1
|
Haugland KG, Jordbræk SV, Knutsen E, Kjelstrup KB, Brun VH. Growth Hormone Alters Remapping in the Hippocampal Area CA1 in a Novel Environment. eNeuro 2025; 12:ENEURO.0237-24.2024. [PMID: 39900507 PMCID: PMC11814925 DOI: 10.1523/eneuro.0237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Growth hormone (GH) is a neuromodulator that binds to receptors in the hippocampus and alters synaptic plasticity. A decline in GH levels is associated with normal aging, stress, and disease, and the mechanisms proposed involve the hippocampal circuit plasticity. To see how GH affects the hippocampal neural code, we recorded single neurons in the CA1 region of male Long-Evans rats with locally altered GH levels. Rats received injections of adeno-associated viruses into the hippocampus to make the cells overexpress either GH or an antagonizing mutated GH (aGH). Place cells were recorded in both familiar and novel environments to allow the assessment of pattern separation in the neural representations termed remapping. All the animals showed intact and stable place fields in the familiar environment. In the novel environment, aGH transfection increased the average firing rate, peak rate, and information density of the CA1 place fields. The tendency of global remapping increased in the GH animals compared with the controls, and only place cells of control animals showed significant rate remapping. Our results suggest that GH increases hippocampal sensitivity to novel information. Our findings show that GH is a significant neuromodulator in the hippocampus affecting how place cells represent the environment. These results could help us to understand the mechanisms behind memory impairments in GH deficiency as well as in normal aging.
Collapse
Affiliation(s)
- Kamilla G Haugland
- Departments of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø 9019, Norway
| | | | - Erik Knutsen
- Medical Biology, UiT - The Arctic University of Norway, Tromsø 9019, Norway
| | - Kirsten B Kjelstrup
- Departments of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø 9019, Norway
- University Hospital of North Norway, Tromsø 9019, Norway
| | - Vegard H Brun
- Departments of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø 9019, Norway
- University Hospital of North Norway, Tromsø 9019, Norway
| |
Collapse
|
2
|
Chen J, Xiang Z, Zhang Z, Yang Y, Shu K, Lei T. Acromegalic Rat Model Presented Cognitive Impairments and Tau Hyperphosphorylation in the Hippocampus. Neuroendocrinology 2024; 114:577-588. [PMID: 38368872 PMCID: PMC11151995 DOI: 10.1159/000537813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Acromegaly patients, in addition to the most prominent physical and endocrine changes, also exhibit a higher risk of cognitive dysfunction. However, the reasons and mechanisms underlying cognitive impairments in acromegaly patients remain unknown. METHODS Acromegalic rats were induced by subcutaneous injection of tumor cells, with continuous monitoring of the body weight and hormones to confirm the occurrence of acromegaly. Behavioral assessments, including open field test, novel object recognition test, and Barnes maze test, were conducted to evaluate the animals' cognitive function. Western blotting, immunohistochemistry, and immunofluorescence techniques were employed to examine changes in the hippocampal tau protein, Aβ, and associated signaling pathways. RESULTS The tumor cells secreting growth hormone increased the secretion of growth hormone, resulting in changes in body size and endocrine functions, thus causing acromegaly. The acromegaly model showed deficiencies in working memory and spatial memory. Hyperphosphorylation of tau protein was observed in the hippocampus of the acromegaly model, but no Aβ deposition was observed. The acromegaly model exhibits hippocampal growth hormone (GH) resistance, decreased expression of GH receptors, and subsequently reduced expression activity of the PI3K-Akt-GSK3β signaling pathway, which is responsible for the hyperphosphorylation of tau protein. CONCLUSION The prolonged elevation of GH and insulin-like growth factor 1 caused by acromegaly may lead to abnormalities in the SD rat's PI3K-Akt-GSK3β signaling pathway, subsequently resulting in hyperphosphorylation of the hippocampal tau protein and cognitive impairment.
Collapse
Affiliation(s)
- Juan Chen
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigao Xiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gao C, Cao Y, He M, Zhang X, Zhong Q, Tang L, Chen T, Zhang Z. SAG treatment ameliorates memory impairment related to sleep loss by upregulating synaptic plasticity in adolescent mice. Behav Brain Res 2023; 450:114468. [PMID: 37148913 DOI: 10.1016/j.bbr.2023.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Adequate sleep during the developmental stage can promote learning and memory functions because synaptic protein synthesis at primed synapses during sleep profoundly affects neurological function. The Sonic hedgehog (Shh) signaling pathway affects neuroplasticity in the hippocampus during the development of the central nervous system. In this study, the changes in synaptic morphology and function induced by sleep deprivation and the potential therapeutic effect of a Shh agonist (SAG) on these changes were investigated in adolescent mice. Adolescent mice were subjected to sleep deprivation for 20 hrs (2pm to 10 am the next day) and were free to sleep for the remaining 4 hrs per day for 10 consecutive days. Sleep-deprived mice were injected with SAG (10mg/kg body weight, i.p.) or saline (i.p.) every day 5min before the onset of the 20h sleep deprivation period. Chronic sleep deprivation impaired recognition and spatial memory, decreased the number of dendritic spines and mEPSCs of hippocampal CA1 pyramidal neurons, decreased the postsynaptic density, and reduced Shh and glioma-associated oncogene homolog 1 (Gli1) expression. SAG significantly protected against sleep deprivation-induced memory dysfunction, increased the CA1 pyramidal neuronal dendritic spine number and mEPSC frequency, and increased Gli1 expression. In conclusion, sleep deprivation induces memory impairment in adolescent mice, and SAG treatment prevents this impairment, probably by enhancing synaptic function in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Chenyi Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xuemin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lijuan Tang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Mansouri E, Sarkaki A, Farbood Y. Exogenous growth hormone administration during total sleep deprivation changed the microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. Psychopharmacology (Berl) 2023; 240:1299-1312. [PMID: 37115226 DOI: 10.1007/s00213-023-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
RATIONALE Disorders caused by total sleep deprivation can be modulated by the administration of growth hormone, which could affect the expression of microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. OBJECTIVES The present study aimed to elucidate the putative effects of exogenous growth hormone (GH) against total sleep deprivation (TSD)-induced learning and memory dysfunctions and possible involved mechanisms. METHODS To induce TSD, rats were housed in homemade special cages equipped with stainless steel wire conductors to induce general and inconsistent TSD. They received a mild repetitive electric shock to their paws every 10 min for 21 days. GH (1 mg/kg, sc) was administered to adult young male rats once daily for 21-day-duration induction of TSD. Spatial learning and memory performance, inflammatory status, microRNA-9 (miR-9) expression, dopamine D2 receptor (DRD2) protein level, and hippocampal histological changes were assayed at scheduled times after TSD. RESULTS The results indicated that TSD impaired spatial cognition, increased TNF-α, decreased level of miR-9, and increased DRD2 levels. Treatment with exogenous GH improved spatial cognition, decreased TNF-α, increased level of miR-9, and decreased DRD2 levels after TSD. CONCLUSIONS Our findings suggest that GH may play a key role in the modulation of learning and memory disorders as well as the ameliorating abnormal DRD2-related functional disorders associated with miR-9 in TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Sarkaki A, Farbood Y. Therapeutic effects of growth hormone in a rat model of total sleep deprivation: Evaluating behavioral, hormonal, biochemical and electrophysiological parameters. Behav Brain Res 2023; 438:114190. [PMID: 36332721 DOI: 10.1016/j.bbr.2022.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Total sleep deprivation (TSD) causes several harmful changes in the brain, including memory impairment, increased stress and depression levels, as well as reduced antioxidant activity. Growth hormone (GH) has been shown to boost antioxidant levels while improving memory and depression. The present study was conducted to explain the possible effects of exogenous GH against behavioral and biochemical disorders caused by TSD and the possible mechanisms involved. MAIN METHODS To induce TSD, rats were housed in homemade special cages equipped with stainless steel wire conductors to induce general and inconsistent TSD. They received a mild repetitive electric shock to their paws every 10 min for 21 days. GH (1 ml/kg, sc) was administered to rats during induction of TSD for 21 days. Memory retrieval, anxiety, depression-like behaviors, pain behaviors, antioxidant activity, hippocampal level of BDNF, and simultaneously brain electrical activity were measured at scheduled times after TSD. KEY FINDINGS The results showed that GH treatment improved memory (p < 0.001) in the PAT test of rats exposed to TSD. These beneficial effects were associated with lowering the level of anxiety and depression-like behavior (p < 0.001), rising the pain threshold (p < 0.01), increasing the activity of antioxidants (p < 0.01), hippocampal BDNF (p < 0.001), and regular brain electrical activity. SIGNIFICANCE Our findings show that GH plays a key role in modulating memory, anxiety and depression behaviors, as well as reducing oxidative stress and improve hippocampal single-unit activity in the brain during TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmail Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Zhang Y, Sun Q, Li H, Wang D, Wang Y, Wang Z. Lower serum insulin-like growth factor 1 concentrations in patients with chronic insomnia disorder. Front Psychiatry 2023; 14:1102642. [PMID: 37151979 PMCID: PMC10160412 DOI: 10.3389/fpsyt.2023.1102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Objectives Insulin-like growth factor 1 (IGF-1) is a crucial neurotrophin that is produced in the brain and periphery and may play an important role in insomnia and mood disorders. We aimed to analyze its serum concentrations in patients with chronic insomnia disorder (CID). Methods Patients with CID were enrolled in this study and divided into the CID group [Generalized Anxiety Disorder-7 (GAD-7) score < 10] and the CID with anxiety group (GAD-7 score ≥ 10). Age-and sex-matched healthy volunteers were recruited as controls. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality and the GAD-7 and the Patient Health Questionnaire-9 to assess emotional status. All subjects were monitored via polysomnography, and the serum IGF-1 concentrations in their peripheral blood were detected via enzyme-linked immunosorbent assays. Results We enrolled 65 patients with CID (of whom 35 had anxiety) and 36 controls. The PSQI score and IGF-1 concentration in the CID and CID with anxiety groups were higher than those in the control group. The apparent difference in IGF-1 concentration between the CID and CID with anxiety groups was not statistically significant. The IGF-1 concentration in patients with CID was linearly correlated with the GAD-7 score, PSQI score, and stage 3 non-rapid eye movement (stage N3) time. Conclusion The serum IGF-1 concentration in patients with CID was lower than that of participants without CID, negatively correlated with anxiety score and sleep quality, and positively correlated with stage N3 time.
Collapse
|
7
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
8
|
Juárez-Aguilar E, Olivares-Hernández JD, Regalado-Santiago C, García-García F. The role of growth hormone in hippocampal function. VITAMINS AND HORMONES 2021; 118:289-313. [PMID: 35180930 DOI: 10.1016/bs.vh.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.
Collapse
Affiliation(s)
- Enrique Juárez-Aguilar
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico.
| | - Juan David Olivares-Hernández
- Laboratorio D-01, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Fabio García-García
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
9
|
Moro J, Santos P, Giacomin A, Cardoso M, Bolan M. ASSOCIATION BETWEEN TROUBLE SLEEPING AND ORAL CONDITIONS AMONG SCHOOLCHILDREN. REVISTA PAULISTA DE PEDIATRIA 2020; 39:e2019342. [PMID: 32996996 PMCID: PMC7518721 DOI: 10.1590/1984-0462/2021/39/2019342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 11/22/2022]
Abstract
Objective: To investigate the prevalence of self-reported trouble sleeping due to
dental problems and its association with oral conditions in schoolchildren.
Methods: This is a cross-sectional study carried out with a representative sample of
1,589 schoolchildren aged 8-10 years enrolled in public schools from
Florianópolis, Santa Catarina, Brazil. Non-clinical data included a
questionnaire about socioeconomic indicators answered by parents/guardians.
Children were questioned about whether they had trouble sleeping due to
dental problems and about previous history of toothache. Clinical oral
examinations were performed to evaluate dental caries - Decayed, Missing,
and Filled Teeth Index (DMFT/dmft index) and its clinical consequences
[PUFA/pufa index: considering the presence of pulpal involvement (P/p);
ulceration of tissues due to tooth fragments from decayed crowns (U/u);
fistula (F/f); and abscesses (A/a), and traumatic dental injuries (TDI)]. We
conducted a descriptive analysis and used adjusted logistic regression
models (p<0.05; 95%CI). Results: The prevalence of trouble sleeping due to dental problems was 28%. Children
with untreated dental caries (OR 1.32; 95%CI 1.05-1.67) and clinical
consequences from the PUFA/pufa index (OR 1.89; 95%CI 1.45-2.46) had higher
chances of reporting trouble sleeping due to dental problems. Conclusions: Approximately one-third of the children declared having trouble sleeping due
to dental problems. Untreated dental caries and its clinical consequences
were associated with self-reported trouble sleeping due to dental problems
in schoolchildren.
Collapse
Affiliation(s)
- Juliana Moro
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Pablo Santos
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Giacomin
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mariane Cardoso
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michele Bolan
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
11
|
Haugland KG, Olberg A, Lande A, Kjelstrup KB, Brun VH. Hippocampal growth hormone modulates relational memory and the dendritic spine density in CA1. ACTA ACUST UNITED AC 2020; 27:33-44. [PMID: 31949035 PMCID: PMC6970428 DOI: 10.1101/lm.050229.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) deficiency is associated with cognitive decline which occur both in normal aging and in endocrine disorders. Several brain areas express receptors for GH although their functional role is unclear. To determine how GH affects the capacity for learning and memory by specific actions in one of the key areas, the hippocampus, we injected recombinant adeno-associated viruses (rAAVs) in male rats to express green fluorescent protein (GFP) combined with either GH, antagonizing GH (aGH), or no hormone, in the dorsal CA1. We found that aGH disrupted memory in the Morris water maze task, and that aGH treated animals needed more training to relearn a novel goal location. In a one-trial spontaneous location recognition test, the GH treated rats had better memory performance for object locations than the two other groups. Histological examinations revealed that GH increased the dendritic spine density on apical dendrites of CA1, while aGH reduced the spine density. GH increased the relative amount of immature spines, while aGH decreased the same amount. Our results imply that GH is a neuromodulator with strong influence over hippocampal plasticity and relational memory by mechanisms involving modulation of dendritic spines. The findings are significant to the increasing aging population and GH deficiency patients.
Collapse
Affiliation(s)
- Kamilla G Haugland
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Anniken Olberg
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Andreas Lande
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kirsten B Kjelstrup
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| | - Vegard H Brun
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| |
Collapse
|
12
|
Lahtinen A, Puttonen S, Vanttola P, Viitasalo K, Sulkava S, Pervjakova N, Joensuu A, Salo P, Toivola A, Härmä M, Milani L, Perola M, Paunio T. A distinctive DNA methylation pattern in insufficient sleep. Sci Rep 2019; 9:1193. [PMID: 30718923 PMCID: PMC6362278 DOI: 10.1038/s41598-018-38009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 ± 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 ± 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value < 0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.
Collapse
Affiliation(s)
- Alexandra Lahtinen
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland.
| | - Sampsa Puttonen
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Päivi Vanttola
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | | | - Sonja Sulkava
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Anni Joensuu
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland
| | - Perttu Salo
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Auli Toivola
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Mikko Härmä
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Markus Perola
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland
| | - Tiina Paunio
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland.
| |
Collapse
|
13
|
Colvonen PJ, Straus LD, Stepnowsky C, McCarthy MJ, Goldstein LA, Norman SB. Recent Advancements in Treating Sleep Disorders in Co-Occurring PTSD. Curr Psychiatry Rep 2018; 20:48. [PMID: 29931537 PMCID: PMC6645398 DOI: 10.1007/s11920-018-0916-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Comorbidity of posttraumatic stress disorder (PTSD) and insomnia, nightmares, and obstructive sleep apnea (OSA) is high. We review recent research on psychotherapeutic and pharmacological interventions for sleep disorders in PTSD. RECENT FINDINGS PTSD treatments decrease PTSD severity and nightmare frequency, but do not resolve OSA or insomnia. Research on whether insomnia hinders PTSD treatment shows mixed results; untreated OSA does interfere with PTSD treatment. Cognitive behavioral therapy for insomnia is the recommended treatment for insomnia; however, optimal ordering with PTSD treatment is unclear. PTSD treatment may be most useful for PTSD-related nightmares. CPAP therapy is recommended for OSA but adherence can be low. Targeted treatment of sleep disorders in the context of PTSD offers a unique and underutilized opportunity to advance clinical care and research. Research is needed to create screening protocols, determine optimal order of treatment, and elucidate mechanisms between sleep and PTSD treatments.
Collapse
Affiliation(s)
- Peter J. Colvonen
- VA San Diego Healthcare System, University of California San Diego, 3350 La Jolla Village Dr. (116B), San Diego, CA 92161, USA,Center of Excellence for Stress and Mental Health, University of California San Diego, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Laura D. Straus
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Healthcare System, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Carl Stepnowsky
- VA San Diego Healthcare System, University of California San Diego, 3350 La Jolla Village Dr. (116B), San Diego, CA 92161, USA,Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Michael J. McCarthy
- VA San Diego Healthcare System, University of California San Diego, 3350 La Jolla Village Dr. (116B), San Diego, CA 92161, USA,Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lizabeth A. Goldstein
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Healthcare System, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Sonya B. Norman
- VA San Diego Healthcare System, University of California San Diego, 3350 La Jolla Village Dr. (116B), San Diego, CA 92161, USA,Center of Excellence for Stress and Mental Health, University of California San Diego, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, San Diego, CA, USA,National Center for PTSD, Boston, MA, USA
| |
Collapse
|
14
|
Basu A, McFarlane HG, Kopchick JJ. Spatial learning and memory in male mice with altered growth hormone action. Horm Behav 2017; 93:18-30. [PMID: 28389277 DOI: 10.1016/j.yhbeh.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.
Collapse
Affiliation(s)
- Amrita Basu
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biological Sciences, Edison Biotechnology Insitute, Ohio University, Athens, OH, United States.
| | | | - John J Kopchick
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Edison Biotechnology Institute, Ohio University, Athens, OH, United States.
| |
Collapse
|
15
|
Basrai HS, Turbic A, Christie KJ, Turnley AM. Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation. Cell Mol Neurobiol 2017; 37:899-909. [PMID: 27655030 PMCID: PMC11482086 DOI: 10.1007/s10571-016-0427-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023]
Abstract
Overexpression of suppressor of cytokine signalling 2 (SOCS2) has been shown to promote hippocampal neurogenesis in vivo and promote neurite outgrowth of neurons in vitro. In the adult mouse brain, SOCS2 is most highly expressed in the hippocampal CA3 region and at lower levels in the dentate gyrus, an expression pattern that suggests a role in adult neurogenesis. Herein we examine generation of neuroblasts and their maturation into more mature neurons in SOCS2 null (SOCS2KO) mice. EdU was administered for 7 days to label proliferative neural precursor cells. The number of EdU-labelled doublecortin+ neuroblasts and NeuN+ mature neurons they generated was examined at day 8 and day 35, respectively. While no effect of SOCS2 deletion was observed in neuroblast generation, it reduced the numbers of EdU-labelled mature newborn neurons at 35 days. As SOCS2 regulates neurite outgrowth and dentate granule neurons project to the CA3 region, alterations in dendritic arborisation or spine formation may have correlated with the decreased numbers of EdU-labelled newborn neurons. SOCS2KO mice were crossed with Nes-CreERT2/mTmG mice, in which membrane eGFP is inducibly expressed in neural precursor cells and their progeny, and the dendrite and dendritic spine morphology of newborn neurons were examined at 35 days. SOCS2 deletion had no effect on total dendrite length, number of dendritic segments, number of branch points or total dendritic spine density but increased the number of mature "mushroom" spines. Our results suggest that endogenous SOCS2 regulates numbers of EdU-labelled mature newborn adult hippocampal neurons, possibly by mediating their survival and that this may be via a mechanism regulating dendritic spine maturation.
Collapse
Affiliation(s)
- Harleen S Basrai
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alisa Turbic
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kimberly J Christie
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ann M Turnley
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Orr JE, Smales C, Alexander TH, Stepnowsky C, Pillar G, Malhotra A, Sarmiento KF. Treatment of OSA with CPAP Is Associated with Improvement in PTSD Symptoms among Veterans. J Clin Sleep Med 2017; 13:57-63. [PMID: 27707436 DOI: 10.5664/jcsm.6388] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
STUDY OBJECTIVES Posttraumatic stress disorder (PTSD) is common among veterans of the military, with sleep disturbance as a hallmark manifestation. A growing body of research has suggested a link between obstructive sleep apnea and PTSD, potentially due to obstructive sleep apnea (OSA) related sleep disruption, or via other mechanisms. We examined the hypothesis that treatment of OSA with positive airway pressure would reduce PTSD symptoms over 6 months. METHODS A prospective study of Veterans with confirmed PTSD and new diagnosis of OSA not yet using PAP therapy were recruited from a Veteran's Affairs sleep medicine clinic. All subjects were instructed to use PAP each night. Assessments were performed at 3 and 6 months. The primary outcome was a reduction in PTSD symptoms at 6 months. RESULTS Fifty-nine subjects were enrolled; 32 remained in the study at 6 months. A significant reduction in PTSD symptoms, measured by PCL-S score was observed over the course of the study (60.6 ± 2.7 versus 52.3 ± 3.2 points; p < 0.001). Improvement was also seen in measures of sleepiness, sleep quality, and daytime functioning, as well as depression and quality of life. Percentage of nights in which PAP was used, but not mean hours used per night, was predictive of improvement. CONCLUSIONS Treatment of OSA with PAP therapy is associated with improvement in PTSD symptoms, although the mechanism is unclear. Nonetheless, PAP should be considered an important component of PTSD treatment for those with concurrent OSA. Improving PAP compliance is a challenge in this patient population warranting further investigation. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT02019914. COMMENTARY A commentary on this article appears in this issue on page 5.
Collapse
Affiliation(s)
- Jeremy E Orr
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA
| | | | - Thomas H Alexander
- Veterans Affairs San Diego Healthcare System, San Diego, CA.,Division of Otolaryngology-Head & Neck Surgery, University of California San Diego, San Diego, CA
| | | | - Giora Pillar
- Department of Sleep and Pediatrics, Carmel Medical Center, Haifa, Israel
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA
| | - Kathleen F Sarmiento
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA.,Veterans Affairs San Diego Healthcare System, San Diego, CA
| |
Collapse
|
17
|
Abstract
Post-traumatic stress disorder (PTSD) and sleep-disordered breathing (SDB) are shared by many patients. They both affect sleep and the quality of life of affected subjects. A critical review of the literature supports an association between the two disorders in both combat-related and non-combat-related PTSD. The exact mechanism linking PTSD and SDB is not fully understood. A complex interplay between sleep fragmentation and neuroendocrine pathways is suggested. The overlap of symptoms between PTSD and SDB raises diagnostic challenges that may require a novel approach in the methods used to diagnose the coexisting disorders. Similar therapeutic challenges face patients and providers when treating concomitant PTSD and SDB. Although continuous positive airway pressure therapy imparts a mitigating effect on PTSD symptomatology, lack of both acceptance and adherence are common. Future research should focus on ways to improve adherence to continuous positive airway pressure therapy and on the use of alternative therapeutic methods for treating SDB in patients with PTSD.
Collapse
|
18
|
Xie M, Li C, He C, Yang L, Tan G, Yan J, Wang J, Hu Z. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory. Behav Brain Res 2015; 300:70-6. [PMID: 26455878 DOI: 10.1016/j.bbr.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
Numerous studies reported that sleep deprivation (SD) causes impairment in spatial cognitive performance. However, the molecular mechanisms affected by SD underlying this behavioral phenomenon remain elusive. Here, we focused on the entorhinal cortex (EC), the gateway of the hippocampus, and investigated how SD affected the subunit expression of AMPARs and NMDARs, the main ionotropic glutamategic receptors serving a pivotal role in spatial cognition. In EC, we found 4h SD remarkably reduced surface expression of GluA1, while there was an increase in the surface expression of GluA2 and GluA3. As for NMDARs, SD with short duration significantly reduced the surface expression levels of GluN1 and GluN2B without effect on the GluN2A. In parallel with the alterations in AMPARs and NMDARs, we found the 4h SD impaired rat spatial reference memory as assessed by Morris water maze task. Overall, these data indicate that brief SD differently affects the AMPAR and NMDAR subunit expressions in EC and might consequently disrupt the composition and functional properties of these receptors.
Collapse
Affiliation(s)
- Meilan Xie
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Chao Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Li Yang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Gang Tan
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Jie Yan
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Jiali Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China.
| |
Collapse
|
19
|
Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus. Psychopharmacology (Berl) 2014; 231:4429-41. [PMID: 24781518 PMCID: PMC4214920 DOI: 10.1007/s00213-014-3587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Monoamine reuptake inhibitors can stimulate expression of brain-derived neurotrophic factor (BDNF) and alter long-term potentiation (LTP), a widely used model for the synaptic mechanisms that underlie memory formation. BDNF expression is upregulated during LTP, and BDNF in turn positively modulates LTP. Previously, we found that treatment with venlafaxine, a serotonin and norepinephrine reuptake inhibitor (SNRI), but not citalopram, a selective serotonin reuptake inhibitor (SSRI), reduced LTP in hippocampal area CA1 without changing hippocampal BDNF protein expression. OBJECTIVES We tested the hypothesis that combined serotonin and norepinephrine reuptake inhibition is necessary for LTP impairment, and we reexamined the potential role of BDNF by testing for region-specific changes in areas CA1, CA3, and dentate gyrus. We also tested whether early events in the LTP signaling pathway were altered to impair LTP. METHODS Animals were treated for 21 days with venlafaxine, imipramine, fluoxetine, or maprotiline. In vitro hippocampal slices were used for electrophysiological measurements. Protein expression was measured by enzyme-linked immunosorbent assay (ELISA) and Western blotting. RESULTS LTP was impaired only following treatment with combined serotonin and norepinephrine reuptake inhibitors (venlafaxine, imipramine) but not with selective serotonin (fluoxetine) or norepinephrine (maprotiline) reuptake inhibitors. BDNF protein expression was not altered by venlafaxine or imipramine treatment, nor were postsynaptic depolarization during LTP inducing stimulation or synaptic membrane NMDA receptor subunit expression affected. CONCLUSIONS LTP is impaired by chronic treatment with antidepressant that inhibit both serotonin and norepinephrine reuptake; this impairment results from changes that are downstream of postsynaptic depolarization and calcium influx.
Collapse
|
20
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
21
|
Abstract
Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
22
|
Sympathetic activity and hypothalamo-pituitary-adrenal axis activity during sleep in post-traumatic stress disorder: a study assessing polysomnography with simultaneous blood sampling. Psychoneuroendocrinology 2013; 38:155-65. [PMID: 22776420 DOI: 10.1016/j.psyneuen.2012.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Nightmares and insomnia in PTSD are hallmark symptoms, yet poorly understood in comparison to the advances toward a biological framework for the disorder. According to polysomnography (PSG), only minor changes in sleep architecture were described. This warrants alternative methods for assessing sleep regulation in PTSD. METHODS After screening for obstructive sleep apnea and period limb movement disorder, veterans with PTSD (n=13), trauma controls (TCs, n=17) and healthy controls (HCs, n=15) slept in our sleep laboratory on two consecutive nights with an IV catheter out of which blood was sampled every 20min from 22:00h to 08:00h. Nocturnal levels of plasma adrenocorticotropic hormone (ACTH), cortisol, melatonin were assessed in conjunction with PSG registration, as well as subjective sleep parameters. RESULTS PTSD patients showed a significant increase in awakenings during sleep in comparison to both control groups. These awakenings were correlated with ACTH levels during the night, and with the subjective perception of sleep depth. Also, heart rate (HR) was significantly increased in PTSD patients as compared with both control groups. The diurnal regulation of ACTH, cortisol and melatonin appeared undisturbed. PTSD patients exhibited lower cortisol levels at borderline significance (p=0.056) during the first half of the night. ACTH levels and cortisol levels during the first half of the night were inversely related to slow wave sleep (SWS). CONCLUSION This study suggests that hypothalamo-pituitary-adrenal (HPA) axis activity is related to sleep fragmentation in PTSD. Also, activity of the sympathetic nervous system (SNS) is increased during sleep in PTSD. Further research is necessary to explore the potential causal relationship between sleep problems and the activity of the HPA-axis and SNS in PTSD.
Collapse
|
23
|
Abstract
BACKGROUND Sleep facilitates the consolidation of fear extinction memory. Nightmares and insomnia are hallmark symptoms of posttraumatic stress disorder (PTSD), possibly interfering with fear extinction and compromising recovery. A perpetual circle may develop when sleep disturbances increase the risk for PTSD and vice versa. To date, therapeutic options for alleviating sleep disturbances in PTSD are limited. METHODS WE CONDUCTED THREE STUDIES TO EXAMINE THE RELATIONSHIP BETWEEN SLEEP AND POSTTRAUMATIC SYMPTOMS: (1) a prospective longitudinal cohort study examining the impact of pre-deployment insomnia symptoms and nightmares on the development of PTSD; (2) a cross-sectional study examining subjective sleep measures, polysomnography, endocrinological parameters, and memory in veterans with PTSD, veterans without PTSD, and healthy controls (HCs); (3) a randomized controlled trial (RCT) (n=14) comparing the effect of prazosin and placebo on sleep disturbances in veterans with PTSD. In addition to these studies, we systematically reviewed the literature on treatment options for sleep disturbances in PTSD. RESULTS Pre-deployment nightmares predicted PTSD symptoms at 6 months post-deployment; however, insomnia symptoms did not. Furthermore, in patients with PTSD, a correlation between the apnea index and PTSD severity was observed, while obstructive sleep apnea syndrome was not more prevalent. We observed a significant increase in awakenings during sleep in patients with PTSD, which were positively correlated with adrenocorticotropic hormone (ACTH) levels, negatively correlated with growth hormone (GH) secretion, and the subjective perception of sleep depth. Also, heart rate was significantly increased in PTSD patients. Interestingly, plasma levels of GH during the night were decreased in PTSD. Furthermore, GH secretion and awakenings were independent predictors for delayed recall, which was lower in PTSD. In our RCT, prazosin was not associated with improvement of any subjective and objective sleep parameters. Only a few RCTs have been published. They show promising results for atypical antipsychotics and prazosin, the latter especially on nightmare reduction. CONCLUSIONS Disturbed sleep due to nightmares increases the risk for PTSD. PTSD in turn leads to increased sleep fragmentation, decreased GH secretion, and frequent nightmares, which may again compromise fear extinction, synaptic plasticity, and recovery. This suggests that disturbed sleep is a precipitating and perpetuating factor in PTSD symptomatology, creating a perpetual circle. This dissertation suggests that activity of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system (SNS) is involved in disturbed sleep in patients with PTSD.
Collapse
Affiliation(s)
- Saskia van Liempt
- Military Mental Health, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
24
|
Park HJ, Kang WS, Paik JW, Kim JW. Effect of valproic acid through regulation of NMDA receptor-ERK signaling in sleep deprivation rats. J Mol Neurosci 2011; 47:554-8. [PMID: 22101740 DOI: 10.1007/s12031-011-9673-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/07/2011] [Indexed: 01/10/2023]
Abstract
Although the effect of mood stabilizer valproic acid (VPA) through multiple signaling pathways has been shown, its therapeutic mechanism is still largely unknown. We investigated the effect of VPA (200 mg/kg, every 12 h) in sleep deprivation (SD) rats (72 h), the manic-like animal model, focusing on the N-methyl-D: -aspartic acid (NMDA) receptor and signaling mediators of synaptic plasticity such as extracellular signal-regulated protein kinase (ERK), cAMP response element-binding protein (CREB), B cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and brain-derived neurotrophic factor (BDNF). SD reduced the expression of the NR2B subunit of the NMDA receptor in the frontal cortex and hippocampus but did not affect the expression of NR1 and NR2A subunits. In comparison, VPA inhibited the SD-induced reduction of NR2B expression in both brain regions. In addition, SD attenuated ERK phosphorylation in the frontal cortex and hippocampus, whereas VPA prevented the attenuation. VPA also protected the SD-induced decrease of CREB phosphorylation, BCL2 expression, and BDNF expression in the frontal cortex but not in the hippocampus. These results indicate that VPA could regulate NMDA receptor-ERK signaling in SD rats, preventing the SD-induced decrease of the expression of NR2B subunit and the activation of ERK signaling mediators such as ERK, CREB, BCL2, and BDNF.
Collapse
Affiliation(s)
- Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | |
Collapse
|
25
|
van Liempt S, Vermetten E, Lentjes E, Arends J, Westenberg H. Decreased nocturnal growth hormone secretion and sleep fragmentation in combat-related posttraumatic stress disorder; potential predictors of impaired memory consolidation. Psychoneuroendocrinology 2011; 36:1361-9. [PMID: 21489700 DOI: 10.1016/j.psyneuen.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Healthy sleep facilitates the consolidation of newly acquired memories. Although patients with posttraumatic stress disorder (PTSD) often complain of sleep disturbances and memory deficits, the interrelatedness of these symptoms is not well understood. Sleep may be disturbed in PTSD by increased awakenings during sleep, which has been associated with decreased growth hormone (GH) secretion. We conducted a controlled study in which we assessed sleep fragmentation, nocturnal secretion of GH, and memory consolidation in patients with PTSD. METHODS While sleep EEG was being monitored, 13 veterans with PTSD, 15 trauma controls (TC) and 15 healthy controls (HC) slept with an iv catheter, through which blood was collected every 20 min from 23:00 h to 08:00 h. Declarative memory encoding was assessed with the 15 word task before sleep, and consolidation was assessed the next morning by a free recall. RESULTS Sleep was more fragmented in patients with PTSD, with more awakenings in the first half of the night (p<0.05). Plasma levels of GH during the night were significantly decreased in PTSD compared with HC (p<0.05). Furthermore, GH secretion and awakenings were independent predictors for delayed recall, which was lower in PTSD compared to HC (p<0.05). CONCLUSIONS These data show that PTSD is associated with increased awakenings during sleep and decreased nocturnal GH secretion. Furthermore, decreased GH secretion may be related to sleep fragmentation and both variables may exert a negative effect on sleep dependent memory consolidation.
Collapse
Affiliation(s)
- Saskia van Liempt
- Research Centre Military Mental Healthcare, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories. PLoS One 2011; 6:e23435. [PMID: 21850272 PMCID: PMC3151301 DOI: 10.1371/journal.pone.0023435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/17/2011] [Indexed: 11/19/2022] Open
Abstract
Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH) on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg) that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05). The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05). Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.
Collapse
|
27
|
García-García F, De la Herrán-Arita AK, Juárez-Aguilar E, Regalado-Santiago C, Millán-Aldaco D, Blanco-Centurión C, Drucker-Colín R. Growth hormone improves hippocampal adult cell survival and counteracts the inhibitory effect of prolonged sleep deprivation on cell proliferation. Brain Res Bull 2011; 84:252-7. [PMID: 21256199 DOI: 10.1016/j.brainresbull.2011.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 01/12/2023]
Abstract
Sleep deprivation (SD) produces numerous deleterious changes in brain cells, including apoptosis. It has been demonstrated that growth hormone (GH) stimulates cell growth and counteracts apoptosis, although this anti-apoptotic effect has not been tested against SD. To determine the protective effect of GH administration on cell proliferation and survival in the dentate gyrus (DG) of the hippocampus after sleep deprivation; we injected Wistar adult rats with a low dose of recombinant human GH (rhGH 5 ng/kg) per seven days and then we gently sleep deprived the animals for 48 consecutive hours. 5-Bromodeoxiuridine (BrdU) was administered to assess cell proliferation after the GH treatment and NeuN was used as marker of cell fate. Our results indicate that GH produced a three fold increase in the number of BrdU positive cells within the DG [Control = 1044 ± 106.38 cells, rhGH = 2952 ± 99.84 cells, P<0.01]. In contrast, 48 h of SD significantly reduced cell proliferation but this effect was antagonized by the GH administration [SD = 540 ± 18.3 cells, rhGH + SD = 1116 ± 84.48 cells, P<0.004]. Paradoxically, SD and GH administration increased cell survival separately but no significantly compared with control animals. However, cell survival was increased in animals treated with rhGH+SD compared to rats injected with saline solution [P<0.04]. Within the survival cells, the percentage of neurons was higher in SD animals [95%] compared with saline group, while this percentage (NeuN positive cells) was increased in animals treated with rhGH+SD [120%] compared with rhGH [25%] alone. Our findings indicate that GH strongly promotes cell proliferation in the adult brain and also protects the hippocampal neuronal precursors against the deleterious effect of prolonged sleep loss.
Collapse
Affiliation(s)
- Fabio García-García
- Instituto de Ciencias de la Salud, Departamento de Biomedicina, Universidad Veracruzana, Col. Industrial-Animas, Xalapa, Veracruz, México, C.P., Mexico.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu YP, Tung CS, Chuang CH, Lo SM, Ku YC. Tail-pinch stress and REM sleep deprivation differentially affect sensorimotor gating function in modafinil-treated rats. Behav Brain Res 2010; 219:98-104. [PMID: 21167213 DOI: 10.1016/j.bbr.2010.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/04/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Prepulse inhibition (PPI) is a phenomenon in which a mild stimulus attenuates a cross-modality startle response to later intense stimulation. PPI is thought to index the central inhibitory mechanism through which behavioural responses are filtered. The present study compared the effects of two stress paradigms on the acoustic startle response (ASR) and on PPI in a rat model. The tail-pinch (TP) method produces an acute and immediate stressful condition, whereas rapid eye movement (REM) sleep deprivation (REMSD) leads to a more persistent and long-term stress. Our results demonstrated that in rats, TP stress reduced the size of the ASR, and REMSD impaired PPI. The wake-promoting agent modafinil (MOD) had no effect on PPI if given alone. However, MOD reduced the ASR and PPI under TP stress, whereas only PPI was reduced by MOD after 96 h of REMSD. These results suggest that distinct stress paradigms differentially mediated sensorimotor gating abilities in terms of either responsiveness to the stimulus or information-filtering capabilities.
Collapse
Affiliation(s)
- Yia-Ping Liu
- Department of Physiology and Biophysics, National Defence Medical Centre, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|