1
|
Merkel R, Hernandez NS, Weir V, Zhang Y, Caffrey A, Rich MT, Crist RC, Reiner BC, Schmidt HD. An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking. SCIENCE ADVANCES 2025; 11:eadr5051. [PMID: 40009667 PMCID: PMC11864183 DOI: 10.1126/sciadv.adr5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Recent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate cocaine seeking. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius that project to the ventral tegmental area (VTA) decreased cocaine seeking. Single-nuclei transcriptomics and FISH studies revealed that GLP-1Rs are expressed primarily on GABA neurons in the VTA. Using in vivo fiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.
Collapse
Affiliation(s)
- Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole S. Hernandez
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa Weir
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Vaegelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Caffrey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew T. Rich
- Department of Psychiatry, Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin C. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Carrasco RA, Breen KM. Brainstem Noradrenergic Neuronal Populations: Dual Effects on Regulating GnRH and LH Secretion. Endocrinology 2025; 166:bqaf021. [PMID: 39891672 PMCID: PMC11815497 DOI: 10.1210/endocr/bqaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Noradrenergic neurons are a brain network that integrate viscero-sensorial signals to modulate neural and neuroendocrine function. Although it has been known for decades that noradrenergic neural circuits influence neuroendocrine and reproductive function, the cellular and molecular players involved remain largely unknown. The objective of this review is to summarize past and current knowledge regarding the influence of brainstem noradrenergic systems on GnRH and gonadotrophin secretion. The main noradrenergic cell groups A1, A2, and A6, known as the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus, respectively, are involved in the control of reproductive neuroendocrine secretion. Current evidence suggests that brainstem noradrenergic circuits promote the generation and maintenance of the LH surge in both spontaneous (rats, sheep) and induced (rabbit, ferret) ovulators. In contrast, recent studies have established that LH pulsatile secretion is suppressed by specific activation of brainstem noradrenergic cell groups. The duality of the GnRH/LH response to noradrenaline reflects the inherent complexity of hindbrain noradrenaline neurons, which are responsive to stressors and gonadal steroids (ie, estradiol) and coexpress a variety of neurotransmitters and neuropeptides. Therefore, elucidating the organization and functionality of brainstem noradrenergic systems will provide targets for controlling reproduction and understanding the interconnection with stress.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| |
Collapse
|
3
|
Duque M, Chen AB, Hsu E, Narayan S, Rymbek A, Begum S, Saher G, Cohen AE, Olson DE, Li Y, Prober DA, Bergles DE, Fishman MC, Engert F, Ahrens MB. Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance. Neuron 2025; 113:426-443.e5. [PMID: 39694033 PMCID: PMC11889991 DOI: 10.1016/j.neuron.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/08/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity. After ketamine washout, this circuit exhibits hyposensitivity to futility, leading to long-term increased perseverance. Pharmacological, chemogenetic, and optogenetic manipulations show that norepinephrine and astrocytes are necessary and sufficient for ketamine's long-term perseverance-enhancing aftereffects. In vivo calcium imaging revealed that astrocytes in adult mouse cortex are similarly activated during futility in the tail suspension test and that acute ketamine exposure also induces astrocyte hyperactivation. The cross-species conservation of ketamine's modulation of noradrenergic-astroglial circuits and evidence that plasticity in this pathway can alter the behavioral response to futility hold promise for identifying new strategies to treat affective disorders.
Collapse
Affiliation(s)
- Marc Duque
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Alex B Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Eric Hsu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shahinoor Begum
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| | - Adam E Cohen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark C Fishman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
4
|
Hwang J, Lee S, Okada J, Liu L, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. Nat Commun 2025; 16:991. [PMID: 39856118 PMCID: PMC11759694 DOI: 10.1038/s41467-025-56328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. The loss of these neurons prevents diet-induced obesity, and these outcomes are associated with increased energy expenditure. Although males and females exhibit improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice display increased insulin sensitivity. Furthermore, the loss of liver-projecting vagal sensory neurons limits the progression of hepatic steatosis. Intriguingly, mice lacking liver-innervating vagal sensory neurons also exhibit less anxiety-like behavior compared to control mice. Modulation of the liver-brain axis may aid in designing effective treatments for both psychiatric and metabolic disorders associated with obesity and MAFLD.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Sangbhin Lee
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Jeffrey E Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| | - Streamson C Chua
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA.
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
5
|
Hwang J, Lee S, Okada J, Liu L, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581228. [PMID: 38659949 PMCID: PMC11042226 DOI: 10.1101/2024.02.20.581228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons in both the left and right ganglia innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. Surprisingly, the loss of liver-projecting vagal sensory neurons via caspase-induced selective destruction of advillin-positive neurons prevents diet-induced obesity, and these outcomes are associated with increased energy expenditure. Although males and females exhibit improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice display increased insulin sensitivity. Furthermore, the loss of liver-projecting vagal sensory neurons limits the progression of hepatic steatosis in mice fed a steatogenic diet. Intriguingly, mice lacking liver-innervating vagal sensory neurons also exhibit less anxiety-like behavior compared to control mice. Therefore, modulation of the liver-brain axis may aid in designing effective treatments for both psychiatric and metabolic disorders associated with obesity and MAFLD.
Collapse
|
6
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats. J Neurosci Res 2024; 102:e25390. [PMID: 39373381 DOI: 10.1002/jnr.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Inge Estefania Guerrero
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
7
|
Laule C, Sayar-Atasoy N, Aklan I, Kim H, Ates T, Davis D, Atasoy D. Stress integration by an ascending adrenergic-melanocortin circuit. Neuropsychopharmacology 2024; 49:1361-1372. [PMID: 38326456 PMCID: PMC11251172 DOI: 10.1038/s41386-024-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tayfun Ates
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Zhu M, Jun S, Nie X, Chen J, Hao Y, Yu H, Zhang X, Sun L, Liu Y, Yuan X, Yuan F, Wang S. Mapping of afferent and efferent connections of phenylethanolamine N-methyltransferase-expressing neurons in the nucleus tractus solitarii. CNS Neurosci Ther 2024; 30:e14808. [PMID: 38887205 PMCID: PMC11183208 DOI: 10.1111/cns.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.
Collapse
Affiliation(s)
- Mengchu Zhu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Department of Laboratory DiagnosticsHebei Medical UniversityShijiazhuangHebeiChina
| | - Shirui Jun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaojun Nie
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Jinting Chen
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yinchao Hao
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hongxiao Yu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiang Zhang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Lu Sun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yuelin Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiangshan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of NeurologyJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Fang Yuan
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| | - Sheng Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| |
Collapse
|
9
|
McMorris T, Hale BJ, Pine BS, Williams TB. Creatine supplementation research fails to support the theoretical basis for an effect on cognition: Evidence from a systematic review. Behav Brain Res 2024; 466:114982. [PMID: 38582412 DOI: 10.1016/j.bbr.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Creatine supplementation has been put forward as a possible aid to cognition, particularly for vegans, vegetarians, the elderly, sleep deprived and hypoxic individuals. However, previous narrative reviews have only provided limited support for these claims. This is despite the fact that research has shown that creatine supplementation can induce increased brain concentrations of creatine, albeit to a limited extent. We carried out a systematic review to examine the current state of affairs. The review supported claims that creatine supplementation can increases brain creatine content but also demonstrated somewhat equivocal results for effects on cognition. It does, however, provide evidence to suggest that more research is required with stressed populations, as supplementation does appear to significantly affect brain content. Issues with research design, especially supplementation regimens, need to be addressed. Future research must include measurements of creatine brain content.
Collapse
Affiliation(s)
- Terry McMorris
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom; Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom.
| | - Beverley J Hale
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Beatrice S Pine
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Thomas B Williams
- Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom
| |
Collapse
|
10
|
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB. Norepinephrine changes behavioral state via astroglial purinergic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595576. [PMID: 38826423 PMCID: PMC11142163 DOI: 10.1101/2024.05.23.595576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.
Collapse
Affiliation(s)
- Alex B. Chen
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Marc Duque
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Vickie M. Wang
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Mahalakshmi Dhanasekar
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering; Virginia Polytechnic Institute and State University; Arlington, VA 22203, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Loeva Tocquer
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Present address: Allen Institute for Neural Dynamics; Seattle, WA 98109, USA
| | - David Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University; Beijing 100084, P.R. China
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| |
Collapse
|
11
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
12
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
13
|
Alhamami HN, Albogami AM, Algahtani MM, Alqinyah M, Alanazi WA, Alasmari F, Alhazzani K, Alanazi AZ, Alassmrry YA, Alhamed AS. The effect of inhibiting hindbrain A2 noradrenergic neurons by 6-Hydroxydopamine on lipopolysaccharide-treated male rats autistic animal model. Saudi Pharm J 2024; 32:101964. [PMID: 38328791 PMCID: PMC10848015 DOI: 10.1016/j.jsps.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental illness that often emerges in early childhood. The incidence of ASD has shown a notable rise in recent years. ASD is defined by deficits in social communication, and presence of rigid and repetitive behaviors and interests. The underlying mechanisms of ASD remain elusive. Multiple studies have documented the presence of neuroinflammation and increased levels of inflammatory cytokines, specifically, IL-6, TNF, and NF-κB, in various brain regions, including the prefrontal cortex (PFC) and hippocampus in individuals with ASD. Noradrenergic neurons play a crucial role in brain development and the regulation of motor, behavioral, and memory functions. This study sought to examine the impact of intracerebroventricular (icv.) injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), in the caudal dorsal vagal complex A2 neurons on various neuroinflammatory pathways at the hippocampus and PFC in valproic acid (VPA) autistic animal model. This was done in conjunction with an intraperitoneal (i.p.) injection of Lipopolysaccharides (LPS) in animal models with VPA-induced autism. We specifically examined the impact of the caudal fourth ventricle 6-OHDA icv. injection and LPS (i.p.) injection on self-grooming behavior. We measured the mRNA expression of IL-6, TNF-a, and NF-κB using qRT-PCR, and the protein expression of COX-2, GPX-1, p-AMPK, and AMPK using western blot analysis. The self-grooming activity was considerably higher in the combined treatment group (6-OHDA icv. + LPS i.p.) compared to the control group. A substantial increase observed in the expression of IL-6, TNF-α, and NF-κB genes in the PFC of the treatment group that received icv. Administration of 6-OHDA, compared to the control group. The VPA-autism rats that received the combo treatment exhibited a slight increase in the expression level of NF-κB gene in the hippocampus, compared to the control group. At the PFC, we noticed a substantial drop in the expression of the antioxidant protein GPX-1 in the group that received the combo treatment compared to the control group. Our data investigates a novel aspect that the 6-OHDA-induced inhibition of hindbrain A2 neurons could be influencing the neuroinflammatory pathways in the PFC and hippocampus of autistic animal models.
Collapse
Affiliation(s)
- Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A. Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Aguilar LA, Coker CR, McCullers Z, Evans A, Showemimo O, Melkumyan M, Keller BN, Snyder AE, Bingaman SS, Randall PA, Hajnal A, Browning KN, Arnold AC, Silberman Y. Adolescent alcohol disrupts development of noradrenergic neurons in the nucleus of the tractus solitarius and enhances stress behaviors in adulthood in mice in a sex specific manner. ADDICTION NEUROSCIENCE 2023; 9:100132. [PMID: 38162404 PMCID: PMC10756564 DOI: 10.1016/j.addicn.2023.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Alcohol use disorders (AUDs) are common mental health issues worldwide and can lead to other chronic diseases. Stress is a major factor in the development and continuation of AUDs, and adolescent alcohol exposure can lead to enhanced stress-responsivity and increased risk for AUD development in adulthood. The exact mechanisms behind the interaction between adolescence, stress, and alcohol are not fully understood and require further research. In this regard, the nucleus of the tractus solitarius (NTS) provides dense norepinephrine projections to the extended amygdala, providing a key pathway for stress-related alcohol behaviors. While NTS norepinephrine neurons are known to be alcohol sensitive, whether adolescent alcohol disrupts NTS-norepinephrine neuron development and if this is related to altered stress-sensitivity and alcohol preference in adulthood has not previously been examined. Here, we exposed male and female C57Bl/6J mice to the commonly used adolescent intermittent ethanol (AIE) vapor model during postnatal day 28-42 and examined AIE effects on: 1) tyrosine hydroxylase (TH) mRNA expression in the NTS across various ages (postnatal day 21-90), 2) behavioral responses to acute stress in the light/dark box test in adulthood, 3) NTS TH neuron responses to acute stress and ethanol challenges in adulthood, and 4) ethanol conditioned place preference behavior in adulthood. Overall the findings indicate that AIE alters NTS TH mRNA expression and increases anxiety-like behaviors following acute stress exposure in a sex-dependent manner. These mRNA expression and behavioral changes occur in the absence of AIE-induced changes in NTS TH neuron sensitivity to either acute stress or acute alcohol exposure or changes to ethanol conditioned place preference.
Collapse
Affiliation(s)
- Liz A. Aguilar
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Currently at Department of Biology, Indiana University Bloomington, USA
| | - Caitlin R. Coker
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Anatomy, USA
- Currently at Georgetown University School of Medicine, USA
| | - Zari McCullers
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Biomedical Sciences, USA
| | - Alexandra Evans
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Biomedical Sciences, USA
| | - Opeyemi Showemimo
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Anatomy, USA
| | - Mariam Melkumyan
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Neuroscience, USA
| | - Bailey N. Keller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Neuroscience, USA
| | - Angela E. Snyder
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
- Penn State College of Medicine, Graduate Program in Neuroscience, USA
| | - Sarah S. Bingaman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
| | | | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, USA
| |
Collapse
|
15
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, et alYao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Show More Authors] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
16
|
Pace SA, Myers B. Hindbrain Adrenergic/Noradrenergic Control of Integrated Endocrine and Autonomic Stress Responses. Endocrinology 2023; 165:bqad178. [PMID: 38015813 DOI: 10.1210/endocr/bqad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.
Collapse
Affiliation(s)
- Sebastian A Pace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Sayar-Atasoy N, Laule C, Aklan I, Kim H, Yavuz Y, Ates T, Coban I, Koksalar-Alkan F, Rysted J, Davis D, Singh U, Alp MI, Yilmaz B, Cui H, Atasoy D. Adrenergic modulation of melanocortin pathway by hunger signals. Nat Commun 2023; 14:6602. [PMID: 37857606 PMCID: PMC10587058 DOI: 10.1038/s41467-023-42362-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.
Collapse
Affiliation(s)
- Nilufer Sayar-Atasoy
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Connor Laule
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Iltan Aklan
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hyojin Kim
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yavuz Yavuz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Tayfun Ates
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ilknur Coban
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Jacob Rysted
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Debbie Davis
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Uday Singh
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Muhammed Ikbal Alp
- Department of Physiology, School of Medicine, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Huxing Cui
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deniz Atasoy
- Department of Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
SCARPA LL, BELLO NT. Dietary-induced binge-like eating impairs acoustic startle responses to acute nisoxetine in male mice. Behav Pharmacol 2023; 34:411-423. [PMID: 37578423 PMCID: PMC10528891 DOI: 10.1097/fbp.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sensorimotor gating disruptions have been noted in several psychiatric and neurodegenerative disorders. However, the involvement of sensorimotor gating processes in eating disorders has not been well characterized. Our objective was to examine the sensorimotor gating of the acoustic startle response following dietary-induced binge eating and high-fat diet (HFD) induced weight gain in male C57B/6J mice. Acute administration of the norepinephrine reuptake inhibitor, nisoxetine (0.5 and 5 mg/kg), and a dopamine reuptake inhibitor, GBR 12783 (1.6 and 16 mg/kg), were either given alone or in combination to assess norepinephrine and dopamine alterations, respectively. Male mice with repeated bouts of calorie restriction (Restrict) and with limited access to a sweetened fat food (Binge) demonstrated an escalation of intake over 2.5 weeks under standard chow conditions. Restrict Binge (RB) mice had a reduced startle response to the startle pulse (110 dB) compared with the Naive control group at 5 mg/kg nisoxetine. There was an overall effect of nisoxetine (0.5 and 5 mg/kg) to increase percent inhibition at pre-pulse (74 dB), %PP74. Under HFD conditions, the RB group did not demonstrate a binge-like eating phenotype. The RB group on HFD had a higher response to 74 dB with nisoxetine (5.0 mg/kg) compared with a combinational dose of nisoxetine (5.0 mg/kg) and GBR 12783 (1.6 mg/kg). These findings suggest that dietary conditions that promote binge-like eating can influence the central noradrenergic and dopaminergic controls of the acoustic startle response and potentially influence sensorimotor gating.
Collapse
Affiliation(s)
- Lori L. SCARPA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey; New Brunswick, NJ 08901
| | - Nicholas T. BELLO
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey; New Brunswick, NJ 08901
| |
Collapse
|
19
|
Quintas C, Gonçalves J, Queiroz G. Involvement of P2Y 1, P2Y 6, A 1 and A 2A Receptors in the Purinergic Inhibition of NMDA-Evoked Noradrenaline Release in the Rat Brain Cortex. Cells 2023; 12:1690. [PMID: 37443726 PMCID: PMC10341078 DOI: 10.3390/cells12131690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.
Collapse
Affiliation(s)
| | - Jorge Gonçalves
- Mechanistic Pharmacology and Pharmacotherapy Unit, UCIBIO-i4HB, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.Q.); (G.Q.)
| | | |
Collapse
|
20
|
Napit PR, Ali MH, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic hindbrain lactate regulation of ventromedial hypothalamic nucleus glucoregulatory neuron 5'-AMP-activated protein kinase activity and transmitter marker protein expression. Neuropeptides 2023; 99:102324. [PMID: 36791640 PMCID: PMC10175150 DOI: 10.1016/j.npep.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
21
|
Perepelkina OV, Poletaeva II. Cognitive Test Solution in Mice with Different Brain Weights after Atomoxetine. Neurol Int 2023; 15:649-660. [PMID: 37218980 DOI: 10.3390/neurolint15020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this paper, the data are presented concerning different reactions to seven daily injections of atomoxetine in two mouse strains differing in relative brain weight. Atomoxetine affected the performance in a puzzle-box cognitive test in a complicated way-the large brain mice were less successful at task solutions (presumably because they were not afraid of the brightly lit test box), while the small brain strain of atomoxetine treated mice solved the task more successfully. The behavior of all atomoxetine treated animals was more active in an aversive situation (an unescapable slippery funnel, (analogous to the Porsolt test) and the time of immobility decreased significantly in all atomoxetine treated mice. The general patterns of behavioral reactions to atomoxetine in the cognitive test and other interstrain differences demonstrated in these experiments made it possible to suggest that differences in ascending noradrenergic projections between the two strains used exist. Further analysis of the noradrenergic system in these strains is needed (and further analysis of the effects of drugs which affect noradrenergic receptors).
Collapse
Affiliation(s)
- Olga V Perepelkina
- Biology Department, Lomonossov Moscow State University, Vorobievy Gory, 1, Building 12, Moscow 119234, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonossov Moscow State University, Vorobievy Gory, 1, Building 12, Moscow 119234, Russia
| |
Collapse
|
22
|
Wald HS, Ghidewon MY, Hayes MR, Grill HJ. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am J Physiol Regul Integr Comp Physiol 2023; 324:R547-R555. [PMID: 36847494 PMCID: PMC10069974 DOI: 10.1152/ajpregu.00232.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Hindbrain growth hormone secretagogue receptor (GHSR) agonism increases food intake, yet the underlying neural mechanisms remain unclear. The functional effects of hindbrain GHSR antagonism by its endogenous antagonist liver-expressed antimicrobial peptide 2 (LEAP2) are also yet unexplored. To test the hypothesis that hindbrain GHSR agonism attenuates the food intake inhibitory effect of gastrointestinal (GI) satiation signals, ghrelin (at a feeding subthreshold dose) was administered to the fourth ventricle (4V) or directly to the nucleus tractus solitarius (NTS) before systemic delivery of the GI satiation signal cholecystokinin (CCK). Also examined, was whether hindbrain GHSR agonism attenuated CCK-induced NTS neural activation (c-Fos immunofluorescence). To investigate an alternate hypothesis that hindbrain GHSR agonism enhances feeding motivation and food seeking, intake stimulatory ghrelin doses were administered to the 4V and fixed ratio 5 (FR-5), progressive ratio (PR), and operant reinstatement paradigms for palatable food responding were evaluated. Also assessed were 4V LEAP2 delivery on food intake and body weight (BW) and on ghrelin-stimulated feeding. Both 4V and NTS ghrelin blocked the intake inhibitory effect of CCK and 4V ghrelin blocked CCK-induced NTS neural activation. Although 4V ghrelin increased low-demand FR-5 responding, it did not increase high-demand PR or reinstatement of operant responding. Fourth ventricle LEAP2 reduced chow intake and BW and blocked hindbrain ghrelin-stimulated feeding. Data support a role for hindbrain GHSR in bidirectional control of food intake through mechanisms that include interacting with the NTS neural processing of GI satiation signals but not food motivation and food seeking.
Collapse
Affiliation(s)
- Hallie S Wald
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Misgana Y Ghidewon
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R Hayes
- Department of Psychiatry, Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harvey J Grill
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
23
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Baker P, Barkan E, Bertagnolli D, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, Dolbeare T, Ellingwood L, Gee J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Jin K, Kroll M, Lathia K, Leon A, Long B, Maltzer Z, Martin N, McCue R, Meyerdierks E, Nguyen TN, Pham T, Rimorin C, Ruiz A, Shapovalova N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Cuevas NV, Wadhwani K, Ward K, Levi B, Farrell C, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith KA, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531121. [PMID: 37034735 PMCID: PMC10081189 DOI: 10.1101/2023.03.06.531121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
24
|
Hervig MES, Toschi C, Petersen A, Vangkilde S, Gether U, Robbins TW. Theory of visual attention (TVA) applied to rats performing the 5-choice serial reaction time task: differential effects of dopaminergic and noradrenergic manipulations. Psychopharmacology (Berl) 2023; 240:41-58. [PMID: 36434307 PMCID: PMC9816296 DOI: 10.1007/s00213-022-06269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown. OBJECTIVES We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes. METHODS Rats trained on the standard 5CSRTT and tested with variable stimulus durations were treated systemically with noradrenergic and/or dopaminergic agents (atomoxetine, methylphenidate, amphetamine, phenylephrine and atipamezole). TVA modelling was applied to estimate visual processing speed for correct and incorrect visual perceptual categorisations, independent of motor reaction times, as measures of attentional capacity. RESULTS Atomoxetine and phenylephrine decreased response frequencies, including premature responses, increased omissions and slowed responding. In contrast, methylphenidate, amphetamine and atipamezole sped up responding and increased premature responses. Visual processing speed was also affected differentially. Atomoxetine and phenylephrine slowed, whereas methylphenidate and atipamezole sped up, visual processing, both for correct and incorrect categorisations. Amphetamine selectively improved visual processing for correct, though not incorrect, responses in high-attention rats only, possibly reflecting improved attention. CONCLUSIONS These data indicate that the application of TVA to the 5CSRTT provides an enhanced sensitivity to capturing attentional effects. Unexpectedly, we found overall slowing effects, including impaired visual processing, following drugs either increasing extracellular noradrenaline (atomoxetine) or activating the α1-adrenoceptor (phenylephrine), while also ameliorating premature responses (impulsivity). In contrast, amphetamine had potential pro-attentional effects by enhancing visual processing, probably due to central dopamine upregulation.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anders Petersen
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vangkilde
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Trevor W. Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Edwards CM, Guerrero IE, Zheng H, Dolezel T, Rinaman L. Blockade of Ghrelin Receptor Signaling Enhances Conditioned Passive Avoidance and Context-Associated cFos Activation in Fasted Male Rats. Neuroendocrinology 2022; 113:535-548. [PMID: 36566746 PMCID: PMC10133005 DOI: 10.1159/000528828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | | | - Huiyuan Zheng
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
26
|
Yang E, Zwart MF, James B, Rubinov M, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB. A brainstem integrator for self-location memory and positional homeostasis in zebrafish. Cell 2022; 185:5011-5027.e20. [PMID: 36563666 PMCID: PMC11605990 DOI: 10.1016/j.cell.2022.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.
Collapse
Affiliation(s)
- En Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St. Andrews, UK
| | - Ben James
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mikail Rubinov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nikita Vladimirov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
27
|
Recent advances in colorimetric and fluorometric sensing of neurotransmitters by organic scaffolds. Eur J Med Chem 2022; 244:114820. [DOI: 10.1016/j.ejmech.2022.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
28
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
29
|
Sciolino NR, Hsiang M, Mazzone CM, Wilson LR, Plummer NW, Amin J, Smith KG, McGee CA, Fry SA, Yang CX, Powell JM, Bruchas MR, Kravitz AV, Cushman JD, Krashes MJ, Cui G, Jensen P. Natural locus coeruleus dynamics during feeding. SCIENCE ADVANCES 2022; 8:eabn9134. [PMID: 35984878 PMCID: PMC9390985 DOI: 10.1126/sciadv.abn9134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher M. Mazzone
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Leslie R. Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jaisal Amin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher A. McGee
- Comparative Medicine, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sydney A. Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cindy X. Yang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jeanne M. Powell
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael R. Bruchas
- Departments of Anesthesiology and Pharmacology, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael J. Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
30
|
Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:2409-2437. [PMID: 35838792 PMCID: PMC9418111 DOI: 10.1007/s00429-022-02534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada. .,Departments of Psychiatry and Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| | - Shuanghong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| |
Collapse
|
31
|
Downs AM, McElligott ZA. Noradrenergic circuits and signaling in substance use disorders. Neuropharmacology 2022; 208:108997. [PMID: 35176286 PMCID: PMC9498225 DOI: 10.1016/j.neuropharm.2022.108997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system innervates almost all regions of the brain and, as such, is well positioned to modulate many neural circuits implicated in behaviors and physiology underlying substance use disorders. Ample pharmacological evidence demonstrates that α1, α2, and β adrenergic receptors may serve as therapeutic targets to reduce drug -seeking behavior and drug withdrawal symptoms. Further, norepinephrine is a key modulator of the stress response, and stress has been heavily implicated in reinstatement of drug taking. In this review, we discuss recent advances in our understanding of noradrenergic circuitry and noradrenergic receptor signaling in the context of opioid, alcohol, and psychostimulant use disorders.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
32
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
33
|
Schaeuble D, Myers B. Cortical–Hypothalamic Integration of Autonomic and Endocrine Stress Responses. Front Physiol 2022; 13:820398. [PMID: 35222086 PMCID: PMC8874315 DOI: 10.3389/fphys.2022.820398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
The prevalence and severity of cardiovascular disease (CVD) are exacerbated by chronic stress exposure. While stress-induced sympathetic activity and elevated glucocorticoid secretion impair cardiovascular health, the mechanisms by which stress-responsive brain regions integrate autonomic and endocrine stress responses remain unclear. This review covers emerging literature on how specific cortical and hypothalamic nuclei regulate cardiovascular and neuroendocrine stress responses. We will also discuss the current understanding of the cellular and circuit mechanisms mediating physiological stress responses. Altogether, the reviewed literature highlights the current state of stress integration research, as well unanswered questions about the brain basis of CVD risk.
Collapse
|
34
|
Thrivikraman KV, Kinkead B, Owens MJ, Rapaport MH, Plotsky PM. Locus Coeruleus Noradrenergic Modulation of Diurnal Corticosterone, Stress Reactivity, and Cardiovascular Homeostasis in Male Rats. Neuroendocrinology 2022; 112:763-776. [PMID: 34649254 PMCID: PMC9037608 DOI: 10.1159/000520192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Activation of the locus coeruleus-noradrenergic (LC-NA) system during awakening is associated with an increase in plasma corticosterone and cardiovascular tone. These studies evaluate the role of the LC in this corticosterone and cardiovascular response. METHODS Male rats, on day 0, were treated intraperitoneally with either DSP4 (50 mg/kg body weight) (DSP), an LC-NA specific neurotoxin, or normal saline (SAL). On day 10, animals were surgically prepared with jugular vein (hypothalamic-pituitary-adrenal [HPA] axis) or carotid artery (hemodynamics) catheters and experiments performed on day 14. HPA axis activity, diurnally (circadian) and after stress (transient hemorrhage [14 mL/kg body weight] or air puff-startle), and basal and post-hemorrhage hemodynamics were evaluated. On day 16, brain regions from a subset of rats were dissected for norepinephrine and corticotropin-releasing factor (CRF) assay. RESULTS In DSP rats compared to SAL rats, (1) regional brain norepinephrine was decreased, but there was no change in median eminence or olfactory bulb CRF content; (2) during HPA axis acrophase, the plasma corticosterone response was blunted; (3) after hemorrhage and air puff-startle, the plasma adrenocorticotropic hormone response was attenuated, whereas the corticosterone response was dependent on stressor category; (4) under basal conditions, hemodynamic measures exhibited altered blood flow dynamics and systemic vasodilation; and (5) after hemorrhage, hemodynamics exhibited asynchronous responses. CONCLUSION LC-NA modulation of diurnal and stress-induced HPA axis reactivity occurs via distinct neurocircuits. The integrity of the LC-NA system is important to maintain blood flow dynamics. The importance of increases in plasma corticosterone at acrophase to maintain short- and long-term cardiovascular homeostasis is discussed.
Collapse
Affiliation(s)
- K. V. Thrivikraman
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Becky Kinkead
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Michael J. Owens
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Paul M. Plotsky
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
王 森, 郑 翔, 毕 文, 周 雪. [Obesity Combined with Chronic Restraint Stress-Induced Hypertension in Mice Is Associated with the Damage of Noradrenergic Neurons in Nucleus Tractus Solitarii]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:77-82. [PMID: 35048604 PMCID: PMC10408846 DOI: 10.12182/20220160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate whether obesity combined with chronic restraint stress (CRS) can increase blood pressure in mice and its relationship with the damage of the intermediate part of the nucleus tractus solitarius (iNTS). METHODS The CRS mouse model was constructed, and 51 mice were assigned to four groups, low-fat diet non-restraint group (LF group), low-fat diet restraint group (LS group), high-fat diet non-restraint group (HF group), and high-fat diet restraint group (HS group). Interventions were carried out in four cycles (over the course of 40 consecutive days), with each cycle consisting of 7 days of restraint and 3 days of free movement. The body weight and the arterial systolic blood pressure of the mice were measured on the day 9 of every cycle. The mice were sacrificed on day 40 and the brain tissues of the mice were collected afterwards in order to perform immunohistochemical staining and Western blot to examine the expression of glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH). The protein expression of vascular endothelial growth factor A (VEGFA) was examined with Western blot on epididymal fat pad to assess the vascular density of lipid tissue. RESULTS On day 40, the arterial systolic pressure of mice in HS group was significantly higher than that of mice in the three other groups. Body mass of high-fat diet group (HF group and HS group) increased significantly. Mice in the four groups did not present significant difference in VEGFA protein expression. INTS astrocytes were activated in the brain of mice in the restraint groups (LS group and HS group), and iNTS TH expression was decreased in HS group. Mice in HF group and LS group did not show abnormal changes in their blood pressure. Blood pressure of mice in the HS group generally rose, and hypertension (arterial systolic blood pressure ≥140 mmHg, 1 mmHg=0.133 kPa) was observed in 37.5% of the mice in this group. CONCLUSION Obesity combined with CRS may cause an increase in arterial blood pressure in mice, the mechanism of which may be related to the damage of noradrenergic neurons in the nucleus tractus solitarius.
Collapse
Affiliation(s)
- 森甲 王
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 翔 郑
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 文杰 毕
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 雪 周
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
- 四川大学华西基础医学与法医学院 基础医学专业实验室 (成都 610041)Laboratory of Basic Medicine, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol 2021; 170:75-88. [PMID: 34666105 DOI: 10.1016/j.ijpsycho.2021.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
An interoception model for the acute exercise-cognition interaction is presented. During exercise following the norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catecholamines, facilitating phasic release hence better cognitive performance of executive functions. When exercise intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new stimuli-response couplings are probably facilitated.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2ER, United Kingdom.
| |
Collapse
|
37
|
Usui N, Yoshida M, Takayanagi Y, Nasanbuyan N, Inutsuka A, Kurosu H, Mizukami H, Mori Y, Kuro‐o M, Onaka T. Roles of fibroblast growth factor 21 in the control of depression-like behaviours after social defeat stress in male rodents. J Neuroendocrinol 2021; 33:e13026. [PMID: 34472154 PMCID: PMC9285091 DOI: 10.1111/jne.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 21 (FGF21) modulates energy metabolism and neuroendocrine stress responses. FGF21 synthesis is increased after environmental or metabolic challenges. Detailed roles of FGF21 in the control of behavioural disturbances under stressful conditions remain to be clarified. Here, we examined the roles of FGF21 in the control of behavioural changes after social defeat stress in male rodents. Central administration of FGF21 increased the number of tyrosine hydroxylase-positive catecholaminergic cells expressing c-Fos protein, an activity marker of neurones, in the nucleus tractus solitarius and area postrema. Double in situ hybridisation showed that some catecholaminergic neurones in the dorsal medulla oblongata expressed β-Klotho, an essential co-receptor for FGF21, in male mice. Social defeat stress increased FGF21 concentrations in the plasma of male mice. FGF21-deficient male mice showed social avoidance in a social avoidance test with C57BL/6J mice (background strain of FGF21-deficient mice) and augmented immobility behaviour in a forced swimming test after social defeat stress. On the other hand, overexpression of FGF21 by adeno-associated virus vectors did not significantly change behaviours either in wild-type male mice or FGF21-deficient male mice. The present data are consistent with the view that endogenous FGF21, possibly during the developmental period, has an inhibitory action on stress-induced depression-like behaviour in male rodents.
Collapse
Affiliation(s)
- Naoki Usui
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Masahide Yoshida
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Naranbat Nasanbuyan
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Ayumu Inutsuka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Hiroshi Kurosu
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Hiroaki Mizukami
- Division of Genetic TherapeuticsCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Makoto Kuro‐o
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| |
Collapse
|
38
|
Hsu JCN, Sekizawa S, Tochinai R, Kuwahara M. Loss of Group II Metabotropic Glutamate Receptor Signaling Exacerbates Hypertension in Spontaneously Hypertensive Rats. Life (Basel) 2021; 11:life11070720. [PMID: 34357092 PMCID: PMC8307370 DOI: 10.3390/life11070720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 μg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy.
Collapse
|
39
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
40
|
Johnson ZA, Sciolino NR, Plummer NW, Harrison PR, Jensen P, Robertson SD. Assessment of Mapping the Brain, a Novel Research and Neurotechnology Based Approach for the Modern Neuroscience Classroom. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2021; 19:A226-A259. [PMID: 34552440 PMCID: PMC8437363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Abstract
Neuroscience research is changing at an incredible pace due to technological innovation and recent national and global initiatives such as the BRAIN initiative. Given the wealth of data supporting the value of course-based undergraduate research experiences (CUREs) for students, we developed and assessed a neurotechnology CURE, Mapping the Brain. The goal of the course is to immerse undergraduate and graduate students in research and to explore technological advances in neuroscience. In the laboratory portion of the course, students pursued a hypothesis-driven, collaborative National Institutes of Health (NIH) research project. Using chemogenetic technology (Designer Receptors Exclusively Activated by Designer Drugs-DREADDs) and a recombinase-based intersectional genetic strategy, students mapped norepinephrine neurons, and their projections and explored the effects of activating these neurons in vivo. In lecture, students compared traditional and cutting-edge neuroscience methodologies, analyzed primary literature, designed hypothesis-based experiments, and discussed technological limitations of studying the brain. Over two consecutive years in the Program at North Carolina State University, we assessed student learning and perceptions of learning based on Society for Neuroscience's (SfN) core concepts and essential principles of neuroscience. Using analysis of student assignments and pre/post content and perception-based course surveys, we also assessed whether the course improved student research article analysis and neurotechnology assessment. Our analyses reveal new insights and pedagogical approaches for engaging students in research and improving their critical analysis of research articles and neurotechnologies. Our data also show that our multifaceted approach increased student confidence and promoted a data focused mentality when tackling research literature. Through the integration of authentic research and a neurotechnology focus, Mapping the Brain provides a unique model as a modern neuroscience laboratory course.
Collapse
Affiliation(s)
- Zachary A. Johnson
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA 24060, USA
| | - Natale R. Sciolino
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Patrick R. Harrison
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC 27599, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Sabrina D. Robertson
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC 27599, USA
| |
Collapse
|
41
|
Constantin S, Pizano K, Matson K, Shan Y, Reynolds D, Wray S. An Inhibitory Circuit From Brainstem to GnRH Neurons in Male Mice: A New Role for the RFRP Receptor. Endocrinology 2021; 162:6132086. [PMID: 33564881 PMCID: PMC8016070 DOI: 10.1210/endocr/bqab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/31/2022]
Abstract
RFamide-related peptides (RFRPs, mammalian orthologs of gonadotropin-inhibitory hormone) convey circadian, seasonal, and social cues to the reproductive system. They regulate gonadotropin secretion by modulating gonadotropin-releasing hormone (GnRH) neurons via the RFRP receptor. Mice lacking this receptor are fertile but exhibit abnormal gonadotropin responses during metabolic challenges, such as acute fasting, when the normal drop in gonadotropin levels is delayed. Although it is known that these food intake signals to the reproductive circuit originate in the nucleus tractus solitarius (NTS) in the brainstem, the phenotype of the neurons conveying the signal remains unknown. Given that neuropeptide FF (NPFF), another RFamide peptide, resides in the NTS and can bind to the RFRP receptor, we hypothesized that NPFF may regulate GnRH neurons. To address this question, we used a combination of techniques: cell-attached electrophysiology on GnRH-driven green fluorescent protein-tagged neurons in acute brain slices; calcium imaging on cultured GnRH neurons; and immunostaining on adult brain tissue. We found (1) NPFF inhibits GnRH neuron excitability via the RFRP receptor and its canonical signaling pathway (Gi/o protein and G protein-coupled inwardly rectifying potassium channels), (2) NPFF-like fibers in the vicinity of GnRH neurons coexpress neuropeptide Y, (3) the majority of NPFF-like cell bodies in the NTS also coexpress neuropeptide Y, and (4) acute fasting increased NPFF-like immunoreactivity in the NTS. Together these data indicate that NPFF neurons within the NTS inhibit GnRH neurons, and thus reproduction, during fasting but prior to the energy deficit.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Katherine Pizano
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Kaya Matson
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Daniel Reynolds
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
- Correspondence: Dr. Susan Wray, Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive MSC 3703, Building 35, Room 3A1012, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Marques SM, Naves LM, Silva TDME, Cavalcante KVN, Alves JM, Ferreira-Neto ML, de Castro CH, Freiria-Oliveira AH, Fajemiroye JO, Gomes RM, Colombari E, Xavier CH, Pedrino GR. Medullary Noradrenergic Neurons Mediate Hemodynamic Responses to Osmotic and Volume Challenges. Front Physiol 2021; 12:649535. [PMID: 33967822 PMCID: PMC8103169 DOI: 10.3389/fphys.2021.649535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite being involved in homeostatic control and hydro-electrolyte balance, the contribution of medullary (A1 and A2) noradrenergic neurons to the hypertonic saline infusion (HSI)-induced cardiovascular response after hypotensive hemorrhage (HH) remains to be clarified. Hence, the present study sought to determine the role of noradrenergic neurons in HSI-induced hemodynamic recovery in male Wistar rats (290–320 g) with HH. Medullary catecholaminergic neurons were lesioned by nanoinjection of antidopamine-β-hydroxylase–saporin (0.105 ng·nl−1) into A1, A2, or both (LES A1; LES A2; or LES A1+A2, respectively). Sham rats received nanoinjections of free saporin in the same regions (SHAM A1; SHAM A2; or SHAM A1+A2, respectively). After 15 days, rats were anesthetized and instrumented for cardiovascular recordings. Following 10 min of stabilization, HH was performed by withdrawing arterial blood until mean arterial pressure (MAP) reaches 60 mmHg. Subsequently, HSI was performed (NaCl 3 M; 1.8 ml·kg−1, i.v.). The HH procedure caused hypotension and bradycardia and reduced renal, aortic, and hind limb blood flows (RBF, ABF, and HBF). The HSI restored MAP, heart rate (HR), and RBF to baseline values in the SHAM, LES A1, and LES A2 groups. However, concomitant A1 and A2 lesions impaired this recovery, as demonstrated by the abolishment of MAP, RBF, and ABF responses. Although lesioning of only a group of neurons (A1 or A2) was unable to prevent HSI-induced recovery of cardiovascular parameters after hemorrhage, lesions of both A1 and A2 made this response unfeasible. These findings show that together the A1 and A2 neurons are essential to HSI-induced cardiovascular recovery in hypovolemia. By implication, simultaneous A1 and A2 dysfunctions could impair the efficacy of HSI-induced recovery during hemorrhage.
Collapse
Affiliation(s)
- Stefanne Madalena Marques
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Lara Marques Naves
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Talita de Melo E Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Milan Alves
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Luiz Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Carlos Henrique de Castro
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Rodrigo Mello Gomes
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Henrique Xavier
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
43
|
Tsang AH, Nuzzaci D, Darwish T, Samudrala H, Blouet C. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons. Mol Metab 2020; 42:101070. [PMID: 32898712 PMCID: PMC7549147 DOI: 10.1016/j.molmet.2020.101070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
The nucleus of the solitary tract (NTS) is emerging as a major site of action for the appetite-suppressive effects of leading pharmacotherapies currently investigated to treat obesity. However, our understanding of how NTS neurons regulate appetite remains incomplete. OBJECTIVES In this study, we used NTS nutrient sensing as an entry point to characterize stimulus-defined neuronal ensembles engaged by the NTS to produce physiological satiety. METHODS We combined histological analysis, neuroanatomical assessment using inducible viral tracing tools, and functional tests to characterize hindbrain-forebrain circuits engaged by NTS leucine sensing to suppress hunger. RESULTS We found that NTS detection of leucine engages NTS prolactin-releasing peptide (PrRP) neurons to inhibit AgRP neurons via a population of leptin receptor-expressing neurons in the dorsomedial hypothalamus. This circuit is necessary for the anorectic response to NTS leucine, the appetite-suppressive effect of high-protein diets, and the long-term control of energy balance. CONCLUSIONS These results extend the integrative capability of AgRP neurons to include brainstem nutrient sensing inputs.
Collapse
Affiliation(s)
- Anthony H Tsang
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Danae Nuzzaci
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tamana Darwish
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Havish Samudrala
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Clémence Blouet
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
44
|
Differential attentional control mechanisms by two distinct noradrenergic coeruleo-frontal cortical pathways. Proc Natl Acad Sci U S A 2020; 117:29080-29089. [PMID: 33139568 DOI: 10.1073/pnas.2015635117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The attentional control of behavior is a higher-order cognitive function that operates through attention and response inhibition. The locus coeruleus (LC), the main source of norepinephrine in the brain, is considered to be involved in attentional control by modulating the neuronal activity of the prefrontal cortex (PFC). However, evidence for the causal role of LC activity in attentional control remains elusive. Here, by using behavioral and optogenetic techniques, we investigate the effect of LC neuron activation or inhibition in operant tests measuring attention and response inhibition (i.e., a measure of impulsive behavior). We show that LC neuron stimulation increases goal-directed attention and decreases impulsivity, while its suppression exacerbates distractibility and increases impulsive responding. Remarkably, we found that attention and response inhibition are under the control of two divergent projections emanating from the LC: one to the dorso-medial PFC and the other to the ventro-lateral orbitofrontal cortex, respectively. These findings are especially relevant for those pathological conditions characterized by attention deficits and elevated impulsivity.
Collapse
|
45
|
Lustberg D, Tillage RP, Bai Y, Pruitt M, Liles LC, Weinshenker D. Noradrenergic circuits in the forebrain control affective responses to novelty. Psychopharmacology (Berl) 2020; 237:3337-3355. [PMID: 32821984 PMCID: PMC7572912 DOI: 10.1007/s00213-020-05615-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE In rodents, exposure to novel environments elicits initial anxiety-like behavior (neophobia) followed by intense exploration (neophilia) that gradually subsides as the environment becomes familiar. Thus, innate novelty-induced behaviors are useful indices of anxiety and motivation in animal models of psychiatric disease. Noradrenergic neurons are activated by novelty and implicated in exploratory and anxiety-like responses, but the role of norepinephrine (NE) in neophobia has not been clearly delineated. OBJECTIVE We sought to define the role of central NE transmission in neophilic and neophobic behaviors. METHODS We assessed dopamine β-hydroxylase knockout (Dbh -/-) mice lacking NE and their NE-competent (Dbh +/-) littermate controls in neophilic (novelty-induced locomotion; NIL) and neophobic (novelty-suppressed feeding; NSF) behavioral tests with subsequent quantification of brain-wide c-fos induction. We complimented the gene knockout approach with pharmacological interventions. RESULTS Dbh -/- mice exhibited blunted locomotor responses in the NIL task and completely lacked neophobia in the NSF test. Neophobia was rescued in Dbh -/- mice by acute pharmacological restoration of central NE with the synthetic precursor L-3,4-dihydroxyphenylserine (DOPS), and attenuated in control mice by the inhibitory α2-adrenergic autoreceptor agonist guanfacine. Following either NSF or NIL, Dbh -/- mice demonstrated reduced c-fos in the anterior cingulate cortex, medial septum, ventral hippocampus, bed nucleus of the stria terminalis, and basolateral amygdala. CONCLUSION These findings indicate that central NE signaling is required for the expression of both neophilic and neophobic behaviors. Further, we describe a putative noradrenergic novelty network as a potential therapeutic target for treating anxiety and substance abuse disorders.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Yu Bai
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
46
|
Herman JP, Nawreen N, Smail MA, Cotella EM. Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020; 23:617-632. [PMID: 33345670 PMCID: PMC8034599 DOI: 10.1080/10253890.2020.1859475] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulation of stress reactivity is a fundamental priority of all organisms. Stress responses are critical for survival, yet can also cause physical and psychological damage. This review provides a synopsis of brain mechanisms designed to control physiological responses to stress, focusing primarily on glucocorticoid secretion via the hypothalamo-pituitary-adrenocortical (HPA) axis. The literature provides strong support for multi-faceted control of HPA axis responses, involving both direct and indirect actions at paraventricular nucleus (PVN) corticotropin releasing hormone neurons driving the secretory cascade. The PVN is directly excited by afferents from brainstem and hypothalamic circuits, likely relaying information on homeostatic challenge. Amygdala subnuclei drive HPA axis responses indirectly via disinhibition, mediated by GABAergic relays onto PVN-projecting neurons in the hypothalamus and bed nucleus of the stria terminalis (BST). Inhibition of stressor-evoked HPA axis responses is mediated by an elaborate network of glucocorticoid receptor (GR)-containing circuits, providing a distributed negative feedback signal that inhibits PVN neurons. Prefrontal and hippocampal neurons play a major role in HPA axis inhibition, again mediated by hypothalamic and BST GABAergic relays to the PVN. The complexity of the regulatory process suggests that information on stressors is integrated across functional disparate brain circuits prior to accessing the PVN, with regions such as the BST in prime position to relay contextual information provided by these sources into appropriate HPA activation. Dysregulation of the HPA in disease is likely a product of inappropriate checks and balances between excitatory and inhibitory inputs ultimately impacting PVN output.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Evelin M Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
47
|
den Hartog CR, Blandino KL, Nash ML, Sjogren ER, Grampetro MA, Moorman DE, Vazey EM. Noradrenergic tone mediates marble burying behavior after chronic stress and ethanol. Psychopharmacology (Berl) 2020; 237:3021-3031. [PMID: 32588079 PMCID: PMC7529922 DOI: 10.1007/s00213-020-05589-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
RATIONALE Stress plays a major role in the development of alcohol use disorder (AUD)-a history of chronic stress contributes to alcohol misuse, and withdrawal from alcohol elevates stress, perpetuating cycles of problematic drinking. Recent studies have shown that, in male mice, repeated chronic intermittent ethanol (CIE) and stress elevates alcohol use above either manipulation alone and impacts cognitive functions such as behavioral flexibility. OBJECTIVE Here, we investigated the impact of CIE and stress on anxiety in both sexes, and whether the norepinephrine (NE) system via locus coeruleus, which is implicated in both stress and alcohol motivation, is involved. RESULTS Male and female mice received multiple cycles of CIE and/or repeated forced swim stress (FSS), producing elevated drinking in both sexes. CIE/FSS treatment increased anxiety, which was blocked by treatment with the α1-AR inverse agonist prazosin. In contrast, administration of the corticotropin releasing factor receptor antagonist CP376395 into locus coeruleus did not reduce CIE/FSS-elevated anxiety. We also observed sex differences in behavioral responses to a history of CIE or FSS alone as well as differential behavioral consequences of prazosin treatment. CONCLUSIONS These data indicate that NE contributes to the development of anxiety following a history of alcohol and/or stress, and that the influence of both treatment history and NE signaling is sex dependent. These results argue for further investigation of the NE system in relation to disrupted behavior following chronic alcohol and stress, and support the assertion that treatments may differ across sex based on differential neural system engagement.
Collapse
Affiliation(s)
| | | | - McKenzie L. Nash
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| | - Emily R. Sjogren
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| | | | - David E. Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA, 01003, USA
| | - Elena M. Vazey
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
48
|
Butkovich LM, Houser MC, Chalermpalanupap T, Porter-Stransky KA, Iannitelli AF, Boles JS, Lloyd GM, Coomes AS, Eidson LN, De Sousa Rodrigues ME, Oliver DL, Kelly SD, Chang J, Bengoa-Vergniory N, Wade-Martins R, Giasson BI, Joers V, Weinshenker D, Tansey MG. Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. J Neurosci 2020; 40:7559-7576. [PMID: 32868457 PMCID: PMC7511194 DOI: 10.1523/jneurosci.1468-19.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT ɑ-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.
Collapse
Affiliation(s)
| | | | - Termpanit Chalermpalanupap
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Kirsten A Porter-Stransky
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
- Department of Biomedical Sciences, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, Michigan 49008
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Jake S Boles
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Grace M Lloyd
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Alexandra S Coomes
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Lori N Eidson
- Department of Physiology, Emory School of Medicine, Atlanta, Georgia 30322
| | | | | | - Sean D Kelly
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
| | - Jianjun Chang
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
| | - Nora Bengoa-Vergniory
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Benoit I Giasson
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Valerie Joers
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - David Weinshenker
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
- Susan and Normal Fixel Chair in Parkinson's Disease, Normal Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, Florida 32610
| |
Collapse
|
49
|
McMorris T. Cognitive Fatigue Effects on Physical Performance: The Role of Interoception. Sports Med 2020; 50:1703-1708. [DOI: 10.1007/s40279-020-01320-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Lustberg D, Iannitelli AF, Tillage RP, Pruitt M, Liles LC, Weinshenker D. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder. Psychopharmacology (Berl) 2020; 237:1973-1987. [PMID: 32313981 PMCID: PMC7961804 DOI: 10.1007/s00213-020-05512-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the involvement of norepinephrine (NE) in OCD has not been investigated. OBJECTIVE To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB) and nestlet shredding (NS), two animal models of OCD. METHODS We assessed NE-deficient (Dbh -/-) mice and NE-competent (Dbh +/-) controls in MB and NS tasks. We also measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of central NE in Dbh -/- mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC of Dbh -/- and control mice following both tasks. RESULTS Dbh -/- mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze (EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis in Dbh -/- mice completely rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the ACC was attenuated in Dbh -/- mice after MB and NS. CONCLUSION These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA.
| |
Collapse
|