1
|
Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022; 14:nu14194191. [PMID: 36235843 PMCID: PMC9572668 DOI: 10.3390/nu14194191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ghrelin, an endogenous brain-gut peptide, is secreted in large quantities, mainly from the stomach, in humans and rodents. It can perform the biological function of activating the growth hormone secretagogue receptor (GHSR). Since its discovery in 1999, ample research has focused on promoting its effects on the human appetite and pleasure-reward eating. Extensive, in-depth studies have shown that ghrelin is widely secreted and distributed in tissues. Its role in neurohumoral regulation, such as metabolic homeostasis, inflammation, cardiovascular regulation, anxiety and depression, and advanced cancer cachexia, has attracted increasing attention. However, the effects and regulatory mechanisms of ghrelin on obesity, gastrointestinal (GI) inflammation, cardiovascular disease, stress regulation, cachexia treatment, and the prognosis of advanced cancer have not been fully summarized. This review summarizes ghrelin's numerous effects in participating in a variety of biochemical pathways and the clinical significance of ghrelin in the regulation of the homeostasis of organisms. In addition, potential mechanisms are also introduced.
Collapse
|
2
|
Sales da Silva E, Ferreira PM, Castro CH, Pacheco LF, Graziani D, Pontes CNR, Bessa ADSMD, Fernandes E, Naves LM, Ribeiro LCDS, Mendonça MM, Gomes RM, Pedrino GR, Ferreira RN, Xavier CH. Brain and kidney GHS-R1a underexpression is associated with changes in renal function and hemodynamics during neurogenic hypertension. Mol Cell Endocrinol 2020; 518:110984. [PMID: 32814069 DOI: 10.1016/j.mce.2020.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.
Collapse
Affiliation(s)
- Elder Sales da Silva
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Patrícia Maria Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Castro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lilian Fernanda Pacheco
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carolina Nobre Ribeiro Pontes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Amanda de Sá Martins de Bessa
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Erika Fernandes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lara Marques Naves
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Larissa Cristina Dos Santos Ribeiro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Michelle Mendanha Mendonça
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Rodrigo Mello Gomes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Gustavo Rodrigues Pedrino
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Reginaldo Nassar Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
3
|
Quarracino C, Otero-Losada M, Capani F, Pérez-Lloret S. State-of-the-art pharmacotherapy for autonomic dysfunction in Parkinson’s disease. Expert Opin Pharmacother 2020; 21:445-457. [DOI: 10.1080/14656566.2020.1713097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cecilia Quarracino
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA, UBA, CONICET, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA, UBA, CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA, UBA, CONICET, Buenos Aires, Argentina
| | - Santiago Pérez-Lloret
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA, UBA, CONICET, Buenos Aires, Argentina
- Department of Physiology, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
4
|
Meusel M, Herrmann M, Machleidt F, Franzen KF, Krapalis AF, Sayk F. GHRH-mediated GH release is associated with sympathoactivation and baroreflex resetting: a microneurographic study in healthy humans. Am J Physiol Regul Integr Comp Physiol 2019; 317:R15-R24. [PMID: 31042402 DOI: 10.1152/ajpregu.00033.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous research suggested substantial interactions of growth hormone (GH) and sympathetic nervous activity. This cross talk can be presumed both during physiological (e.g., slow-wave sleep) and pathological conditions of GH release. However, microneurographic studies of muscle sympathetic nerve activity (MSNA) and assessment of baroreflex function during acute GH-releasing hormone (GHRH)-mediated GH release were not conducted so far. In a balanced, double-blind crossover design, GHRH or placebo (normal saline) were intravenously administered to 11 healthy male volunteers. MSNA was assessed microneurographically and correlated with blood pressure (BP) and heart rate (HR) at rest before (pre-) and 30-45 (post-I) and 105-120 min (post-II) after respective injections. Additionally, baroreflex function was assessed via graded infusion of vasoactive drugs. GHRH increased GH serum levels as intended. Resting MSNA showed significant net increases of both burst rate and total activity from pre- to post-I and post-II following GHRH injections compared with placebo (ANOVA for treatment and time, burst rate: P = 0.028; total activity: P = 0.045), whereas BP and HR were not altered. ANCOVA revealed that the dependent variable MSNA was not affected by the independent variables mean arterial BP (MAP) or HR (MAP: P = 0.006; HR: P = 0.003). Baroreflex sensitivity at baroreflex challenge was not altered. GHRH-mediated GH release is associated with a significant sympathoactivation at central nervous sites superordinate to the simple baroreflex feedback loop because GH induced a baroreflex resetting without altering baroreflex sensitivity.
Collapse
Affiliation(s)
- Moritz Meusel
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Magdalena Herrmann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Felix Machleidt
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Klaas F Franzen
- Department of Internal Medicine III, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Alexander F Krapalis
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Friedhelm Sayk
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Luebeck, Germany.,Department of Intensive Care Medicine, Sana-Kliniken, Luebeck, Germany
| |
Collapse
|
5
|
Indices of heart rate variability as potential early markers of metabolic stress and compromised regulatory capacity in dried-off high-yielding dairy cows. Animal 2017; 12:1451-1461. [PMID: 29065950 DOI: 10.1017/s1751731117002725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
High performing dairy cows experience distinct metabolic stress during periods of negative energy balance. Subclinical disorders of the cow's energy metabolism facilitate failure of adaptational responses resulting in health problems and reduced performance. The autonomic nervous system (ANS) with its sympathetic and parasympathetic branches plays a predominant role in adaption to inadequate energy and/or fuel availability and mediation of the stress response. Therefore, we hypothesize that indices of heart rate variability (HRV) that reflect ANS activity and sympatho-vagal balance could be early markers of metabolic stress, and possibly useful to predict cows with compromised regulatory capacity. In this study we analysed the autonomic regulation and stress level of 10 pregnant dried-off German Holstein cows before, during and after a 10-h fasting period by using a wide range of HRV parameters. In addition heat production (HP), energy balance, feed intake, rumen fermentative activity, physical activity, non-esterified fatty acids, β-hydroxybutyric acid, cortisol and total ghrelin plasma concentrations, and body temperature (BT) were measured. In all cows fasting induced immediate regulatory adjustments including increased lipolysis (84%) and total ghrelin levels (179%), reduction of HP (-16%), standing time (-38%) and heart rate (-15%). However, by analysing frequency domain parameters of HRV (high-frequency (HF) and low-frequency (LF) components, ratio LF/HF) cows could be retrospectively assigned to groups reacting to food removal with increased or decreased activity of the parasympathetic branch of the ANS. Regression analysis reveals that under control conditions (feeding ad libitum) group differences were best predicted by the nonlinear domain HRV component Maxline (L MAX, R 2=0.76, threshold; TS=258). Compared with cows having L MAX values above TS (>L MAX: 348±17), those with L MAX values below TS (<L MAX: 109±26) had higher basal blood cortisol levels, lower concentrations of insulin, and respond to fasting with a shift of their sympatho-vagal balance towards a much stronger dominance of the sympathetic branch of the ANS and development of stress-induced hyperthermia. The data indicate a higher stress level, reduced well-being and restricted regulatory capacity in <L MAX cows. This assumption is in accord with the lower dry matter intake and energy corrected milk yield (16.0±0.7 and 42±2 kg/day) in lactating <L MAX compared with >L MAX cows (18.5±0.4 and 47.3 kg/day). From the present study, it seems conceivable that L MAX can be used as a predictive marker to discover alterations in central autonomic regulation that might precede metabolic disturbances.
Collapse
|
6
|
Zhang CJ, Bidlingmaier M, Altaye M, Page LC, D'Alessio D, Tschöp MH, Tong J. Acute administration of acyl, but not desacyl ghrelin, decreases blood pressure in healthy humans. Eur J Endocrinol 2017; 176:123-132. [PMID: 27913606 PMCID: PMC5325691 DOI: 10.1530/eje-16-0789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To compare the effects of acyl ghrelin (AG) and desacyl ghrelin (DAG) on blood pressure (BP), heart rate (HR) and other autonomic parameters in healthy humans and to elucidate the hormonal mechanisms through which AG could exert its cardiovascular effects. DESIGN Seventeen healthy participants underwent frequent monitoring of systolic (sBP) and diastolic blood pressure (dBP), HR, respiratory rate (RR) and body surface temperature (Temp) during continuous infusion of AG, DAG, combined AG + DAG or saline control before and during an IV glucose tolerance test on 4 separate days. Plasma catecholamines, renin and aldosterone levels were also measured. Differences in outcome measures between treatment groups were assessed using mixed-model analysis. RESULTS Compared to the saline control, AG and combined AG + DAG infusions decreased sBP, dBP, mean arterial blood pressure (MAP), HR and Temp. In contrast, DAG infusion did not alter BP, RR or Temp, but did decrease HR. The AG and AG + DAG infusions also raised plasma aldosterone levels compared to saline (P < 0.001) without affecting renin or catecholamine levels. CONCLUSIONS The decrease in BP, HR, RR and Temp with AG infusion suggests mediation through the autonomic nervous system. The lack of response to DAG suggests that these autonomic effects require activation of the ghrelin receptor.
Collapse
Affiliation(s)
- Cecilia J Zhang
- Division of EndocrinologyMetabolism and Nutrition, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität, Munich, Germany
| | - Mekibib Altaye
- BiostatisticsClinical Translational Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura C Page
- Division of Pediatric Endocrinology and DiabetesDepartment of Pediatrics, Duke University, Durham, North Carolina, USA
| | - David D'Alessio
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of EndocrinologyMetabolism and Nutrition, Department of Medicine, Duke University, Durham, North Carolina, USA
- Cincinnati Veterans Affairs Medical CenterCincinnati, Ohio, USA
| | - Matthias H Tschöp
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Institute for Obesity and DiabetesHelmholtz Diabetes Center Munich and Division of Metabolic Diseases, Technical University, Munich, Germany
| | - Jenny Tong
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of EndocrinologyMetabolism and Nutrition, Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Balivada S, Pawar HN, Montgomery S, Kenney MJ. Effect of ghrelin on regulation of splenic sympathetic nerve discharge. Auton Neurosci 2016; 201:68-71. [PMID: 27554768 DOI: 10.1016/j.autneu.2016.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Ghrelin influences immune system function and modulates the sympathetic nervous system; however, the contribution of ghrelin to neural-immune interactions is not well-established because the effect of ghrelin on splenic sympathetic nerve discharge (SND) is not known. This study tested the hypothesis that central ghrelin administration would inhibit splenic SND in anesthetized rats. Rats received intracerebroventricular (ICV) injections of ghrelin (1nmol/kg) or aCSF. Lumbar SND recordings provided a non-visceral nerve control. The ICV ghrelin administration significantly increased splenic and lumbar SND, whereas mean arterial pressure (MAP) was not altered. These findings provide fundamental information regarding the nature of sympathetic-immune interactions.
Collapse
Affiliation(s)
- Sivasai Balivada
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Hitesh N Pawar
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Shawnee Montgomery
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| | - Michael J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
8
|
Leinonen T, Antero Kesäniemi Y, Hedberg P, Ukkola O. Serum ghrelin and prediction of metabolic parameters in over 20-year follow-up. Peptides 2016; 76:51-6. [PMID: 26721207 DOI: 10.1016/j.peptides.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Ghrelin is a peptide hormone from the stomach, with an ability to release growth-hormone from the pituitary. Numerous cross-sectional studies indicate that ghrelin also has a role in metabolic abnormalities, such as metabolic syndrome and type 2 diabetes, but evidence for long-term effect is scarce. We investigated, whether ghrelin concentration measured in middle age would predict the development or absence of metabolic disturbances subsequently. Study population consisted of 600 middle-aged persons, and the follow-up time was approximately 21 years. Plasma total ghrelin concentration was measured at the baseline, and divided to tertiles. Numerous anthropometric and other clinical measurements (including blood pressure), and laboratory test were made both at the baseline and at the follow-up. After the follow-up the prevalence of high systolic blood pressure according to MetS IDF-criteria was the lowest in the highest ghrelin tertile, and the highest in the first (p<0.03). When only subjects free of hypertension medication at baseline were considered, subjects belonging to the highest ghrelin tertile developed less new hypertension and high blood pressure according to IDF-criteria as well as medication for it during the follow-up (p<0.05). Although serum insulin levels were negatively correlated to ghrelin levels at both points in time (p<0.001 at baseline and p=0.003 at follow-up), plasma ghrelin concentration did not predict the development of abnormalities in glucose tolerance. The association with ghrelin and metabolic syndrome was lost during the follow-up. In conclusion, our results suggest high ghrelin to be protective against the development of hypertension in the long-term follow-up.
Collapse
Affiliation(s)
- Tuija Leinonen
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Y Antero Kesäniemi
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Pirjo Hedberg
- NordLab Oulu, Oulu University Hospital and Department of Clinical chemistry, University of Oulu, Oulu, Finland
| | - Olavi Ukkola
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.
| |
Collapse
|
9
|
Holwerda SW, Reynolds LJ, Restaino RM, Credeur DP, Leidy HJ, Thyfault JP, Fadel PJ. The influence of reduced insulin sensitivity via short-term reductions in physical activity on cardiac baroreflex sensitivity during acute hyperglycemia. J Appl Physiol (1985) 2015; 119:1383-92. [PMID: 26472870 DOI: 10.1152/japplphysiol.00584.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Reduced insulin sensitivity and impaired glycemic control are among the consequences of physical inactivity and have been associated with reduced cardiac baroreflex sensitivity (BRS). However, the effect of reduced insulin sensitivity and acute hyperglycemia following glucose consumption on cardiac BRS in young, healthy subjects has not been well characterized. We hypothesized that a reduction in insulin sensitivity via reductions in physical activity would reduce cardiac BRS at rest and following an oral glucose tolerance test (OGTT). Nine recreationally active men (23 ± 1 yr; >10,000 steps/day) underwent 5 days of reduced daily physical activity (RA5) by refraining from planned exercise and reducing daily steps (<5,000 steps/day). Spontaneous cardiac BRS (sequence technique) was compared at rest and for 120 min following an OGTT at baseline and after RA5. A substudy (n = 8) was also performed to independently investigate the influence of elevated insulin alone on cardiac BRS using a 120-min hyperinsulinemic-euglycemic clamp. Insulin sensitivity (Matsuda index) was significantly reduced following RA5 (BL 9.2 ± 1.3 vs. RA5 6.4 ± 1.1, P < 0.001). Resting cardiac BRS was unaffected by RA5 and significantly reduced during the OGTT similarly at baseline and RA5 (baseline 0 min, 28 ± 4 vs. 120 min, 18 ± 4; RA5 0 min, 28 ± 4 vs. 120 min, 21 ± 3 ms/mmHg). Spontaneous cardiac BRS was also reduced during the hyperinsulinemic-euglycemic clamp (P < 0.05). Collectively, these data demonstrate that acute elevations in plasma glucose and insulin can impair spontaneous cardiac BRS in young, healthy subjects, and that reductions in cardiac BRS following acute hyperglycemia are unaffected by reduced insulin sensitivity via short-term reductions in physical activity.
Collapse
Affiliation(s)
- S W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - L J Reynolds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - R M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - D P Credeur
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, Mississippi; and
| | - H J Leidy
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - J P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - P J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri;
| |
Collapse
|
10
|
De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 2014; 348:24-34. [PMID: 25541326 DOI: 10.1016/j.jns.2014.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/04/2023]
Abstract
Impaired autonomic function, characterized by a predominance of sympathetic activity, is common in patients with acute ischemic stroke. This review describes methods to measure autonomic dysfunction in stroke patients. It summarizes a potential relationship between ischemic stroke-associated autonomic dysfunction and factors that have been associated with worse outcome, including cardiac complications, blood pressure variability changes, hyperglycemia, immune depression, sleep disordered breathing, thrombotic effects, and malignant edema. Involvement of the insular cortex has been suspected to play an important role in causing sympathovagal imbalance, but its exact role and that of other brain regions remain unclear. Although sympathetic overactivity in patients with ischemic stroke appears to be a negative prognostic factor, it remains to be seen whether therapeutic strategies that reduce sympathetic activity or increase parasympathetic activity might improve outcome.
Collapse
Affiliation(s)
- Sylvie De Raedt
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Aurelie De Vos
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Jacques De Keyser
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Soeki T, Koshiba K, Niki T, Kusunose K, Yamaguchi K, Yamada H, Wakatsuki T, Shimabukuro M, Minakuchi K, Kishimoto I, Kangawa K, Sata M. Effect of ghrelin on autonomic activity in healthy volunteers. Peptides 2014; 62:1-5. [PMID: 25265271 DOI: 10.1016/j.peptides.2014.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023]
Abstract
Ghrelin is a novel growth hormone (GH)-releasing peptide originally isolated from the stomach. Recently, we have shown that ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction. In the present study, we evaluated the effect of ghrelin on autonomic nerve activity in healthy human subjects. An intravenous bolus of human synthetic ghrelin (10μg/kg) was administered to 10 healthy men (mean age, 33 years). Holter monitoring assessment was performed before and during 2h after the ghrelin therapy. The standard deviation of normal RR intervals (SDNN), square root of the mean of the sum of the squares of differences between adjacent RR intervals (rMSSD), high-frequency power (HF), and low-frequency power (LF) were analyzed. Blood samples were also obtained before and after the therapy. A single administration of ghrelin decreased both heart rate and blood pressure. Interestingly, ghrelin significantly decreased the LF and LF/HF ratio of heart rate variability and increased the SDNN, rMSSD, and HF. Ghrelin also elicited a marked increase in circulating GH, but not insulin-like growth factor-1. These data suggest that ghrelin might suppress cardiac sympathetic nerve activity and stimulate cardiac parasympathetic nerve activity.
Collapse
Affiliation(s)
- Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | - Kunihiko Koshiba
- Department of Cardiovascular Medicine, Anan Central Hospital of the Medical Association, Anan, Japan
| | - Toshiyuki Niki
- Department of Cardiovascular Medicine, Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuo Minakuchi
- Department of Clinical Pharmacy, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Ichiro Kishimoto
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Harris LE, Morgan DG, Balthasar N. Growth hormone secretagogue receptor deficiency in mice protects against obesity-induced hypertension. Physiol Rep 2014; 2:e00240. [PMID: 24760503 PMCID: PMC4002229 DOI: 10.1002/phy2.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract Growth hormone secretagogue receptor (GHS-R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS-R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS-R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS-R deficient mice demonstrate that chronic absence of GHS-R signaling is protective against obesity-induced hypertension. GHS-R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high-fat diet (HFD)-feeding, increases in the sympathetic control of SBPV are suppressed in GHS-R KO mice. Our data further suggest that GHS-R signaling dampens the immediate HFD-mediated increase in spontaneous baroreflex sensitivity. In diet-induced obesity, absence of GHS-R signaling leads to reductions in obesity-mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS-R signaling may not result in adverse cardiovascular effects in obesity.
Collapse
Affiliation(s)
- Louise E Harris
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
13
|
Iwen KA, Scherer T, Heni M, Sayk F, Wellnitz T, Machleidt F, Preissl H, Häring HU, Fritsche A, Lehnert H, Buettner C, Hallschmid M. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J Clin Endocrinol Metab 2014; 99:E246-51. [PMID: 24423295 PMCID: PMC3913807 DOI: 10.1210/jc.2013-3169] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Insulin infused into the central nervous system of rats suppresses lipolysis in white adipose tissue, indicating a role of brain insulin in regulating systemic lipid metabolism. OBJECTIVE We investigated whether central nervous insulin delivery suppresses lipolysis in healthy humans. DESIGN Placebo-controlled, balanced within-subject comparisons were performed in both a main and an independent corroborative experiment. SETTING/PARTICIPANTS/INTERVENTION: Two groups of healthy volunteers were examined at the German University Clinics of Lübeck and Tübingen, respectively, with molecular analyses taking place at Mt Sinai School of Medicine (New York, New York). The 14 healthy male subjects of the main study and the 22 women and 5 men of the corroborative study each received 160 IU of human insulin intranasally. MAIN OUTCOME MEASURES In the main study, we measured systemic levels of free fatty acids (FFAs), triglycerides, and glycerol and the rate of appearance of deuterated glycerol as an estimate of lipolysis before and after intranasal insulin administration. We also analyzed the expression of key lipolytic enzymes in sc fat biopsies and measured blood glucose and glucoregulatory hormones. In the corroborative study, FFA concentrations were assessed before and after intranasal insulin administration. RESULTS In the main experiment, intranasal insulin suppressed circulating FFA concentrations and lipolysis (rate of appearance of deuterated glycerol) in the absence of significant changes in circulating insulin levels. Lipolytic protein expression in sc adipose tissue was not affected. The corroborative study confirmed that intranasal insulin lowers systemic FFA concentrations. CONCLUSIONS Our findings indicate that brain insulin controls systemic lipolysis in healthy humans by predominantly acting on non-sc adipose tissue.
Collapse
|
14
|
Buss J, Havel PJ, Epel E, Lin J, Blackburn E, Daubenmier J. Associations of ghrelin with eating behaviors, stress, metabolic factors, and telomere length among overweight and obese women: preliminary evidence of attenuated ghrelin effects in obesity? Appetite 2014; 76:84-94. [PMID: 24462487 DOI: 10.1016/j.appet.2014.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/24/2013] [Accepted: 01/11/2014] [Indexed: 12/19/2022]
Abstract
Ghrelin regulates homeostatic food intake, hedonic eating, and is a mediator in the stress response. In addition, ghrelin has metabolic, cardiovascular, and anti-aging effects. This cross-sectional study examined associations between total plasma ghrelin, caloric intake based on 3day diet diaries, hedonic eating attitudes, stress-related and metabolic factors, and leukocyte telomere length in overweight (n=25) and obese women (n=22). We hypothesized associations between total plasma ghrelin and eating behaviors, stress, metabolic, cardiovascular, and cell aging factors among overweight women, but not among obese women due to lower circulating ghrelin levels and/or central resistance to ghrelin. Confirming previous studies demonstrating lowered plasma ghrelin in obesity, ghrelin levels were lower in the obese compared with overweight women. Among the overweight, ghrelin was positively correlated with caloric intake, giving in to cravings for highly palatable foods, and a flatter diurnal cortisol slope across 3days. These relationships were non-significant among the obese group. Among overweight women, ghrelin was negatively correlated with insulin resistance, systolic blood pressure, and heart rate, and positively correlated with telomere length. Among the obese subjects, plasma ghrelin concentrations were negatively correlated with insulin resistance, but were not significantly correlated with blood pressure, heart rate or telomere length. Total plasma ghrelin and its associations with food intake, hedonic eating, and stress are decreased in obesity, providing evidence consistent with the theory that central resistance to ghrelin develops in obesity and ghrelin's function in appetite regulation may have evolved to prevent starvation in food scarcity rather than cope with modern food excess. Furthermore, ghrelin is associated with metabolic and cardiovascular health, and may have anti-aging effects, but these effects may be attenuated in obesity.
Collapse
Affiliation(s)
- Julia Buss
- University of California, San Francisco, School of Nursing, United States
| | - Peter J Havel
- University of California, Davis, Department of Molecular Biosciences, School of Veterinary Medicine, United States; University of California, Davis, Department of Nutrition, United States
| | - Elissa Epel
- University of California, San Francisco, Department of Psychiatry, United States
| | - Jue Lin
- University of California, San Francisco, Department of Biochemistry and Biophysics, United States
| | - Elizabeth Blackburn
- University of California, San Francisco, Department of Biochemistry and Biophysics, United States
| | - Jennifer Daubenmier
- University of California, San Francisco, Osher Center for Integrative Medicine, Department of Medicine, United States.
| |
Collapse
|
15
|
Pathophysiologic mechanisms of cardiovascular disease in obstructive sleep apnea syndrome. Pulm Med 2013; 2013:521087. [PMID: 23936649 PMCID: PMC3712227 DOI: 10.1155/2013/521087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a highly prevalent sleep disorder, characterized by repeated disruptions of breathing during sleep. This disease has many potential consequences including excessive daytime sleepiness, neurocognitive deterioration, endocrinologic and metabolic effects, and decreased quality of life. Patients with OSAS experience repetitive episodes of hypoxia and reoxygenation during transient cessation of breathing that provoke systemic effects. Furthermore, there may be increased levels of biomarkers linked to endocrine-metabolic and cardiovascular alterations. Epidemiological studies have identified OSAS as an independent comorbid factor in cardiovascular and cerebrovascular diseases, and physiopathological links may exist with onset and progression of heart failure. In addition, OSAS is associated with other disorders and comorbidities which worsen cardiovascular consequences, such as obesity, diabetes, and metabolic syndrome. Metabolic syndrome is an emerging public health problem that represents a constellation of cardiovascular risk factors. Both OSAS and metabolic syndrome may exert negative synergistic effects on the cardiovascular system through multiple mechanisms (e.g., hypoxemia, sleep disruption, activation of the sympathetic nervous system, and inflammatory activation). It has been found that CPAP therapy for OSAS provides an objective improvement in symptoms and cardiac function, decreases cardiovascular risk, improves insulin sensitivity, and normalises biomarkers. OSAS contributes to the pathogenesis of cardiovascular disease independently and by interaction with comorbidities. The present review focuses on indirect and direct evidence regarding mechanisms implicated in cardiovascular disease among OSAS patients.
Collapse
|
16
|
Garin MC, Burns CM, Kaul S, Cappola AR. Clinical review: The human experience with ghrelin administration. J Clin Endocrinol Metab 2013; 98:1826-37. [PMID: 23533240 PMCID: PMC3644599 DOI: 10.1210/jc.2012-4247] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Ghrelin is an endogenous stimulator of GH and is implicated in a number of physiological processes. Clinical trials have been performed in a variety of patient populations, but there is no comprehensive review of the beneficial and adverse consequences of ghrelin administration to humans. EVIDENCE ACQUISITION PubMed was utilized, and the reference list of each article was screened. We included 121 published articles in which ghrelin was administered to humans. EVIDENCE SYNTHESIS Ghrelin has been administered as an infusion or a bolus in a variety of doses to 1850 study participants, including healthy participants and patients with obesity, prior gastrectomy, cancer, pituitary disease, diabetes mellitus, eating disorders, and other conditions. There is strong evidence that ghrelin stimulates appetite and increases circulating GH, ACTH, cortisol, prolactin, and glucose across varied patient populations. There is a paucity of evidence regarding the effects of ghrelin on LH, FSH, TSH, insulin, lipolysis, body composition, cardiac function, pulmonary function, the vasculature, and sleep. Adverse effects occurred in 20% of participants, with a predominance of flushing and gastric rumbles and a mild degree of severity. The few serious adverse events occurred in patients with advanced illness and were not clearly attributable to ghrelin. Route of administration may affect the pattern of adverse effects. CONCLUSIONS Existing literature supports the short-term safety of ghrelin administration and its efficacy as an appetite stimulant in diverse patient populations. There is some evidence to suggest that ghrelin has wider ranging therapeutic effects, although these areas require further investigation.
Collapse
Affiliation(s)
- Margaret C Garin
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104-5160, USA
| | | | | | | |
Collapse
|
17
|
Perez-Lloret S, Rey MV, Pavy-Le Traon A, Rascol O. Emerging drugs for autonomic dysfunction in Parkinson's disease. Expert Opin Emerg Drugs 2013; 18:39-53. [DOI: 10.1517/14728214.2013.766168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Callaghan B, Hunne B, Hirayama H, Sartor DM, Nguyen TV, Abogadie FC, Ferens D, McIntyre P, Ban K, Baell J, Furness JB, Brock JA. Sites of action of ghrelin receptor ligands in cardiovascular control. Am J Physiol Heart Circ Physiol 2012; 303:H1011-21. [PMID: 22886413 DOI: 10.1152/ajpheart.00418.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circulating ghrelin reduces blood pressure, but the mechanism for this action is unknown. This study investigated whether ghrelin has direct vasodilator effects mediated through the growth hormone secretagogue receptor 1a (GHSR1a) and whether ghrelin reduces sympathetic nerve activity. Mice expressing enhanced green fluorescent protein under control of the promoter for growth hormone secretagogue receptor (GHSR) and RT-PCR were used to locate sites of receptor expression. Effects of ghrelin and the nonpeptide GHSR1a agonist capromorelin on rat arteries and on transmission in sympathetic ganglia were measured in vitro. In addition, rat blood pressure and sympathetic nerve activity responses to ghrelin were determined in vivo. In reporter mice, expression of GHSR was revealed at sites where it has been previously demonstrated (hypothalamic neurons, renal tubules, sympathetic preganglionic neurons) but not in any artery studied, including mesenteric, cerebral, and coronary arteries. In rat, RT-PCR detected GHSR1a mRNA expression in spinal cord and kidney but not in the aorta or in mesenteric arteries. Moreover, the aorta and mesenteric arteries from rats were not dilated by ghrelin or capromorelin at concentrations >100 times their EC(50) determined in cells transfected with human or rat GHSR1a. These agonists did not affect transmission from preganglionic sympathetic neurons that express GHSR1a. Intravenous application of ghrelin lowered blood pressure and decreased splanchnic nerve activity. It is concluded that the blood pressure reduction to ghrelin occurs concomitantly with a decrease in sympathetic nerve activity and is not caused by direct actions on blood vessels or by inhibition of transmission in sympathetic ganglia.
Collapse
Affiliation(s)
- Brid Callaghan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|