult male Sprague-Dawley rats and male and female renin knock-out rats using Chinese hamster ovary cells modified to express both the angiotensin II type 1 receptor and a fluorescent calcium indicator. Sniffer cells were placed on the slices and calcium transients were measured from those located on or adjacent to the median preoptic nucleus with and without stimulation of the subfornical organ. Bath application of tetrodotoxin (1 µM) significantly attenuated spontaneous events while abolishing evoked sniffer cell activity. Bath application of dl-AP4 (10 µM, glutamatergic antagonist) did not affect either spontaneous or evoked release. Incubating the slices with fluorocitrate to inactive astrocytes did not influence sniffer cell activity in the MnPO. Pharmacological experiments indicate that ANG II release is largely both renin (aliskiren 10 µM) and ACE-1 (captopril 100 µM) dependent. However, experiments with brain slices prepared from male and female Renin knock-out rats suggest that alternative synthetic pathways may exist. Finally, these studies demonstrate that increases in ANG II release are observed following 7 days of chronic intermittent hypoxia. These studies suggest the existence of a tissue-specific RAS in the brain that involves canonical and alternative ANG II synthetic pathways and is upregulated in an animal model of sleep apnea.NEW & NOTEWORTHY These studies used Chinese hamster ovary cells that were cloned to express an angiotensin receptor (At1ra) and a calcium indicator (R-GECO) to detect the release of angiotensin from brain slices containing the lamina terminalis of rats. Some of the experiments use tissue from renin knockout rats. The results support the existence of an angiotensin system in the brain that may involve alternative synthetic pathways and is upregulated by intermittent hypoxia.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| |
Collapse
|
2
|
Appiah CB, Gardner JJ, Farmer GE, Cunningham RL, Cunningham JT. Chronic intermittent hypoxia-induced hypertension: the impact of sex hormones. Am J Physiol Regul Integr Comp Physiol 2024; 326:R333-R345. [PMID: 38406843 PMCID: PMC11381015 DOI: 10.1152/ajpregu.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.
Collapse
Affiliation(s)
- Cephas B Appiah
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - George E Farmer
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Takeda Y, Kimura F, Takasawa S. Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia. Life (Basel) 2024; 14:157. [PMID: 38276286 PMCID: PMC10821044 DOI: 10.3390/life14010157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Intermittent hypoxia (IH) is a central characteristic of sleep apnea syndrome (SAS), and it subjects cells in the body to repetitive apnea, chronic hypoxia, oxygen desaturation, and hypercapnia. Since SAS is linked to various serious cardiovascular complications, especially hypertension, many studies have been conducted to elucidate the mechanism of hypertension induced by SAS/IH. Hypertension in SAS is associated with numerous cardiovascular disorders. As hypertension is the most common complication of SAS, cell and animal models to study SAS/IH have developed and provided lots of hints for elucidating the molecular mechanisms of hypertension induced by IH. However, the detailed mechanisms are obscure and under investigation. This review outlines the molecular mechanisms of hypertension in IH, which include the regulation systems of reactive oxygen species (ROS) that activate the renin-angiotensin system (RAS) and catecholamine biosynthesis in the sympathetic nervous system, resulting in hypertension. And hypoxia-inducible factors (HIFs), Endotheline 1 (ET-1), and inflammatory factors are also mentioned. In addition, we will discuss the influences of SAS/IH in cardiovascular dysfunction and the relationship of microRNA (miRNA)s to regulate the key molecules in each mechanism, which has become more apparent in recent years. These findings provide insight into the pathogenesis of SAS and help in the development of future treatments.
Collapse
Affiliation(s)
- Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan;
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| |
Collapse
|
4
|
Pittman QJ. Vasopressin and central control of the cardiovascular system: A 40-year retrospective. J Neuroendocrinol 2021; 33:e13011. [PMID: 34235812 DOI: 10.1111/jne.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
In the 40 years since vasopressin (AVP) was reported to have a central action with respect to raising blood pressure, the finding has been repeatedly replicated using a variety of complimentary approaches. The role of AVP as a central neurotransmitter involved in control of the cardiovascular system is now textbook material. However, it is evident that brain AVP plays, at best, a minor role in regulation of normal blood pressure. However, it appears to be an important player in a several cardiovascular-associated pathologies, ranging from hypertension to neural changes associated with heart failure. There are many interventions that have been shown to affect neural function, many of which are associated with alterations in behaviour. Possible alterations in neuronal AVP actions relevant to cardiovascular control in the setting of chronic inflammatory disease, early-life stress and inflammation are suggested areas for future research.
Collapse
Affiliation(s)
- Quentin J Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Farmer GE, Little JT, Marciante AB, Cunningham JT. AT1a-dependent GABA A inhibition in the MnPO following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R469-R481. [PMID: 34189959 PMCID: PMC8530756 DOI: 10.1152/ajpregu.00030.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypoxia (CIH) is associated with diurnal hypertension, increased sympathetic nerve activity (SNA), and increases in circulating angiotensin II (ANG II). In rats, CIH increases angiotensin type 1 (AT1a) receptor expression in the median preoptic nucleus (MnPO), and pharmacological blockade or viral knockdown of this receptor prevents CIH-dependent increases in diurnal blood pressure. The current study investigates the role of AT1a receptor in modulating the activity of MnPO neurons following 7 days of CIH. Male Sprague-Dawley rats received MnPO injections of an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. Rats were then exposed to CIH for 8 h a day for 7 days. In vitro, loose patch recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. In addition, MnPO K-Cl cotransporter isoform 2 (KCC2) protein expression was assessed using Western blot. CIH impaired the duration but not the magnitude of ANG II-mediated excitation in the MnPO. Both CIH and AT1a knockdown also impaired GABAA-mediated inhibition, and CIH with AT1a knockdown produced GABAA-mediated excitation. Recordings using the ratiometric Cl- indicator ClopHensorN showed CIH was associated with Cl- efflux in MnPO neurons that was associated with decreased KCC2 phosphorylation. The combination of CIH and AT1a knockdown attenuated reduced KCC2 phosphorylation seen with CIH alone. The current study shows that CIH, through the activity of AT1a receptors, can impair GABAA-mediated inhibition in the MnPO and contribute to sustained hypertension.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
6
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Marciante AB, Shell B, Farmer GE, Cunningham JT. Role of angiotensin II in chronic intermittent hypoxia-induced hypertension and cognitive decline. Am J Physiol Regul Integr Comp Physiol 2021; 320:R519-R525. [PMID: 33595364 PMCID: PMC8238144 DOI: 10.1152/ajpregu.00222.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 02/03/2023]
Abstract
Sleep apnea is characterized by momentary interruptions in normal respiration and leads to periods of decreased oxygen, or intermittent hypoxia. Chronic intermittent hypoxia is a model of the hypoxemia associated with sleep apnea and results in a sustained hypertension that is maintained during normoxia. Adaptations of the carotid body and activation of the renin-angiotensin system may contribute to the development of hypertension associated with chronic intermittent hypoxia. The subsequent activation of the brain renin-angiotensin system may produce changes in sympathetic regulatory neural networks that support the maintenance of the hypertension associated with intermittent hypoxia. Hypertension and sleep apnea not only increase risk for cardiovascular disease but are also risk factors for cognitive decline and Alzheimer's disease. Activation of the angiotensin system could be a common mechanism that links these disorders.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing REsearch And THErapeutics (BREATHE) Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Brent Shell
- Zuckerberg College of Health Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
8
|
Burke SL, Barzel B, Jackson KL, Gueguen C, Young MJ, Head GA. Role of Mineralocorticoid and Angiotensin Type 1 Receptors in the Paraventricular Nucleus in Angiotensin-Induced Hypertension. Front Physiol 2021; 12:640373. [PMID: 33762970 PMCID: PMC7982587 DOI: 10.3389/fphys.2021.640373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is an important site where an interaction between circulating angiotensin (Ang) and mineralocorticoid receptor (MR) activity may modify sympathetic nerve activity (SNA) to influence long-term elevation of blood pressure. We examined in conscious Ang II-treated rabbits, the effects on blood pressure and tonic and reflex renal SNA (RSNA) of microinjecting into the PVN either RU28318 to block MR, losartan to block Ang (AT1) receptors or muscimol to inhibit GABA A receptor agonist actions. Male rabbits received a moderate dose of Ang II (24 ng/kg/min subcutaneously) for 3 months (n = 13) or sham treatment (n = 13). At 3 months, blood pressure increased by +19% in the Ang II group compared to 10% in the sham (P = 0.022) but RSNA was similar. RU28318 lowered blood pressure in both Ang II and shams but had a greater effect on RSNA and heart rate in the Ang II-treated group (P < 0.05). Losartan also lowered RSNA, while muscimol produced sympatho-excitation in both groups. In Ang II-treated rabbits, RU28318 attenuated the blood pressure increase following chemoreceptor stimulation but did not affect responses to air jet stress. In contrast losartan and muscimol reduced blood pressure and RSNA responses to both hypoxia and air jet. While neither RU28318 nor losartan changed the RSNA baroreflex, RU28318 augmented the range of the heart rate baroreflex by 10% in Ang II-treated rabbits. Muscimol, however, augmented the RSNA baroreflex by 11% in sham animals and none of the treatments altered baroreflex sensitivity. In conclusion, 3 months of moderate Ang II treatment promotes activation of reflex RSNA principally via MR activation in the PVN, rather than via activation of AT1 receptors. However, the onset of hypertension is independent of both. Interestingly, the sympatho-excitatory effects of muscimol in both groups suggest that overall, the PVN regulates a tonic sympatho-inhibitory influence on blood pressure control.
Collapse
Affiliation(s)
- Sandra L. Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Benjamin Barzel
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L. Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Morag J. Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Mohsin M, Souza LAC, Aliabadi S, Worker CJ, Cooper SG, Afrin S, Murata Y, Xiong Z, Feng Earley Y. Increased (Pro)renin Receptor Expression in the Hypertensive Human Brain. Front Physiol 2020; 11:606811. [PMID: 33329061 PMCID: PMC7710895 DOI: 10.3389/fphys.2020.606811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Overactivation of the renin-angiotensin system (RAS) – a central physiological pathway involved in controlling blood pressure (BP) – leads to hypertension. It is now well-recognized that the central nervous system (CNS) has its own local RAS, and the majority of its components are known to be expressed in the brain. In physiological and pathological states, the (pro)renin receptor (PRR), a novel component of the brain RAS, plays a key role in the formation of angiotensin II (Ang II) and also mediates Ang II-independent PRR signaling. A recent study reported that neuronal PRR activation is a novel mechanism for cardiovascular and metabolic regulation in obesity and diabetes. Expression of the PRR is increased in cardiovascular regulatory nuclei in hypertensive (HTN) animal models and plays an important role in BP regulation in the CNS. To determine the clinical significance of the brain PRR in human hypertension, we investigated whether the PRR is expressed and regulated in the paraventricular nucleus of the hypothalamus (PVN) and rostral ventrolateral medulla (RVLM) – two key cardiovascular regulatory nuclei – in postmortem brain samples of normotensive (NTN) and HTN humans. Here, we report that the PRR is expressed in neurons, but not astrocytes, of the human PVN and RVLM. Notably, PRR immunoreactivity was significantly increased in both the PVN and RVLM of HTN subjects. In addition, PVN-PRR immunoreactivity was positively correlated with systolic BP (sBP) and showed a tendency toward correlation with age but not body mass index (BMI). Collectively, our data provide clinical evidence that the PRR in the PVN and RVLM may be a key molecular player in the neural regulation of BP and cardiovascular and metabolic function in humans.
Collapse
Affiliation(s)
- Minhazul Mohsin
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Lucas A C Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Simindokht Aliabadi
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Caleb J Worker
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Silvana G Cooper
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Sanzida Afrin
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Yuki Murata
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Zhenggang Xiong
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| |
Collapse
|
10
|
Shimoura CG, Andrade MA, Toney GM. Central AT1 receptor signaling by circulating angiotensin II is permissive to acute intermittent hypoxia-induced sympathetic neuroplasticity. J Appl Physiol (1985) 2020; 128:1329-1337. [PMID: 32240022 DOI: 10.1152/japplphysiol.00094.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF), a progressive increase in sympathetic nerve activity (SNA) linked to central AT1 receptor (AT1R) activation by circulating angiotensin II (ANG II). Here, we investigated AIH activation of the peripheral renin-angiotensin system (RAS) and the extent to which the magnitude of RAS activation predicts the magnitude of AIH-induced sLTF. In anesthetized male Sprague-Dawley rats, plasma renin activity (PRA) increased in a linear fashion in response to 5 (P = 0.0342) and 10 (P < 0.0001) cycles of AIH, with PRA remaining at the 10th cycle level 1 h later, a period over which SNA progressively increased. On average, SNA ramping began at the AIH cycle 4.6 ± 0.9 (n = 12) and was similar in magnitude 1 h later whether AIH consisted of 5 or 10 cycles (n = 6/group). Necessity of central AT1R in post-AIH sLTF was affirmed by intracerebroventricular (icv) losartan (40 nmol, 2 µL; n = 5), which strongly attenuated both splanchnic (P = 0.0469) and renal (P = 0.0018) sLTF compared with vehicle [artificial cerebrospinal fluid (aCSF), 2 µL; n = 5]. Bilateral nephrectomy largely prevented sLTF, affirming the necessity of peripheral RAS activation. Sufficiency of central ANG II signaling was assessed in nephrectomized rats. Whereas ICV ANG II (0.5 ng/0.5 µL, 30 min) in nephrectomized rats exposed to sham AIH (n = 4) failed to cause SNA ramping, it rescued sLTF in nephrectomized rats exposed to five cycles of AIH [splanchnic SNA (SSNA), P = 0.0227; renal SNA (RSNA), P = 0.0390; n = 5]. Findings indicate that AIH causes progressive peripheral RAS activation, which stimulates an apparent threshold level of central AT1R signaling that plays a permissive role in triggering sLTF.NEW & NOTEWORTHY Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF) that relies on peripheral renin-angiotensin system (RAS) activation. Here, increasing AIH cycles from 5 to 10 proportionally increased RAS activity, but not the magnitude of post-AIH sLTF. Brain angiotensin II (ANG II) receptor blockade and nephrectomy each largely prevented sLTF, whereas central ANG II rescued it following nephrectomy. Peripheral RAS activation by AIH induces time-dependent neuroplasticity at an apparent central ANG II signaling threshold, triggering a stereotyped sLTF response.
Collapse
Affiliation(s)
- Caroline G Shimoura
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Marciante AB, Wang LA, Little JT, Cunningham JT. Caspase lesions of PVN-projecting MnPO neurons block the sustained component of CIH-induced hypertension in adult male rats. Am J Physiol Heart Circ Physiol 2020; 318:H34-H48. [PMID: 31675258 PMCID: PMC6985804 DOI: 10.1152/ajpheart.00350.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250-300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension.NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Lei A Wang
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
12
|
Iturriaga R, Castillo-Galán S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 2019; 21:89. [PMID: 31599367 DOI: 10.1007/s11906-019-0995-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
13
|
Farmer GE, Amune A, Bachelor ME, Duong P, Yuan JP, Cunningham JT. Sniffer cells for the detection of neural Angiotensin II in vitro. Sci Rep 2019; 9:8820. [PMID: 31217439 PMCID: PMC6584535 DOI: 10.1038/s41598-019-45262-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropeptide release in the brain has traditionally been difficult to observe. Existing methods lack temporal and spatial resolution that is consistent with the function and size of neurons. We use cultured "sniffer cells" to improve the temporal and spatial resolution of observing neuropeptide release. Sniffer cells were created by stably transfecting Chinese Hamster Ovary (CHO) cells with plasmids encoding the rat angiotensin type 1a receptor and a genetically encoded Ca2+ sensor. Isolated, cultured sniffer cells showed dose-dependent increases in fluorescence in response to exogenously applied angiotensin II and III, but not other common neurotransmitters. Sniffer cells placed on the median preoptic nucleus (a presumptive site of angiotensin release) displayed spontaneous activity and evoked responses to either electrical or optogenetic stimulation of the subfornical organ. Stable sniffer cell lines could be a viable method for detecting neuropeptide release in vitro, while still being able to distinguish differences in neuropeptide concentration.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Anna Amune
- Texas A&M University, College Station, TX, United States
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Joseph P Yuan
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States.
| |
Collapse
|
14
|
Winter A, Ahlbrand R, Sah R. Recruitment of central angiotensin II type 1 receptor associated neurocircuits in carbon dioxide associated fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:378-386. [PMID: 30776402 DOI: 10.1016/j.pnpbp.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
Individuals with fear-associated conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD) display increased emotional responses to interoceptive triggers, such as CO2 inhalation, that signal a threat to physiological homeostasis. Currently, effector systems and mechanisms underlying homeostatic modulation of fear memory are not well understood. In this regard, the renin angiotensin system (RAS), particularly the angiotensin receptor type 1 (AT1R), a primary homeostatic regulatory target, has gained attention. RAS polymorphisms have been reported in PD and PTSD, and recent studies report AT1R-mediated modulation of fear extinction. However, contribution of AT1Rs in fear evoked by the interoceptive threat of CO2 has not been investigated. Using pharmacological, behavioral, and AT1R/ACE gene transcription analyses, we assessed central AT1R recruitment in CO2-associated fear. CO2 inhalation led to significant AT1R and ACE mRNA upregulation in homeostatic regulatory regions, subfornical organ (SFO) and paraventricular nucleus (PVN), in a temporal manner. Intracerebroventricular infusion of selective AT1R antagonist, losartan, significantly attenuated freezing during CO2 inhalation, and during re-exposure to CO2 context, suggestive of AT1R modulation of contextual fear. Regional Fos mapping in losartan-treated mice post-behavior revealed significantly attenuated labeling in areas regulating defensive behavior, contextual fear, and threat responding; such as, the bed nucleus of stria terminalis, dorsal periaqueductal gray, hypothalamic nuclei, hippocampus, and prefrontal areas such as the prelimbic, infralimbic, and anterior cingulate cortices. Sub-regions of the amygdala did not show CO2-associated AT1R regulation or altered Fos labeling. Collectively, our data suggests central AT1R recruitment in modulation of fear behaviors associated with CO2 inhalation via engagement of neurocircuits regulating homeostasis and defensive behaviors. Our data provides mechanistic insights into the interoceptive regulation of fear, relevant to fear related disorders such as PD and PTSD.
Collapse
Affiliation(s)
- Andrew Winter
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States
| | - Rebecca Ahlbrand
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States
| | - Renu Sah
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States.
| |
Collapse
|
15
|
Shell B, Farmer GE, Nedungadi TP, Wang LA, Marciante AB, Snyder B, Cunningham RL, Cunningham JT. Angiotensin type 1a receptors in the median preoptic nucleus support intermittent hypoxia-induced hypertension. Am J Physiol Regul Integr Comp Physiol 2019; 316:R651-R665. [PMID: 30892911 PMCID: PMC6589598 DOI: 10.1152/ajpregu.00393.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a model of the hypoxemia from sleep apnea that causes a sustained increase in blood pressure. Inhibition of the central renin-angiotensin system or FosB in the median preoptic nucleus (MnPO) prevents the sustained hypertensive response to CIH. We tested the hypothesis that angiotensin type 1a (AT1a) receptors in the MnPO, which are upregulated by CIH, contribute to this hypertension. In preliminary experiments, retrograde tract tracing studies showed AT1a receptor expression in MnPO neurons projecting to the paraventricular nucleus. Adult male rats were exposed to 7 days of intermittent hypoxia (cycling between 21% and 10% O2 every 6 min, 8 h/day during light phase). Seven days of CIH was associated with a FosB-dependent increase in AT1a receptor mRNA without changes in the permeability of the blood-brain barrier in the MnPO. Separate groups of rats were injected in the MnPO with an adeno-associated virus containing short hairpin (sh)RNA against AT1a receptors to test their role in intermittent hypoxia hypertension. Injections of shRNA against AT1a in MnPO blocked the increase in mRNA associated with CIH, prevented the sustained component of the hypertension during normoxia, and reduced circulating advanced oxidation protein products, an indicator of oxidative stress. Rats injected with shRNA against AT1a and exposed to CIH had less FosB staining in MnPO and the rostral ventrolateral medulla after intermittent hypoxia than rats injected with the control vector that were exposed to CIH. Our results indicate AT1a receptors in the MnPO contribute to the sustained blood pressure increase to intermittent hypoxia.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Animals
- Blood Pressure/drug effects
- Disease Models, Animal
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypoxia/complications
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/physiopathology
- Injections, Intraventricular
- Male
- Oxidative Stress
- Preoptic Area/drug effects
- Preoptic Area/metabolism
- Preoptic Area/physiopathology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Up-Regulation
Collapse
Affiliation(s)
- Brent Shell
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - T Prashant Nedungadi
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Lei A Wang
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brina Snyder
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
16
|
Souza LAC, Worker CJ, Li W, Trebak F, Watkins T, Gayban AJB, Yamasaki E, Cooper SG, Drumm BT, Feng Y. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT 1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol 2019; 316:H1389-H1405. [PMID: 30925093 DOI: 10.1152/ajpheart.00780.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined. In this study, we investigated the involvement and mechanisms of the PVN-PRR in DOCA-salt-induced hypertension, a mouse model of hypertension. Using nanoinjection of adeno-associated virus-mediated Cre recombinase expression to knock down the PRR specifically in the PVN, we report here that PVN-PRR knockdown attenuated the enhanced blood pressure and sympathetic tone associated with hypertension. Mechanistically, we found that PVN-PRR knockdown was associated with reduced activation of ERK (extracellular signal-regulated kinase)-1/2 in the PVN and rostral ventrolateral medulla during hypertension. In addition, using the genetically encoded Ca2+ biosensor GCaMP6 to monitor Ca2+-signaling events in the neurons of PVN brain slices, we identified a reduction in angiotensin II type 1 receptor-mediated Ca2+ activity as part of the mechanism by which PVN-PRR knockdown attenuates hypertension. Our study demonstrates an essential role of the PRR in PVN neurons in hypertension through regulation of ERK1/2 activation and angiotensin II type 1 receptor-mediated Ca2+ activity. NEW & NOTEWORTHY PRR knockdown in PVN neurons attenuates the development of DOCA-salt hypertension and autonomic dysfunction through a decrease in ERK1/2 activation in the PVN and RVLM during hypertension. In addition, PRR knockdown reduced AT1aR expression and AT1R-mediated calcium activity during hypertension. Furthermore, we characterized the neuronal targeting specificity of AAV serotype 2 in the mouse PVN and validated the advantages of the genetically encoded calcium biosensor GCaMP6 in visualizing neuronal calcium activity in the PVN.
Collapse
Affiliation(s)
- Lucas A C Souza
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University , Winston-Salem, North Carolina
| | - Fatima Trebak
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Trevor Watkins
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Yumei Feng
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
17
|
Farmer GE, Balapattabi K, Bachelor ME, Little JT, Cunningham JT. AT 1a influences GABAA-mediated inhibition through regulation of KCC2 expression. Am J Physiol Regul Integr Comp Physiol 2018; 315:R972-R982. [PMID: 30156863 PMCID: PMC6295501 DOI: 10.1152/ajpregu.00105.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
The median preoptic nucleus (MnPO) is an integrative site involved in body fluid homeostasis, cardiovascular control, thermoregulation, and sleep homeostasis. Angiotensin II (ANG II), a neuropeptide shown to have excitatory effects on MnPO neurons, is of particular interest with regard to its role in body fluid homeostasis and cardiovascular control. The present study investigated the role of angiotensin type 1a (AT1a) receptor activation on neuronal excitability in the MnPO. Male Sprague-Dawley rats were infused with an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. In vitro loose-patch voltage-clamp recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. Additionally, tissue punches from MnPO were taken to asses mRNA and protein expression. AT1a receptor knockdown neurons were insensitive to ANG II and showed a marked reduction in GABAA-mediated inhibition. The reduction in GABAA-mediated inhibition was not associated with reductions in mRNA or protein expression of GABAA β-subunits. Knockdown of the AT1a receptor was associated with a reduction in the potassium-chloride cotransporter KCC2 mRNA as well as a reduction in pS940 KCC2 protein. The impaired GABAA-mediated inhibition in AT1a knockdown neurons was recovered by bath application of phospholipase C and protein kinase C activators. The following study indicates that AT1a receptor activation mediates the excitability of MnPO neurons, in part, through the regulation of KCC2. The regulation of KCC2 influences the intracellular [Cl-] and the subsequent efficacy of GABAA-mediated currents.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| |
Collapse
|
18
|
Zhang XB, Cai JH, Yang YY, Zeng YM, Zeng HQ, Wang M, Cheng X, Luo X, Ewurum HC. Telmisartan attenuates kidney apoptosis and autophagy-related protein expression levels in an intermittent hypoxia mouse model. Sleep Breath 2018; 23:341-348. [PMID: 30219962 PMCID: PMC6418059 DOI: 10.1007/s11325-018-1720-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) is associated with renal impairs. As a novel pathophysiological hallmark of OSA, chronic intermittent hypoxia (CIH) enhances apoptosis and autophagy. The present study aims to evaluate the effect of telmisartan on CIH-induced kidney apoptosis and autophagy in a mouse model of OSA. Materials and methods Mice were randomly allocated to normoxia, CIH, and CIH+telmisartan groups (n = 12 in each group). The CIH exposure duration was 12 weeks. Mice in the CIH+telmisartan group received telmisartan administration. The terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and western blotting of Bax and cleaved caspase-3 were conducted for evaluating apoptosis in kidney tissue. While the autophagy-related proteins, beclin-1 and LC3, were also observed via western blotting. Results The percentage of apoptotic cell in the CIH group was significantly higher than that of normoxia group; meanwhile, Bax and cleaved caspase-3 protein levels were increased in the CIH group than those of normoxia group (all p < 0.05). Compared with the normoxia group, mice in the CIH group had greater autophagy-related proteins (beclin-1 and LC3) expression. When compared to the CIH group, both the renal apoptosis and autophagy in the CIH+telmisartan group were decreased. Conclusion The CIH accelerates renal apoptosis and autophagy levels. Telmisartan ameliorating those levels suggests that it might prevent renal impairs from the CIH in OSA patients.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Road, Licheng District, Quanzhou, 362000, Fujian Province, China.,The Second Clinical Medical College of Fujian Medical University, Quanzhou, China.,Center of Respiratory Medicine of Fujian Province, Quanzhou, China
| | - Jing-Huang Cai
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Yu-Yun Yang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Road, Licheng District, Quanzhou, 362000, Fujian Province, China. .,The Second Clinical Medical College of Fujian Medical University, Quanzhou, China. .,Center of Respiratory Medicine of Fujian Province, Quanzhou, China.
| | - Hui-Qing Zeng
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China. .,Teaching Hospital of Fujian Medical University, Xiamen, China.
| | - Miao Wang
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Xiao Cheng
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, No.201, Hubin Nan Road, Siming District, Xiamen, 361004, Fujian Province, People's Republic of China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Xiongbiao Luo
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | | |
Collapse
|
19
|
Li T, Chen Y, Gua C, Wu B. Elevated Oxidative Stress and Inflammation in Hypothalamic Paraventricular Nucleus Are Associated With Sympathetic Excitation and Hypertension in Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2018; 9:840. [PMID: 30026701 PMCID: PMC6041405 DOI: 10.3389/fphys.2018.00840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent collapse of the upper airway during sleep leading to chronic intermittent hypoxia (CIH), is an independent risk factor for hypertension. Sympathetic excitation has been shown to play a major role in the pathogenesis of OSA-associated hypertension. Accumulating evidence indicates that oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center, mediate sympathetic excitation in many cardiovascular diseases. Here we tested the hypothesis that CIH elevates oxidative stress and inflammation in the PVN, which might be associated with sympathetic excitation and increased blood pressure in a rat model of CIH that mimics the oxygen profile in patients with OSA. Sprague-Dawley rats were pretreated with intracerebroventricular (ICV) infusion of vehicle or superoxide scavenger tempol, and then exposed to control or CIH for 7 days. Compared with control+vehicle rats, CIH+vehicle rats exhibited increased blood pressure, and increased sympathetic drive as indicated by the blood pressure response to ganglionic blockade and plasma norepinephrine levels. Pretreatment with ICV tempol prevented CIH-induced increases in blood pressure and sympathetic drive. Molecular studies revealed that expression of NAD(P)H oxidase subunits, production of reactive oxygen species, expression of proinflammatory cytokines and neuronal excitation in the PVN were elevated in CIH+vehicle rats, compared with control+vehicle rats, but were normalized or reduced in CIH rat pretreated with ICV tempol. Notably, CIH+vehicle rats also had increased systemic oxidative stress and inflammation, which were not altered by ICV tempol. The results suggest that CIH induces elevated oxidative stress and inflammation in the PVN, which lead to PVN neuronal excitation and are associated with sympathetic excitation and increased blood pressure. Central oxidative stress and inflammation may be novel targets for the prevention and treatment of hypertension in patients with OSA.
Collapse
Affiliation(s)
- Tiejun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanli Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Chaojun Gua
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baogang Wu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Baum DM, Saussereau M, Jeton F, Planes C, Voituron N, Cardot P, Fiamma MN, Bodineau L. Effect of Gender on Chronic Intermittent Hypoxic Fosb Expression in Cardiorespiratory-Related Brain Structures in Mice. Front Physiol 2018; 9:788. [PMID: 29988603 PMCID: PMC6026892 DOI: 10.3389/fphys.2018.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
We aimed to delineate sex-based differences in neuroplasticity that may be associated with previously reported sex-based differences in physiological alterations caused by repetitive succession of hypoxemia-reoxygenation encountered during obstructive sleep apnea (OSA). We examined long-term changes in the activity of brainstem and diencephalic cardiorespiratory neuronal populations induced by chronic intermittent hypoxia (CIH) in male and female mice by analyzing Fosb expression. Whereas the overall baseline and CIH-induced Fosb expression in females was higher than in males, possibly reflecting different neuroplastic dynamics, in contrast, structures responded to CIH by Fosb upregulation in males only. There was a sex-based difference at the level of the rostral ventrolateral reticular nucleus of the medulla, with an increase in the number of FOSB/ΔFOSB-positive cells induced by CIH in males but not females. This structure contains neurons that generate the sympathetic tone and which are involved in CIH-induced sustained hypertension during waking hours. We suggest that the sex-based difference in neuroplasticity of this structure contributes to the reported sex-based difference in CIH-induced hypertension. Moreover, we highlighted a sex-based dimorphic phenomenon in serotoninergic systems induced by CIH, with increased serotoninergic immunoreactivity in the hypoglossal nucleus and a decreased number of serotoninergic cells in the dorsal raphe nucleus in male but not female mice. We suggest that this dimorphism in the neuroplasticity of serotoninergic systems predisposes males to a greater alteration of neuronal control of the upper respiratory tract associated with the greater collapsibility of upper airways described in male OSA subjects.
Collapse
Affiliation(s)
- David M Baum
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maud Saussereau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florine Jeton
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Carole Planes
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Nicolas Voituron
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Philippe Cardot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
21
|
Faulk KE, Nedungadi TP, Cunningham JT. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension. Physiol Rep 2018; 5:e13277. [PMID: 28536140 PMCID: PMC5449561 DOI: 10.14814/phy2.13277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP‐1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio‐telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia.
Collapse
Affiliation(s)
- Katelynn E Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| | - T Prashant Nedungadi
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| |
Collapse
|
22
|
Morgan BJ, Schrimpf N, Rothman M, Mitzey A, Brownfieldc MS, Speth RC, Dopp JM. Effect of Chronic Intermittent Hypoxia on Angiotensin II Receptors in the Central Nervous System. Clin Exp Hypertens 2018; 41:1-7. [PMID: 29561178 PMCID: PMC6150845 DOI: 10.1080/10641963.2018.1451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Chronic intermittent hypoxia (CIH) increases basal sympathetic nervous system activity, augments chemoreflex-induced sympathoexcitation, and raises blood pressure. All effects are attenuated by systemic or intracerebroventricular administration of angiotensin II type 1 receptor (AT1R) antagonists. This study aimed to quantify the effects of CIH on AT1R- and AT2R-like immunoreactivity in the rostroventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), central regions that are important components of the extended chemoreflex pathway. Eighteen Sprague-Dawley rats were exposed to intermittent hypoxia (FIO2 = 0.10, 1 min at 4-min intervals) for 10 hr/day for 1, 5, 10, or 21 days. After exposure, rats were deeply anesthetized and transcardially perfused with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally into 50 µm slices. Immunohistochemistry was used to quantify AT1R and AT2R in the RVLM and the PVN. In the RVLM, CIH significantly increased the AT1R-like immunoreactivity, but did not alter AT2R immunoreactivity, thereby augmenting the AT1R:AT2R ratio in this nucleus. In the PVN, CIH had no effect on immunoreactivity of either receptor subtype. The current findings provide mechanistic insight into increased basal sympathetic outflow, enhanced chemoreflex sensitivity, and blood pressure elevation observed in rodents exposed to CIH.
Collapse
Affiliation(s)
- Barbara J. Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicole Schrimpf
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Morgan Rothman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Ann Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark S. Brownfieldc
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - John M. Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
23
|
Peng H, Jensen DD, Li W, Sullivan MN, Buller SA, Worker CJ, Cooper SG, Zheng S, Earley S, Sigmund CD, Feng Y. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 2018; 314:H580-H592. [PMID: 29350998 PMCID: PMC5899258 DOI: 10.1152/ajpheart.00310.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.
Collapse
Affiliation(s)
- Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology , Wuhan, Hubei , China
| | - Dane D Jensen
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Michelle N Sullivan
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Sophie A Buller
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Shiqi Zheng
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Scott Earley
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Yumei Feng
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
24
|
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol (1985) 2017; 124:1233-1243. [PMID: 29357503 DOI: 10.1152/japplphysiol.00743.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol 124: 1233-1243, 2018. First published December 19, 2017; doi: 10.1152/japplphysiol.00743.2017 .- Acute intermittent hypoxia (AIH) repetitively activates the arterial chemoreflex and triggers a progressive increase of sympathetic nerve activity (SNA) and phrenic nerve activity (PNA) referred to as sympathetic and phrenic long-term facilitation (S-LTF and P-LTF), respectively. Neurons of the hypothalamic paraventricular nucleus (PVN) participate in the arterial chemoreflex, but their contribution to AIH-induced LTF is unknown. To determine this, anesthetized rats were vagotomized and exposed to 10 cycles of AIH, each consisting of ventilation for 3 min with 100% O2 followed by 3 min with 15% O2. Before AIH, rats received bilateral PVN injections of artificial cerebrospinal fluid (aCSF; vehicle) or the GABA-A receptor agonist muscimol (100 pmol in 50 nl) to inhibit neuronal activity. Thirty minutes after completing the AIH protocol, during which rats were continuously ventilated with 100% O2, S-LTF and P-LTF were quantified from recordings of integrated splanchnic SNA and PNA, respectively. PVN muscimol attenuated increases of SNA during hypoxic episodes occurring in later cycles (6-10) of AIH ( P < 0.03) and attenuated post-AIH S-LTF ( P < 0.001). Muscimol, however, did not consistently affect peak PNA responses during hypoxic episodes and did not alter AIH-induced P-LTF. These findings indicate that PVN neuronal activity contributes to sympathetic responses during AIH and to subsequent generation of S-LTF. NEW & NOTEWORTHY Neural circuits mediating acute intermittent hypoxia (AIH)-induced sympathetic and phrenic long-term facilitation (LTF) have not been fully elucidated. We found that paraventricular nucleus (PVN) inhibition attenuated sympathetic activation during episodes of AIH and reduced post-AIH sympathetic LTF. Neither phrenic burst patterning nor the magnitude of AIH-induced phrenic LTF was affected. Findings indicate that PVN neurons contribute to AIH-induced sympathetic LTF. Defining mechanisms of sympathetic LTF could improve strategies to reduce sympathetic activity in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Megan B Blackburn
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
25
|
Wu Q, Cunningham JT, Mifflin S. Transcription factor ΔFosB acts within the nucleus of the solitary tract to increase mean arterial pressure during exposures to intermittent hypoxia. Am J Physiol Heart Circ Physiol 2017; 314:H270-H277. [PMID: 29101166 DOI: 10.1152/ajpheart.00268.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ΔFosB is a member of the activator protein-1 family of transcription factors. ΔFosB has low constitutive expression in the central nervous system and is induced after exposure of rodents to intermittent hypoxia (IH), a model of the arterial hypoxemia that accompanies sleep apnea. We hypothesized ΔFosB in the nucleus of the solitary tract (NTS) contributes to increased mean arterial pressure (MAP) during IH. The NTS of 11 male Sprague-Dawley rats was injected (3 sites, 100 nl/site) with a dominant negative construct against ΔFosB (ΔJunD) in an adeno-associated viral vector (AAV)-green fluorescent protein (GFP) reporter. The NTS of 10 rats was injected with AAV-GFP as sham controls. Two weeks after NTS injections, rats were exposed to IH for 8 h/day for 7 days, and MAP was recorded using telemetry. In the sham group, 7 days of IH increased MAP from 99.8 ± 1.1 to 107.3 ± 0.5 mmHg in the day and from 104.4 ± 1.1 to 109.8 ± 0.6 mmHg in the night. In the group that received ΔJunD, IH increased MAP during the day from 95.9 ± 1.7 to 101.3 ± 0.4 mmHg and from 100.9 ± 1.7 to 102.8 ± 0.5 mmHg during the night (both IH-induced changes in MAP were significantly lower than sham, P < 0.05). After injection of the dominant negative construct in the NTS, IH-induced ΔFosB immunoreactivity was decreased in the paraventricular nucleus ( P < 0.05); however, no change was observed in the rostral ventrolateral medulla. These data indicate that ΔFosB within the NTS contributes to the increase in MAP induced by IH exposure. NEW & NOTEWORTHY The results of this study provides new insights into the molecular mechanisms that mediate neuronal adaptations during exposures to intermittent hypoxia, a model of the hypoxemias that occur during sleep apnea. These adaptations are noteworthy as they contribute to the persistent increase in blood pressure induced by exposures to intermittent hypoxia.
Collapse
Affiliation(s)
- Qiong Wu
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steve Mifflin
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
26
|
|
27
|
Faulk K, Shell B, Nedungadi TP, Cunningham JT. Role of angiotensin-converting enzyme 1 within the median preoptic nucleus following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2017; 312:R245-R252. [PMID: 28003214 PMCID: PMC5336571 DOI: 10.1152/ajpregu.00472.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Sustained hypertension is an important consequence of obstructive sleep apnea. An animal model of the hypoxemia associated with sleep apnea, chronic intermittent hypoxia (CIH), produces increased sympathetic nerve activity (SNA) and sustained increases in blood pressure. Many mechanisms have been implicated in the hypertension associated with CIH, including the role of ΔFosB within the median preoptic nucleus (MnPO). Also, the renin-angiotensin system (RAS) has been associated with CIH hypertension. We conducted experiments to determine the possible association of FosB/ΔFosB with a RAS component, angiotensin-converting enzyme 1 (ACE1), within the MnPO following 7 days of CIH. Retrograde tract tracing from the paraventricular nucleus (PVN), a downstream region of the MnPO, was used to establish a potential pathway for FosB/ΔFosB activation of MnPO ACE1 neurons. After CIH, ACE1 cells with FosB/ΔFosB expression increased colocalization with a retrograde tracer that was injected unilaterally within the PVN. Also, Western blot examination showed ACE1 protein expression increasing within the MnPO following CIH. Chromatin immunoprecipitation (ChIP) assays demonstrated an increase in FosB/ΔFosB association with the ACE1 gene within the MnPO following CIH. FosB/ΔFosB may transcriptionally target ACE1 within the MnPO following CIH to affect the downstream PVN region, which may influence SNA and blood pressure.
Collapse
Affiliation(s)
- Katelynn Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Brent Shell
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - T Prashant Nedungadi
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
- American Heart Association, Dallas, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
28
|
Abstract
Sleep apnea (SA) is increasing in prevalence and is commonly comorbid with hypertension. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in SA, and through this paradigm, the mechanisms that underlie SA-induced hypertension are becoming clear. Cyclic hypoxic exposure during sleep chronically stimulates the carotid chemoreflexes, inducing sensory long-term facilitation, and drives sympathetic outflow from the hindbrain. The elevated sympathetic tone drives hypertension and renal sympathetic activity to the kidneys resulting in increased plasma renin activity and eventually angiotensin II (Ang II) peripherally. Upon waking, when respiration is normalized, the sympathetic activity does not diminish. This is partially because of adaptations leading to overactivation of the hindbrain regions controlling sympathetic outflow such as the nucleus tractus solitarius (NTS), and rostral ventrolateral medulla (RVLM). The sustained sympathetic activity is also due to enhanced synaptic signaling from the forebrain through the paraventricular nucleus (PVN). During the waking hours, when the chemoreceptors are not exposed to hypoxia, the forebrain circumventricular organs (CVOs) are stimulated by peripherally circulating Ang II from the elevated plasma renin activity. The CVOs and median preoptic nucleus chronically activate the PVN due to the Ang II signaling. All together, this leads to elevated nocturnal mean arterial pressure (MAP) as a response to hypoxemia, as well as inappropriately elevated diurnal MAP in response to maladaptations.
Collapse
Affiliation(s)
- Brent Shell
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Katelynn Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
29
|
Abstract
The etiology of hypertension, a critical public health issue affecting one in three US adults, involves the integration of the actions of multiple organ systems, including the central nervous system. Increased activation of the central nervous system, driving enhanced sympathetic outflow and increased blood pressure, has emerged as a major contributor to the pathogenesis of hypertension. The hypothalamus is a key brain site acting to integrate central and peripheral inputs to ultimately impact blood pressure in multiple disease states that evoke hypertension. This review highlights recent advances that have identified novel signal transduction mechanisms within multiple hypothalamic nuclei (e.g., paraventricular nucleus, arcuate nucleus) acting to drive the pathophysiology of hypertension in neurogenic hypertension, angiotensin II hypertension, salt-sensitive hypertension, chronic intermittent hypoxia, and obesity-induced hypertension. Increased understanding of hypothalamic activity in hypertension has the potential to identify novel targets for future therapeutic interventions designed to treat hypertension.
Collapse
|
30
|
Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9802136. [PMID: 26798430 PMCID: PMC4699095 DOI: 10.1155/2016/9802136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 01/22/2023]
Abstract
Oxidative stress is involved in the development of carotid body (CB) chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−), a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir) in the CB, the CB chemosensory discharge, and arterial blood pressure (BP) in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day) for 7 days. Ebselen (10 mg/kg/day) was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u.), reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz), and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg). Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation.
Collapse
|
31
|
Johnson AK, Zhang Z, Clayton SC, Beltz TG, Hurley SW, Thunhorst RL, Xue B. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1309-25. [PMID: 26290101 PMCID: PMC4698407 DOI: 10.1152/ajpregu.00037.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
After decades of investigation, the causes of essential hypertension remain obscure. The contribution of the nervous system has been excluded by some on the basis that baroreceptor mechanisms maintain blood pressure only over the short term. However, this point of view ignores one of the most powerful contributions of the brain in maintaining biological fitness-specifically, the ability to promote adaptation of behavioral and physiological responses to cope with new challenges and maintain this new capacity through processes involving neuroplasticity. We present a body of recent findings demonstrating that prior, short-term challenges can induce persistent changes in the central nervous system to result in an enhanced blood pressure response to hypertension-eliciting stimuli. This sensitized hypertensinogenic state is maintained in the absence of the inducing stimuli, and it is accompanied by sustained upregulation of components of the brain renin-angiotensin-aldosterone system and other molecular changes recognized to be associated with central nervous system neuroplasticity. Although the heritability of hypertension is high, it is becoming increasingly clear that factors beyond just genes contribute to the etiology of this disease. Life experiences and attendant changes in cellular and molecular components in the neural network controlling sympathetic tone can enhance the hypertensive response to recurrent, sustained, or new stressors. Although the epigenetic mechanisms that allow the brain to be reprogrammed in the face of challenges to cardiovascular homeostasis can be adaptive, this capacity can also be maladaptive under conditions present in different evolutionary eras or ontogenetic periods.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa; Department of Pharmacology, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| | - Zhongming Zhang
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; Nanyang Institute of Technology, Zhang Zhongjing College of Chinese Medicine, Nanyang, Henan Province, China
| | - Sarah C Clayton
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Seth W Hurley
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Robert L Thunhorst
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| | - Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
32
|
Efficacy of carvedilol in reversing hypertension induced by chronic intermittent hypoxia in rats. Eur J Pharmacol 2015; 765:58-67. [DOI: 10.1016/j.ejphar.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
33
|
Weiss JW, Tamisier R, Liu Y. Sympathoexcitation and arterial hypertension associated with obstructive sleep apnea and cyclic intermittent hypoxia. J Appl Physiol (1985) 2015; 119:1449-54. [PMID: 26251511 DOI: 10.1152/japplphysiol.00315.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction during sleep. These obstructive episodes are characterized by cyclic intermittent hypoxia (CIH), by sleep fragmentation, and by hemodynamic instability, and they result in sustained sympathoexcitation and elevated arterial pressure that persist during waking, after restoration of normoxia. Early studies established that 1) CIH, rather than sleep disruption, accounts for the increase in arterial pressure; 2) the increase in arterial pressure is a consequence of the sympathoactivation; and 3) arterial hypertension after CIH exposure requires an intact peripheral chemoreflex. More recently, however, evidence has accumulated that sympathoactivation and hypertension after CIH are also dependent on altered central sympathoregulation. Furthermore, although many molecular pathways are activated in both the carotid chemoreceptor and in the central nervous system by CIH exposure, two specific neuromodulators-endothelin-1 and angiotensin II-appear to play crucial roles in mediating the sympathetic and hemodynamic response to intermittent hypoxia.
Collapse
Affiliation(s)
- J Woodrow Weiss
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts;
| | - Renaud Tamisier
- Sleep Laboratory and EFCR, Pôle Rééducation et Physiologie, University Hospital, HP2 Laboratory (Hypoxia: Pathophysiology) INSERM ERI 17, EA 3745 Joseph Fourier University, Grenoble, France; and
| | - Yuzhen Liu
- First Afflicted Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
34
|
Mifflin S, Cunningham JT, Toney GM. Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia. J Appl Physiol (1985) 2015; 119:1441-8. [PMID: 25997944 DOI: 10.1152/japplphysiol.00198.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) leads to metabolic abnormalities and cardiovascular dysfunction. Rodent models of nocturnal intermittent hypoxia (IH) are used to mimic arterial hypoxemias that occur during SA. This mini-review focuses on our work examining central nervous system (CNS) mechanisms whereby nocturnal IH results in increased sympathetic nerve discharge (SND) and hypertension (HTN) that persist throughout the 24-h diurnal period. Within the first 1-2 days of IH, arterial pressure (AP) increases even during non-IH periods of the day. Exposure to IH for 7 days biases nucleus tractus solitarius (NTS) neurons receiving arterial chemoreceptor inputs toward increased discharge, providing a substrate for persistent activation of sympathetic outflow. IH HTN is blunted by manipulations that reduce angiotensin II (ANG II) signaling within the forebrain lamina terminalis suggesting that central ANG II supports persistent IH HTN. Inhibition of the hypothalamic paraventricular nucleus (PVN) reduces ongoing SND and acutely lowers AP in IH-conditioned animals. These findings support a role for the PVN, which integrates information ascending from NTS and descending from the lamina terminalis, in sustaining IH HTN. In summary, our findings indicate that IH rapidly and persistently activates a central circuit that includes the NTS, forebrain lamina terminalis, and the PVN. Our working model holds that NTS neuromodulation increases transmission of arterial chemoreceptor inputs, increasing SND via connections with PVN and rostral ventrolateral medulla. Increased circulating ANG II sensed by the lamina terminalis generates yet another excitatory drive to PVN. Together with adaptations intrinsic to the PVN, these responses to IH support rapid onset neurogenic HTN.
Collapse
Affiliation(s)
- Steve Mifflin
- Department of Integrative Physiology and Anatomy, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - J Thomas Cunningham
- Department of Integrative Physiology and Anatomy, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Glenn M Toney
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
35
|
Yamamoto K, Lalley P, Mifflin S. Acute intermittent optogenetic stimulation of nucleus tractus solitarius neurons induces sympathetic long-term facilitation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R266-75. [PMID: 25519734 PMCID: PMC4329466 DOI: 10.1152/ajpregu.00381.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
Acute intermittent hypoxia (AIH) induces sympathetic and phrenic long-term facilitation (LTF), defined as a sustained increase in nerve discharge. We investigated the effects of AIH and acute intermittent optogenetic (AIO) stimulation of neurons labeled with AAV-CaMKIIa, hChR2(H134R), and mCherry in the nucleus of the solitary tract (NTS) of anesthetized, vagotomized, and mechanically ventilated rats. We measured renal sympathetic nerve activity (RSNA), phrenic nerve activity (PNA), power spectral density, and coherence, and we made cross-correlation measurements to determine how AIO stimulation and AIH affected synchronization between PNA and RSNA. Sixty minutes after AIH produced by ventilation with 10% oxygen in balanced nitrogen, RSNA and PNA amplitude increased by 80% and by 130%, respectively (P < 0.01). Sixty minutes after AIO stimulation, RSNA and PNA amplitude increased by 60% and 100%, respectively, (P < 0.01). These results suggest that acute intermittent stimulation of NTS neurons can induce renal sympathetic and phrenic LTF in the absence of hypoxia or chemoreceptor afferent activation. We also found that while acute intermittent optogenetic and hypoxic stimulations increased respiration-related RSNA modulation (P < 0.01), they did not increase synchronization between central respiratory drive and RSNA. We conclude that mechanisms that induce LTF originate within the caudal NTS and extend to other interconnecting neuronal elements of the central nervous cardiorespiratory network.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Peter Lalley
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Steve Mifflin
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
36
|
Mateika JH, El-Chami M, Shaheen D, Ivers B. Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol (1985) 2014; 118:520-32. [PMID: 25549763 DOI: 10.1152/japplphysiol.00564.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia has generally been perceived as a high-risk stimulus, particularly in the field of sleep medicine, because it is thought to initiate detrimental cardiovascular, respiratory, cognitive, and metabolic outcomes. In contrast, the link between intermittent hypoxia and beneficial outcomes has received less attention, perhaps because it is not universally understood that outcome measures following exposure to intermittent hypoxia may be linked to the administered dose. The present review is designed to emphasize the less recognized beneficial outcomes associated with intermittent hypoxia. The review will consider the role intermittent hypoxia has in cardiovascular and autonomic adaptations, respiratory motor plasticity, and cognitive function. Each section will highlight the literature that contributed to the belief that intermittent hypoxia leads primarily to detrimental outcomes. The second segment of each section will consider the possible risks associated with experimentally rather than naturally induced intermittent hypoxia. Finally, the body of literature indicating that intermittent hypoxia initiates primarily beneficial outcomes will be considered. The overarching theme of the review is that the use of intermittent hypoxia in research investigations, coupled with reasonable safeguards, should be encouraged because of the potential benefits linked to the administration of a variety of low-risk intermittent hypoxia protocols.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamad El-Chami
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - David Shaheen
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Blake Ivers
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| |
Collapse
|
37
|
Saxena A, Little JT, Nedungadi TP, Cunningham JT. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure. Am J Physiol Heart Circ Physiol 2014; 308:H435-46. [PMID: 25539713 DOI: 10.1152/ajpheart.00747.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH.
Collapse
Affiliation(s)
- Ashwini Saxena
- Department of Integrative Physiology and Anatomy, and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Integrative Physiology and Anatomy, and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - T Prashant Nedungadi
- Department of Integrative Physiology and Anatomy, and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Integrative Physiology and Anatomy, and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
38
|
Diogo LN, Monteiro EC. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions. Front Physiol 2014; 5:361. [PMID: 25295010 PMCID: PMC4170135 DOI: 10.3389/fphys.2014.00361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Sleep apnea/hypopnea disorders include centrally originated diseases and obstructive sleep apnea (OSA). This last condition is renowned as a frequent secondary cause of hypertension (HT). The mechanisms involved in the pathogenesis of HT can be summarized in relation to two main pathways: sympathetic nervous system stimulation mediated mainly by activation of carotid body (CB) chemoreflexes and/or asphyxia, and, by no means the least important, the systemic effects of chronic intermittent hypoxia (CIH). The use of animal models has revealed that CIH is the critical stimulus underlying sympathetic activity and hypertension, and that this effect requires the presence of functional arterial chemoreceptors, which are hyperactive in CIH. These models of CIH mimic the HT observed in humans and allow the study of CIH independently without the mechanical obstruction component. The effect of continuous positive airway pressure (CPAP), the gold standard treatment for OSA patients, to reduce blood pressure seems to be modest and concomitant antihypertensive therapy is still required. We focus this review on the efficacy of pharmacological interventions to revert HT associated with CIH conditions in both animal models and humans. First, we explore the experimental animal models, developed to mimic HT related to CIH, which have been used to investigate the effect of antihypertensive drugs (AHDs). Second, we review what is known about drug efficacy to reverse HT induced by CIH in animals. Moreover, findings in humans with OSA are cited to demonstrate the lack of strong evidence for the establishment of a first-line antihypertensive regimen for these patients. Indeed, specific therapeutic guidelines for the pharmacological treatment of HT in these patients are still lacking. Finally, we discuss the future perspectives concerning the non-pharmacological and pharmacological management of this particular type of HT.
Collapse
Affiliation(s)
- Lucilia N Diogo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Emília C Monteiro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
39
|
Genta-Pereira DC, Pedrosa RP, Lorenzi-Filho G, Drager LF. Sleep Disturbances and Resistant Hypertension: Association or Causality? Curr Hypertens Rep 2014; 16:459. [DOI: 10.1007/s11906-014-0459-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|