1
|
Shenkman BS, Kalashnikov VE, Sharlo KA, Turtikova OV, Bokov RO, Mirzoev TM. Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle. Int J Mol Sci 2024; 25:12462. [PMID: 39596527 PMCID: PMC11594575 DOI: 10.3390/ijms252212462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
In most mammals, postural soleus muscles are involved in the maintenance of the stability of the body in the gravitational field of Earth. It is well established that immediately after a laboratory rat is exposed to conditions of weightlessness (parabolic flight) or simulated microgravity (hindlimb suspension/unloading), a sharp decrease in soleus muscle electrical activity occurs. However, starting from the 3rd day of mechanical unloading, soleus muscle electrical activity begins to increase and reaches baseline levels approximately by the 14th day of hindlimb suspension. This phenomenon, observed in the course of rat hindlimb suspension, was named the "spontaneous electrical activity of postural muscle". The present review discusses spinal mechanisms underlying the development of such spontaneous activity of rat soleus muscle and the effect of this activity on intracellular signaling in rat soleus muscle during mechanical unloading.
Collapse
Affiliation(s)
- Boris S. Shenkman
- Myology Lab, Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (K.A.S.); (O.V.T.); (R.O.B.)
| | | | | | | | | | - Timur M. Mirzoev
- Myology Lab, Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (K.A.S.); (O.V.T.); (R.O.B.)
| |
Collapse
|
2
|
Sergeeva KV, Tyganov SA, Zaripova KA, Bokov RO, Nikitina LV, Konstantinova TS, Kalamkarov GR, Shenkman BS. Mechanical and signaling responses of unloaded rat soleus muscle to chronically elevated β-myosin activity. Arch Biochem Biophys 2024; 754:109961. [PMID: 38492659 DOI: 10.1016/j.abb.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used β-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.
Collapse
Affiliation(s)
- K V Sergeeva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - S A Tyganov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - K A Zaripova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - R O Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - T S Konstantinova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - G R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Popov A, Lyakhovetskii V, Gorskii O, Kalinina D, Pavlova N, Musienko P. Effect of Hindlimb Unloading on Hamstring Muscle Activity in Rats. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:86-95. [PMID: 38412843 DOI: 10.1159/000537776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION The changes in knee axial rotation play an important role in traumatic and non-traumatic knee disorders. It is known that support afferentation can affect the axial rotator muscles. The condition of innervation of the semitendinosus (ST) and biceps femoris posterior (BFp) has changed in non-terrestrial and terrestrial vertebrates in evolution; thus, we hypothesized this situation might be replayed by hindlimb unloading (HU). METHODS In the present study, the EMG activity of two hamstring muscles, m. ST and m. BFp, which are antagonists in axial rotation of the tibia, was examined before and after 7 days of HU. RESULTS During locomotion and swimming, the ST flexor burst activity increased in the stance-to-swing transition and in the retraction-protraction transition, respectively, while that of BFp remained unchanged. Both ST and BFp non-burst extensor activity increased during stepping and decreased during swimming. CONCLUSIONS Our results show that (1) the flexor burst activity of ST and BFp depends differently on the load-dependent sensory input in the step cycle; (2) shift of the activity gradient towards ST in the stance-to-swing transition could produce excessive internal tibia torque, which can be used as an experimental model of non-traumatic musculoskeletal disorders; and (3) the mechanisms of activity of ST and BFp may be based on reciprocal activity of homologous muscles in primary tetrapodomorph and depend on the increased role of supraspinal control.
Collapse
Affiliation(s)
- Alexander Popov
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation,
| | | | - Oleg Gorskii
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - Daria Kalinina
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- Sirius National Technical University, Neuroscience Program, Sochi, Russian Federation
| | - Natalia Pavlova
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - Pavel Musienko
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- Life Improvement by Future Technologies Center "LIFT", Moscow, Russian Federation
| |
Collapse
|
4
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Sharlo KA, Lvova ID, Tyganov SA, Sergeeva KV, Kalashnikov VY, Kalashnikova EP, Mirzoev TM, Kalamkarov GR, Shevchenko TF, Shenkman BS. A Prochlorperazine-Induced Decrease in Autonomous Muscle Activity during Hindlimb Unloading Is Accompanied by Preserved Slow Myosin mRNA Expression. Curr Issues Mol Biol 2023; 45:5613-5630. [PMID: 37504270 PMCID: PMC10378404 DOI: 10.3390/cimb45070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Skeletal muscle disuse leads to pathological muscle activity as well as to slow-to-fast fiber-type transformation. Fast-type fibers are more fatigable than slow-type, so this transformation leads to a decline in muscle function. Prochlorperazine injections previously were shown to attenuate autonomous rat soleus muscle electrical activity under unloading conditions. In this study, we found that prochlorperazine blocks slow-to-fast fiber-type transformation in disused skeletal muscles of rats, possibly through affecting calcium and ROS-related signaling.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Irina D Lvova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ksenia V Sergeeva
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Vitaly Y Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ekaterina P Kalashnikova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Grigoriy R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatiana F Shevchenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| |
Collapse
|
6
|
Reidy PT, Smith AD, Jevnikar BE, Doctor AK, Williams RW, Kachulkin AA, Monnig JM, Fix DK, Petrocelli JJ, Mahmassani ZS, McKenzie AI, de Hart NMMP, Drummond MJ. Muscle disuse as hindlimb unloading in early postnatal mice negatively impacts grip strength in adult mice: a pilot study. J Appl Physiol (1985) 2023; 134:787-798. [PMID: 36759163 PMCID: PMC10042595 DOI: 10.1152/japplphysiol.00681.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical inactivity has many detrimental effects on health, yet the impact of physical inactivity in early life on muscle health in adulthood remains unknown. Early postnatal malnutrition has prolonged effects into adulthood and we propose that early postnatal (P) physical inactivity would have similar negative effects. To test this hypothesis, we exposed postnatal mice (∼P28, C57BL/6J) to 14 days of physical inactivity (shortly after weaning, from ∼P28 to P42 days of age) in the form of muscle disuse with hindlimb unloading (HU). After this early-life physical inactivity, they were allowed to normally ambulate until 5 mo of age (P140, adulthood) when they underwent 14 days of HU with and without 7-day recovery. They were then tested for physical function (grip strength) and muscles were extracted and weighed. Immunofluorescence was carried out on these muscle cross sections for analysis of myofiber cross-sectional area (fCSA), macrophage density (CD68+ cells), and extracellular matrix (ECM) area. Muscle weights and fCSA and myofiber diameter were used to quantify changes in muscle and fiber size. Compared with age-matched controls, no notable effects of early-life physical inactivity (HU) on skeletal muscle and myofiber size were observed. However, a significant reduction in adult grip strength was observed in those exposed to HU early in life. This was associated with reduced muscle macrophages and increased ECM area. Exposure to a short period of early life disuse has negative enduring effects into adulthood impacting grip strength, muscle macrophages, and muscle composition as low muscle quality.NEW & NOTEWORTHY We demonstrate that early life disuse resulted in less grip strength in adulthood. Analysis of muscle composition demonstrated no loss of whole muscle or myofiber size indicating lower muscle quality akin to premature aging. This poor muscle quality was characterized by altered muscle macrophages and extracellular matrix area. We demonstrate intriguing correlations between this loss of grip strength and muscle macrophages and also area of noncontractile tissue in the muscle.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Austin D Smith
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Benjamin E Jevnikar
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Abbas K Doctor
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Ryan W Williams
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Anthony A Kachulkin
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Jackie M Monnig
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Dennis K Fix
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Ziad S Mahmassani
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
7
|
Miyachi R, Morita Y, Yamazaki T. Division of loading time in reloading the disused atrophic soleus muscle induces proximal muscle injury. J Phys Ther Sci 2023; 35:193-198. [PMID: 36866019 PMCID: PMC9974327 DOI: 10.1589/jpts.35.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 03/04/2023] Open
Abstract
[Purpose] This study aimed to compare the effects of loading time division in reloading atrophied muscles in different muscle long-axis regions. [Materials and Methods] We divided 8-week-old male Wistar rats into control (CON), 14-day hindlimb suspension (HS), 7-day hindlimb suspension followed by 60-min reloading for 7 consecutive days (WO), and 7-day hindlimb suspension followed by 60-min reloading on two separate occasions for 7 days (WT) groups. After the experimental period, muscle fibre cross-sectional area and necrotic fibre/central nuclei fibre ratio were measured in the soleus muscle's proximal, middle, and distal regions. [Results] The necrotic fibre/central nuclei fibre ratio was higher in the WT group than in the other groups in the proximal region. Proximal muscle fibre cross-sectional area was higher in the CON group than in the other groups. In the middle region, only HS group had muscle fibre cross-sectional area lower than the CON group. Similarly, muscle fibre cross-sectional area of the HS group was lower than the CON and WT groups in the distal region. [Conclusion] When reloading atrophied muscles, dividing the loading time can inhibit atrophy in the distal region but induce muscle injury in the proximal region.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku
University: 1-1 Taiyogaoka, Kanazawa, Ishikawa 920-1180, Japan,Corresponding author. Ryo Miyachi (E-mail: )
| | - Yui Morita
- Department of Rehabilitation, Tokyo Medical and Dental
University Hospital, Japan
| | - Toshiaki Yamazaki
- Faculty of Health Sciences, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
8
|
Zhang S, Adachi T, Zhang S, Yoshida Y, Takahashi A. A new type of simulated partial gravity apparatus for rats based on a pully-spring system. Front Cell Dev Biol 2022; 10:965656. [PMID: 36120559 PMCID: PMC9472129 DOI: 10.3389/fcell.2022.965656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The return to the Moon and the landing on Mars has emphasized the need for greater attention to the effects of partial gravity on human health. Here, we sought to devise a new type of simulated partial gravity apparatus that could more efficiently and accurately provide a partial gravity environment for rat hindlimbs. The new apparatus uses a pulley system and tail suspension to create the simulated partial gravity of the rat’s hind limbs by varying the weight in a balance container attached to the pulley system. An experiment was designed to verify the reliability and stability of the new apparatus. In this experiment, 25 seven-week-old male Wistar Hannover rats were randomly divided into five groups (n = 5 per group): hindlimb full weight-bearing control (1G), sham (1G), and the simulated gravity groups including Mars (3/8G), Moon (1/6G), and interplanetary space (microgravity: µG). The levels of partial gravity experienced by rat hindlimbs in the Mars and Moon groups were provided by a novel simulated partial gravity device. Changes in bone parameters [overall bone mineral density (BMD), trabecular BMD, cortical BMD, cortical bone thickness, minimum moment of area (MMA), and polar moment of area (PMA)] were evaluated using computed tomography in all rats at the proximal, middle, and distal regions of femur and tibia. Reduced gravity led to decreases in bone parameters (overall BMD, trabecular BMD, cortical BMD, MMA, and PMA) in the simulated gravity groups, mainly in distal femur and proximal tibia. The proximal tibia, MMA, and PMA findings indicated greater weakness in the µG group than in the Mars group. The sham group design also excluded the decrease in lower limb bone parameters caused by the suspension attachment of the rat’s tail. The new simulated partial gravity apparatus can provide a continuous and stable level of partial gravity. It offers a reliable and valuable model for studying the effects of extraterrestrial gravity environments on humans.
Collapse
Affiliation(s)
- Shenke Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Japan
| | - Takuya Adachi
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Japan
| | - Shengli Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
- *Correspondence: Akihisa Takahashi,
| |
Collapse
|
9
|
Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F, Ohira Y, Kawamoto T, Yull FE, Blackwell TS, Nio-Kobayashi J, Iwanaga T, Watanabe M, Watanabe N, Hotta H, Yamashita T, Kamimura D, Tanaka Y, Murakami M. ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 2022; 219:213221. [PMID: 35579694 DOI: 10.1084/jem.20212019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nada Halaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakagawa
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Fuminori Kawano
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinobu Ohira
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Department of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
10
|
Belova SP, Kalashnikova EP, Tyganov SA, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Effect of enhanced muscle tone on the expression of atrogenes and cytoskeletal proteins during postural muscle unloading. Arch Biochem Biophys 2022; 725:109291. [PMID: 35597296 DOI: 10.1016/j.abb.2022.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Skeletal muscle unloading leads to the decreased electrical activity and decline of muscle tone. AIMS Current study evaluated the effect of muscle tone preservation achieved by tetanus toxin (TeNT) treatment on signaling pathways regulating atrophic processes during unloading. MAIN METHODS Four groups of rats were used: non-treated control (C), control rats with TeNT administration (CT), 7 days of unloading/hindlimb suspension with placebo (HS), and 7 days of unloading with TeNT administration (HST). KEY FINDINGS Absolute and relative force of tetanic contractions was decreased by 65% in soleus muscle of HS rats when compared with C. Treatment with TeNT significantly lessened force decline in soleus muscle of HST rats when compared with HS. TeNT administration increased myosin heavy chain I beta (MyHC Iβ) expression in CT rats and prevented MyHC Iβ loss in HST group when compared with C rats. Desmin content was lower by 31.4% (p < 0.05) in HS group when compared with HST. Calpain-1 expression was increased in HS group when compared with C, CT and HST. There was a decrease in p-p70S6K content (41%, p < 0,05) and an increase in p-eEF2 content (77%, p < 0,05) in HS group when compared with C, while there were no significant differences in the content of these proteins between HST, CT and C groups. SIGNIFICANCE Treatment with TeNT significantly diminished unloading-induced decline of soleus muscle mass and mechanical properties and affected the regulation of MyHC Iβ expression. These effects are mediated by signaling pathways regulating protein synthesis and degradation.
Collapse
Affiliation(s)
- Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
11
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
12
|
Kalashnikov VE, Tyganov SA, Turtikova OV, Kalashnikova EP, Glazova MV, Mirzoev TM, Shenkman BS. Prochlorperazine Withdraws the Delayed Onset Tonic Activity of Unloaded Rat Soleus Muscle: A Pilot Study. Life (Basel) 2021; 11:life11111161. [PMID: 34833037 PMCID: PMC8618166 DOI: 10.3390/life11111161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
A gradual increase in rat soleus muscle electromyographic (EMG) activity is known to occur after 3–4 days of hindlimb suspension/unloading (HS). The physiological significance and mechanisms of such activity of motoneurons under unloading conditions are currently unclear. Since hyperactivity of motoneurons and muscle spasticity after spinal cord injury are associated with KCC2 downregulation, we hypothesized that a decrease in potassium (K+)/chloride (Cl−) co-transporter 2 (KCC2) in motoneurons would be responsible for an increase in soleus muscle EMG activity during HS. We aimed to investigate the effect of prochlorperazine (KCC2 activator) on the electrical activity of rat soleus muscle under HS. Wistar rats were divided into the following groups: (1) vivarium control (C), (2) 7-day HS group (7HS) and (3) 7-day HS group plus intraperitoneal injections of prochlorperazine (10 mg/kg, daily) (7HS + P). Expression of proteins in the motoneurons of the lumbar spinal cord was determined by Western blotting. An electromyogram of the rat soleus muscle was recorded using intramuscular electrodes. KCC2 content after 7-day HS significantly decreased by 34% relative to the control group. HS-induced decrease in KCC2 protein content was prevented by prochlorperazine administration. HS also induced a significant 80% decrease in KCC2 Ser940 phosphorylation; however prochlorperazine did not affect KCC2 phosphorylation. The treatment of the rats with prochlorperazine prevented a HS-induced increase in Na(+)/K(+)/(Cl−) co-transporter 1 (KCC2 antagonist) protein content. In parallel with the restoration of KCC2 content, prochlorperazine administration during HS partially prevented an increase in the soleus muscle tonic EMG activity. Thus, prochlorperazine administration during 7-day HS prevents a decrease in KCC2 protein expression in motoneurons and significantly reduces the level of HS-induced soleus muscle electrical activity.
Collapse
Affiliation(s)
- Vitaliy E. Kalashnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
| | - Sergey A. Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
| | - Olga V. Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
| | - Ekaterina P. Kalashnikova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
| | - Margarita V. Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia;
| | - Timur M. Mirzoev
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
- Correspondence:
| | - Boris S. Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (V.E.K.); (S.A.T.); (O.V.T.); (E.P.K.); (B.S.S.)
| |
Collapse
|
13
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
14
|
Popov A, Lyakhovetskii V, Bazhenova E, Gorskii O, Kalinina D, Merkulyeva N, Musienko P. The role of load-dependent sensory input in the control of balance during gait in rats. J Exp Biol 2021; 224:271196. [PMID: 34350950 DOI: 10.1242/jeb.242138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022]
Abstract
Locomotor activity requires fine balance control that strongly depends on the afferent input from the load receptors. Following hindlimb unloading (HU), the kinematic and EMG activity of the hindlimbs is known to change significantly. However, the effects of HU on the integrative control mechanisms of posture and locomotion are not clear. The goal of the present study was to evaluate the center of mass (CoM) dynamic stabilization and associated adaptive changes in the trunk and hindlimb muscle activity during locomotion after 7 days of HU. The EMG signals from the muscles of the low lumbar trunk [m. longissimus dorsi (VERT)] and the hind limb [m. tibialis anterior (TA), m. semitendinosus (ST), m. soleus (SOL)] were recorded together with the hindquarter kinematics during locomotion on a treadmill in six rats before and after HU. The CoM lateral shift in the step cycle significantly increased after HU and coincided with the enhanced activity of the VERT. The mean EMG of the TA and the ST flexor activity increased significantly with reduction of their burst duration. These data demonstrate the disturbances of body balance after HU that can influence the basic parameters of locomotor activity. The load-dependent mechanisms resulted in compensatory adjustments of flexor activity toward a faster gait strategy, such as a trot or gallop, which presumably have supraspinal origin. The neuronal underpinnings of these integrative posture and locomotion mechanisms and their possible reorganization after HU are discussed.
Collapse
Affiliation(s)
- Alexander Popov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | | | - Elena Bazhenova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | - Daria Kalinina
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia.,Sirius National Technical University, Neuroscience Program, 1 Olympic pr., 354340 Sochi, Russia
| |
Collapse
|
15
|
Zhang S, Ueno D, Ohira T, Kato H, Izawa T, Yamanouchi S, Yoshida Y, Takahashi A, Ohira Y. Depression of Bone Density at the Weight-Bearing Joints in Wistar Hannover Rats by a Simulated Mechanical Stress Associated With Partial Gravity Environment. Front Cell Dev Biol 2021; 9:707470. [PMID: 34381788 PMCID: PMC8352372 DOI: 10.3389/fcell.2021.707470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The partial gravity environment in space can negatively affect bone health. This survey aimed to study the reaction of different parts of the lower limb bones of rats to partial gravity and the effects of different degrees of gravity on these bony parts. We used 15 8-week-old male Wistar Hannover rats were used at the beginning of the experiment. The degree of mechanical stress was modified, but the ankle joint was maintained at ∼30°, ∼120°, or ∼160° with or without plaster fixation during 10-day hindlimb suspension. Computed tomography was performed to measure the bone parameters [bone mineral density (BMD), trabecular BMD, cortical BMD, and cortical thickness] of each studied group of the whole, proximal, middle, and distal femur and distal tibia. BMD, trabecular BMD, and cortical thickness of the distal femur and proximal tibia of the simulated mechanical stress associated with partial gravity groups were significantly lower than those of the control group; the effect of different degrees of gravity on the same area of hindlimb bone had no significant difference. The simulated mechanical stress associated with partial gravity had the most significant effect on the bone close to the knee joint, with the largest weight-bearing response.
Collapse
Affiliation(s)
- Shenke Zhang
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Ohira
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan.,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hisashi Kato
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
| | - Tetsuya Izawa
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
16
|
Furukawa S, Chatani M, Higashitani A, Higashibata A, Kawano F, Nikawa T, Numaga-Tomita T, Ogura T, Sato F, Sehara-Fujisawa A, Shinohara M, Shimazu T, Takahashi S, Watanabe-Takano H. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021; 7:18. [PMID: 34039989 PMCID: PMC8155041 DOI: 10.1038/s41526-021-00145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/25/2021] [Indexed: 11/09/2022] Open
Abstract
The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan.
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo, Japan. .,Pharmacological Research Center, Showa University, Tokyo, Japan.
| | | | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
17
|
Shenkman BS, Tsaturyan AK, Vikhlyantsev IM, Kozlovskaya IB, Grigoriev AI. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight. Acta Naturae 2021; 13:85-97. [PMID: 34377559 PMCID: PMC8327152 DOI: 10.32607/actanaturae.10953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Kozlovskaya et al. [1] and Grigoriev et al. [2] showed that enormous loss of muscle stiffness (atonia) develops in humans under true (space flight) and simulated microgravity conditions as early as after the first days of exposure. This phenomenon is attributed to the inactivation of slow motor units and called reflectory atonia. However, a lot of evidence indicating that even isolated muscle or a single fiber possesses substantial stiffness was published at the end of the 20th century. This intrinsic stiffness is determined by the active component, i.e. the ability to form actin-myosin cross-bridges during muscle stretch and contraction, as well as by cytoskeletal and extracellular matrix proteins, capable of resisting muscle stretch. The main facts on intrinsic muscle stiffness under conditions of gravitational unloading are considered in this review. The data obtained in studies of humans under dry immersion and rodent hindlimb suspension is analyzed. The results and hypotheses regarding reduced probability of cross-bridge formation in an atrophying muscle due to increased interfilament spacing are described. The evidence of cytoskeletal protein (titin, nebulin, etc.) degradation during gravitational unloading is also discussed. The possible mechanisms underlying structural changes in skeletal muscle collagen and its role in reducing intrinsic muscle stiffness are presented. The molecular mechanisms of changes in intrinsic stiffness during space flight and simulated microgravity are reviewed.
Collapse
Affiliation(s)
- B. S. Shenkman
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. K. Tsaturyan
- Lomonosov Moscow State University Research Institute of Mechanics, Moscow, 119192 Russia
| | - I. M. Vikhlyantsev
- Institute of Experimental and Theoretical Biophysics, Moscow Region, Pushchino, 142290 Russia
| | - I. B. Kozlovskaya
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. I. Grigoriev
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| |
Collapse
|
18
|
Abstract
Skeletal muscle atrophy causes decreased physical activity and increased risk of metabolic diseases. We investigated the effects of oleamide (cis-9,10-octadecanamide) treatment on skeletal muscle health. The plasma concentration of endogenous oleamide was approximately 30 nm in male ddY mice under normal physiological conditions. When the stable isotope-labelled oleamide was orally administered to male ddY mice (50 mg/kg), the plasma concentration of exogenous oleamide reached approximately 170 nm after 1 h. Male ddY mice were housed in small cages (one-sixth of normal size) to enforce sedentary behaviour and orally administered oleamide (50 mg/kg per d) for 4 weeks. Housing in small cages decreased tibialis anterior (TA) muscle mass and the cross-sectional area of the myofibres in TA muscle. Dietary oleamide alleviated the decreases in TA muscle and resulted in plasma oleamide concentration of approximately 120 nm in mice housed in small cages. Housing in small cages had no influence on the phosphorylation levels of Akt serine/threonine kinase (Akt), mechanistic target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K) in TA muscle; nevertheless, oleamide increased the phosphorylation levels of the proteins. Housing in small cages increased the expression of microtubule-associated protein 1 light chain 3 (LC3)-II and sequestosome 1 (p62), but not LC3-I, in TA muscle, and oleamide reduced LC3-I, LC3-II and p62 expression levels. In C2C12 myotubes, oleamide increased myotube diameter at ≥100 nm. Furthermore, the mTOR inhibitor, Torin 1, suppressed oleamide-induced increases in myotube diameter and protein synthesis. These results indicate that dietary oleamide rescued TA muscle atrophy in mice housed in small cages, possibly by activating the phosphoinositide 3-kinase/Akt/mTOR signalling pathway and restoring autophagy flux.
Collapse
|
19
|
Bennett BT, Mohamed JS, Alway SE. The Effects of Calcium- β-Hydroxy- β-Methylbutyrate on Aging-Associated Apoptotic Signaling and Muscle Mass and Function in Unloaded but Nonatrophied Extensor Digitorum Longus Muscles of Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3938672. [PMID: 32774671 PMCID: PMC7396042 DOI: 10.1155/2020/3938672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Nerve and Muscle, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| |
Collapse
|
20
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
21
|
Petry ÉR, Dresch DDF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Schemitt E, Bona S, Guma FCR, Marroni NP, Wannmacher CMD. Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radic Biol Med 2019; 145:87-102. [PMID: 31505269 DOI: 10.1016/j.freeradbiomed.2019.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle disuse results in myofibrillar atrophy and protein degradation, via inflammatory and oxidative stress-mediated NF-kB signaling pathway activation. Nutritional interventions, such as l-glutamine (GLN) supplementation have shown antioxidant properties and cytoprotective effects through the modulation on the 70-kDa heat shock protein (HSP70) expression. However, these GLN-mediated effects on cell signaling pathways and biochemical mechanisms that control the myofibrillar protein content degradation in muscle disuse situations are poorly known yet. This study investigated the effects of oral GLN plus l-alanine (ALA; GLN + ALA-solution) supplementation, either in their free or dipeptide (L-alanyl-l-glutamine-DIP) form, on GLN-glutathione (GSH) axis and cytoprotection mediated by HSP70 protein expression in the slow-twitch soleus and fast-twitch gastrocnemius skeletal muscle of rats submitted to 14-days of hindlimb immobilization-induced disuse muscle atrophy. Forty-eight Wistar rats were distributed into 6 groups: hindlimb immobilized (IMOB group) and hindlimb immobilized orally supplemented with either GLN (1 g kg-1) plus ALA (0.61 g kg-1) (GLN + ALA-IMOB group) or 1.49 g kg-1 of DIP (DIP-IMOB group) and; no-immobilized (CTRL) and no-immobilized supplemented GLN + ALA and DIP baselines groups. All animals, including CTRL and IMOB rats (water), were supplemented via intragastric gavage for 14 days, concomitantly to immobilization period. Plasma and muscle GLN levels, lipid (thiobarbituric acid reactive substances-TBARS) and protein (carbonyl) peroxidation, erythrocyte concentration of reduced GSH and GSH disulfide (GSSG), plasma and muscle pro-inflammatory TNF-α levels, muscle IKKα/β-NF-kB signaling pathway and, the myofibrillar protein content (MPC) were measured. The MPC was significantly lower in IMOB rats, compared to CTRL, GLN + ALA, and DIP animals (p < 0.05). This finding was associated with reduced plasma and muscle GLN concentration, equally in IMOB animals. Conversely, both GLN + ALA and DIP supplementation restored plasma and muscle GLN levels, which equilibrated GSH and intracellular redox status (GSSG/GSH ratio) in erythrocytes and skeletal muscle even as, increased muscle HSP70 protein expression; attenuating oxidative stress and TNF-α-mediated NF-kB pathway activation, fact that reverberated on reduction of MPC degradation in GLN + ALA-IMOB and DIP-IMOB animals (p < 0.05). In conclusion, the findings shown herein support the oral GLN + ALA and DIP supplementations as a therapeutic and effective nutritional alternative to attenuate the deleterious effects of the skeletal muscle protein degradation induced by muscle disuse.
Collapse
Affiliation(s)
- Éder Ricardo Petry
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Clarice Carvalho
- Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Tatiana Gomes Rosa
- Famaqui - Mario Quintana Faculty, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleverson Morais de Oliveira
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizangêla Schemitt
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Bona
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Costa Rodrigues Guma
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Norma Possas Marroni
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clóvis Milton Duval Wannmacher
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Khairullin AE, Eremeev AA, Grishin SN. Synaptic Aspects of Hypogravity Motor Syndrome. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Changes in masseter muscle fibers by liquid diet rearing in rabbits and recovery by chewing of solid diet. Arch Oral Biol 2019; 108:104548. [PMID: 31491685 DOI: 10.1016/j.archoralbio.2019.104548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of liquid diet on the development of masseter muscle fibers and whether the changes in the masseter muscle can be recovered by chewing of solid diet. DESIGN Masseter muscles from 40 rabbits (solid- and liquid-diet groups, n = 30; unweaned group, n = 5; recovery group, n = 5) were histochemically examined at 4, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Muscle fiber diameter and fiber type composition were measured and compared between groups. RESULTS In the liquid diet group, the diameter of types IIAB (solid group: 81.7 μm, liquid group: 60.9 μm) and IIB (solid group: 89.3 μm, liquid group: 68.8 μm) and the fiber type composition of type I (solid group: 18.4%, liquid group: 9.6%) decreased significantly at 33 weeks of age. In the recovery group, the fiber type composition of type I fibers recovered to 16.5%, while no recovery of type IIAB (56.6 μm) and IIB (64.6 μm) fiber diameter was observed. CONCLUSIONS Liquid diet caused atrophy of muscle fibers and an increase in the proportion of fast-twitch fibers. Although the diameter and ratio of slow-twitch fibers were recovered by chewing of solid diet, recovery was not observed for fast-twitch fibers. Our findings are relevant for dental medicine as it explored the possibility of masticatory muscle function recovery by hard food.
Collapse
|
24
|
Anderson JE, Zhu A, Mizuno TM. Nitric oxide treatment attenuates muscle atrophy during hind limb suspension in mice. Free Radic Biol Med 2018; 115:458-470. [PMID: 29277394 DOI: 10.1016/j.freeradbiomed.2017.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED Debilitating muscle-disuse atrophy in aging or obesity has huge socioeconomic impact. Since nitric oxide (NO) mediates muscle satellite cell activation and induces hypertrophy with exercise in old mice, we tested whether treatment with the NO donor, isosorbide dinitrate (ISDN), during hind limb suspension would reduce atrophy. Mice were suspended 18 days, with or without daily ISDN (66mg/kg). Muscles were examined for atrophy (weight, fiber diameter); regulatory changes in atrogin-1 (a negative regulator of muscle mass), myostatin (inhibits myogenesis), and satellite cell proliferation; and metabolic responses in myosin heavy chains (MyHCs), liver lipid, and hypothalamic gene expression. Suspension decreased muscle weight and weight relative to body weight between 25-55%, and gastrocnemius fiber diameter vs. CONTROLS In young-adult mice, ISDN attenuated atrophy by half or more. In quadriceps, ISDN completely prevented the suspension-induced rise in atrogin-1 and drop in myostatin precursor, and attenuated the changes in MyHCs 1 and 2b observed in unloaded muscles without treatment. Fatty liver in suspended young-adult mice was also reduced by ISDN; suspended young mice had higher hypothalamic expression of the orexigenic agouti-related protein, Agrp than controls. Notably, a suspension-induced drop in muscle satellite cell proliferation by 25-58% was completely prevented (young mice) or attenuated (halved, in young-adult mice) by ISDN. NO-donor treatment has potential to attenuate atrophy and metabolic changes, and prevent regulatory changes during disuse and offset/prevent wasting in age-related sarcopenia or space travel. Increases in precursor proliferation resulting from NO treatment would also amplify benefits of physical therapy and exercise.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada R3T 2N2.
| | - Antonia Zhu
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada R3T 2N2
| | - Tooru M Mizuno
- Department of Physiology and Pathophysiology, Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermott Avenue, Winnipeg, MB, Canada R3E 3P5
| |
Collapse
|
25
|
Nakamura K, Ohsawa I, Masuzawa R, Konno R, Watanabe A, Kawano F. Running training experience attenuates disuse atrophy in fast-twitch skeletal muscles of rats. J Appl Physiol (1985) 2017; 123:902-913. [PMID: 28775067 DOI: 10.1152/japplphysiol.00289.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/26/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
Responsiveness to physiological stimuli, such as exercise and muscular inactivation, differs in individuals. However, the mechanisms responsible for these individual differences remain poorly understood. We tested whether a prior experience of exercise training affects the responses of skeletal muscles to unloading. Young rats were assigned to perform daily running training with a treadmill for 8 wk. After an additional 8 wk of normal habitation, the rats were hindlimb unloaded by tail suspension for 1 wk. Fast-twitch plantaris, gastrocnemius, and tibialis anterior muscles did not atrophy after unloading in rats with training experience, although soleus muscle lost weight similar to sedentary rats. We also analyzed the transcriptome in plantaris muscle with RNA sequencing followed by hierarchical clustering analysis and found that a subset of genes that were generally upregulated in sedentary rats after unloading were less responsive in rats with training experience. The distribution of histone 3 was diminished at the loci of these genes during the training period. Although the deposition of histone 3 was restored after an additional period of normal habitation, the incorporation of H3.3 variant was promoted in rats with training experience. This remodeling of nucleosomes closely correlated to the conformational changes of chromatin and suppressed gene expression in response to unloading. These results suggest that exercise training stimulated the early turnover of histone components, which may alter the responsiveness of gene transcription to physiological stimuli.NEW & NOTEWORTHY The present study demonstrates that disuse atrophy was suppressed in fast-twitch skeletal muscles of rats with training experience in early life. We also found a subset of genes that were less responsive to unloading in the muscle of rats with training experience. It was further determined that exercise training caused an early turnover of nucleosome components, which may alter the responsiveness of genes to stimulus in later life.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ikumi Ohsawa
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryo Masuzawa
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryotaro Konno
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Atsuya Watanabe
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Fuminori Kawano
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan; .,Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| |
Collapse
|
26
|
Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol (Oxf) 2015; 215:191-203. [PMID: 26347147 DOI: 10.1111/apha.12600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 01/30/2023]
Abstract
AIM Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. METHODS Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. RESULTS Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. CONCLUSION Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Y. Ohno
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - S. Yokoyama
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Graduate School of Health and Sports Science; Doshisha University; Kyotanabe Japan
| | | | - K. Goto
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
27
|
Kawano F, Nimura K, Ishino S, Nakai N, Nakata K, Ohira Y. Differences in histone modifications between slow- and fast-twitch muscle of adult rats and following overload, denervation, or valproic acid administration. J Appl Physiol (1985) 2015; 119:1042-52. [PMID: 26404615 DOI: 10.1152/japplphysiol.00289.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have reported alterations in skeletal muscle properties and phenotypes in response to various stimuli such as exercise, unloading, and gene mutation. However, a shift in muscle fiber phenotype from fast twitch to slow twitch is not completely induced by stimuli. This limitation is hypothesized to result from the epigenetic differences between muscle types. The main purpose of the present study was to identify the differences in histone modification for the plantaris (fast) and soleus (slow) muscles of adult rats. Genome-wide analysis by chromatin immunoprecipitation followed by DNA sequencing revealed that trimethylation at lysine 4 and acetylation of histone 3, which occurs at transcriptionally active gene loci, was less prevalent in the genes specific to the slow-twitch soleus muscle. Conversely, gene loci specific to the fast-twitch plantaris muscle were associated with the aforementioned histone modifications. We also found that upregulation of slow genes in the plantaris muscle, which are related to enhanced muscular activity, is not associated with activating histone modifications. Furthermore, silencing of muscle activity by denervation caused the displacement of acetylated histone and RNA polymerase II (Pol II) in 5' ends of genes in plantaris, but minor effects were observed in soleus. Increased recruitment of Pol II induced by forced acetylation of histone was also suppressed in valproic acid-treated soleus. Our present data indicate that the slow-twitch soleus muscle has a unique set of histone modifications, which may relate to the preservation of the genetic backbone against physiological stimuli.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan;
| | - Keisuke Nimura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Saki Ishino
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoya Nakai
- School of Human Cultures, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan; and
| | - Yoshinobu Ohira
- Graduate School of Sports Sciences, Doshisha University, Kyotanabe City, Kyoto, Japan
| |
Collapse
|
28
|
Ohira T, Kawano F, Ohira T, Goto K, Ohira Y. Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 2015; 65:293-310. [PMID: 25850921 PMCID: PMC10717835 DOI: 10.1007/s12576-015-0375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 02/04/2023]
Abstract
Adaptation of morphological, metabolic, and contractile properties of skeletal muscles to inhibition of antigravity activities by exposure to a microgravity environment or by simulation models, such as chronic bedrest in humans or hindlimb suspension in rodents, has been well reported. Such physiological adaptations are generally detrimental in daily life on earth. Since the development of suitable countermeasure(s) is essential to prevent or inhibit these adaptations, effects of neural, mechanical, and metabolic factors on these properties in both humans and animals were reviewed. Special attention was paid to the roles of the motoneurons (both efferent and afferent neurograms) and electromyogram activities as the neural factors, force development, and/or length of sarcomeres as the mechanical factors and mitochondrial bioenergetics as the metabolic factors.
Collapse
Affiliation(s)
- Takashi Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505 Japan
| | - Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Tomotaka Ohira
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Miyakodani 1-3, Tatara, Kyotanabe, Kyoto 610-0394 Japan
| |
Collapse
|
29
|
Tajino J, Ito A, Nagai M, Zhang X, Yamaguchi S, Iijima H, Aoyama T, Kuroki H. Discordance in recovery between altered locomotion and muscle atrophy induced by simulated microgravity in rats. J Mot Behav 2015; 47:397-406. [PMID: 25789843 DOI: 10.1080/00222895.2014.1003779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposure to a microgravity environment leads to adverse effects in motion and musculoskeletal properties. However, few studies have investigated the recovery of altered locomotion and muscle atrophy simultaneously. The authors investigated altered locomotion in rats submitted to simulated microgravity by hindlimb unloading for 2 weeks. Motion deficits were characterized by hyperextension of the knees and ankle joints and forward-shifted limb motion. Furthermore, these locomotor deficits did not revert to their original form after a 2-week recovery period, although muscle atrophy in the hindlimbs had recovered, implying discordance in recovery between altered locomotion and muscle atrophy, and that other factors such as neural drives might control behavioral adaptations to microgravity.
Collapse
Affiliation(s)
- Junichi Tajino
- a Department of Motor Function Analysis , Human Health Sciences, Graduate School of Medicine, Kyoto University , Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohira T, Wang XD, Ito T, Kawano F, Goto K, Izawa T, Ohno H, Kizaki T, Ohira Y. Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers. Am J Physiol Cell Physiol 2015; 308:C848-55. [PMID: 25788575 DOI: 10.1152/ajpcell.00348.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/18/2015] [Indexed: 12/31/2022]
Abstract
Effects of macrophage on the responses of soleus fiber size to hind limb unloading and reloading were studied in osteopetrotic homozygous (op/op) mice with inactivated mutation of macrophage colony-stimulating factor (M-CSF) gene and in wild-type (+/+) and heterozygous (+/op) mice. The basal levels of mitotically active and quiescent satellite cell (-46 and -39% vs. +/+, and -40 and -30% vs. +/op) and myonuclear number (-29% vs. +/+ and -28% vs. +/op) in fibers of op/op mice were significantly less than controls. Fiber length and sarcomere number in op/op were also less than +/+ (-22%) and +/op (-21%) mice. Similar trend was noted in fiber cross-sectional area (CSA, -15% vs. +/+, P = 0.06, and -14% vs. +/op, P = 0.07). The sizes of myonuclear domain, cytoplasmic volume per myonucleus, were identical in all types of mice. The CSA, length, and the whole number of sarcomeres, myonuclei, and mitotically active and quiescent satellite cells, as well as myonuclear domain, in single muscle fibers were decreased after 10 days of unloading in all types of mice, although all of these parameters in +/+ and +/op mice were increased toward the control values after 10 days of reloading. However, none of these levels in op/op mice were recovered. Data suggest that M-CSF and/or macrophages are important to activate satellite cells, which cause increase of myonuclear number during fiber hypertrophy. However, it is unclear why their responses to general growth and reloading after unloading are different.
Collapse
Affiliation(s)
- T Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - X D Wang
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka, Japan
| | - T Ito
- Laboratory Animal Center, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - F Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka, Japan
| | - K Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi City, Aichi, Japan
| | - T Izawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Kyoto, Japan; Research Center for Adipocyte and Muscle Science, Doshisha University, Kyotanabe City, Kyoto, Japan; and
| | - H Ohno
- Department of Molecular Predictive Medicine and Sport Science, School of Medicine, Kyorin University, Mitaka City, Tokyo, Japan
| | - T Kizaki
- Department of Molecular Predictive Medicine and Sport Science, School of Medicine, Kyorin University, Mitaka City, Tokyo, Japan
| | - Y Ohira
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Kyoto, Japan; Research Center for Adipocyte and Muscle Science, Doshisha University, Kyotanabe City, Kyoto, Japan; and
| |
Collapse
|
31
|
Ohno Y, Sugiura T, Ohira Y, Yoshioka T, Goto K. Loading-associated expression of TRIM72 and caveolin-3 in antigravitational soleus muscle in mice. Physiol Rep 2014; 2:2/12/e12259. [PMID: 25539835 PMCID: PMC4332229 DOI: 10.14814/phy2.12259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Effects of mechanical loading on the expression level of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) in mouse soleus muscle were investigated. Mice were subjected to (1) continuous hindlimb suspension (HS) for 2 weeks followed by 1-week ambulation recovery or (2) functional overloading (FO) on the soleus by cutting the distal tendons of the plantaris and gastrocnemius muscles. Soleus muscle atrophy was induced by 2-week hindlimb suspension (HS). Reloading-associated regrowth of atrophied soleus muscle was observed by 1-week reloading following HS. HS also depressed the expression level of insulin receptor substrate-1 (IRS-1) mRNA, TRIM72, Cav-3, and phosphorylated Akt (p-Akt)/total Akt (t-Akt), but increased the phosphorylated level of p38 mitogen-activated protein kinase (p-p38MAPK) in soleus muscle. Thereafter, the expression level of MyoD mRNA, TRIM72 (mRNA, and protein), and Cav-3 was significantly increased and recovered to the basal level during 1-week reloading after HS. Although IRS-1 expression was also upregulated by reloading, the expression level was significantly lower than that before HS. Significant increase in p-Akt and phosphorylated p70 S6 kinase (p-p70S6K) was observed by 1-day reloading. On the other hand, 1-week functional overloading (FO) induced soleus muscle hypertrophy. In FO-associated hypertrophied soleus muscle, the expression level of IRS-1 mRNA, MyoD mRNA, TRIM72 mRNA, p-Akt, and p-p70S6K was increased, but the expression of Cav-3 and p-p38MAPK was decreased. FO had no effect on the protein expression level of TRIM72. These observations suggest that the loading-associated upregulation of TRIM72 protein in skeletal muscle may depress the regrowth of atrophied muscle via a partial suppression of IRS-1. In addition, downregulation of Cav-3 in skeletal muscle may depress overloading-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yamaguchi, 753-8513, Japan
| | - Yoshinobu Ohira
- Faculty and Graduate School of Health and Sports Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | | | - Katsumasa Goto
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan
| |
Collapse
|
32
|
Baltina TV, Kuznetsov MV, Yeremeev AA, Baltin ME. Effect of vibratory stimulation of foot support areas in rats on the functional state of leg muscles and the content of N2A titin isoforms in gravity relief. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Ohira T, Ohira T, Kawano F, Shibaguchi T, Okabe H, Goto K, Ogita F, Sudoh M, Roy RR, Edgerton VR, Cancedda R, Ohira Y. Effects of gravitational loading levels on protein expression related to metabolic and/or morphologic properties of mouse neck muscles. Physiol Rep 2014; 2:e00183. [PMID: 24744868 PMCID: PMC3967672 DOI: 10.1002/phy2.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
The effects of 3 months of spaceflight (SF), hindlimb suspension, or exposure to 2G on the characteristics of neck muscle in mice were studied. Three 8‐week‐old male C57BL/10J wild‐type mice were exposed to microgravity on the International Space Station in mouse drawer system (MDS) project, although only one mouse returned to the Earth alive. Housing of mice in a small MDS cage (11.6 × 9.8‐cm and 8.4‐cm height) and/or in a regular vivarium cage was also performed as the ground controls. Furthermore, ground‐based hindlimb suspension and 2G exposure by using animal centrifuge (n = 5 each group) were performed. SF‐related shift of fiber phenotype from type I to II and atrophy of type I fibers were noted. Shift of fiber phenotype was related to downregulation of mitochondrial proteins and upregulation of glycolytic proteins, suggesting a shift from oxidative to glycolytic metabolism. The responses of proteins related to calcium handling, myofibrillar structure, and heat stress were also closely related to the shift of muscular properties toward fast‐twitch type. Surprisingly, responses of proteins to 2G exposure and hindlimb suspension were similar to SF, although the shift of fiber types and atrophy were not statistically significant. These phenomena may be related to the behavior of mice that the relaxed posture without lifting their head up was maintained after about 2 weeks. It was suggested that inhibition of normal muscular activities associated with gravitational unloading causes significant changes in the protein expression related to metabolic and/or morphological properties in mouse neck muscle. Inhibition of gravitational loading in space and on the Earth for 3 months caused similar responses of protein expression in mouse neck muscle. Downregulation of mitochondrial proteins and upregulation of glycolytic proteins were induced, suggesting a shift from oxidative to glycolytic metabolism. Furthermore, the responses of proteins, involved in calcium handling, myofibrillar structure, and heat stress, related to the shift of muscular properties toward fast‐twitch type were also noted. It was suggested that inhibition of normal muscular activities associated with gravitational unloading caused significant changes in the protein expression related to metabolic and/or morphological properties in mouse neck muscle.
Collapse
Affiliation(s)
- Tomotaka Ohira
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi City, 440‐8511, Aichi, Japan
| | - Takashi Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba City, 305‐8505, Ibaraki, Japan
| | - Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, 560‐0043, Osaka, Japan
| | - Tsubasa Shibaguchi
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka City, Osaka560‐0043, Japan
| | - Hirooki Okabe
- Faculty of Letters, Kokushikan University, Setagaya‐ku, 154‐0017, Tokyo, Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi City, 440‐8511, Aichi, Japan
| | - Futoshi Ogita
- Department of Sports and Life Science, National Institute of Fitness and Sports, Kanoya City, 891‐2393, Kagoshima, Japan
| | - Masamichi Sudoh
- Division of Aerospace Medicine, Department of Cell Physiology, Jikei University School of Medicine, Minato‐ku, 105‐8461, Tokyo, Japan
| | - Roland Richard Roy
- Department of Integrative Biology and Physiology and Brain Research Institute, University of California, Los Angeles, 90095, California
| | - Victor Reggie Edgerton
- Department of Integrative Biology and Physiology and Brain Research Institute, University of California, Los Angeles, 90095, California
| | - Ranieri Cancedda
- Universita' degli Studi di Genova & Istituto Nazionale per la Ricerca sul Cancro, Genova City, Italy
| | - Yoshinobu Ohira
- Research Center for Adipocyte and Muscle Science, Doshisha University, Kyotanabe City, 610‐0394, Kyoto, Japan
| |
Collapse
|
34
|
Ateş F, Özdeşlik RN, Huijing PA, Yucesoy CA. Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. J Electromyogr Kinesiol 2013; 23:1199-205. [DOI: 10.1016/j.jelekin.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 01/14/2023] Open
|
35
|
Santucci D, Kawano F, Ohira T, Terada M, Nakai N, Francia N, Alleva E, Aloe L, Ochiai T, Cancedda R, Goto K, Ohira Y. Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days. PLoS One 2012; 7:e40112. [PMID: 22808101 PMCID: PMC3392276 DOI: 10.1371/journal.pone.0040112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022] Open
Abstract
Effects of 3-month exposure to microgravity environment on the expression of genes and proteins in mouse brain were studied. Moreover, responses of neurobiological parameters, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF), were also evaluated in the cerebellum, hippocampus, cortex, and adrenal glands. Spaceflight-related changes in gene and protein expression were observed. Biological processes of the up-regulated genes were related to the immune response, metabolic process, and/or inflammatory response. Changes of cellular components involving in microsome and vesicular fraction were also noted. Molecular function categories were related to various enzyme activities. The biological processes in the down-regulated genes were related to various metabolic and catabolic processes. Cellular components were related to cytoplasm and mitochondrion. The down-regulated molecular functions were related to catalytic and oxidoreductase activities. Up-regulation of 28 proteins was seen following spaceflight vs. those in ground control. These proteins were related to mitochondrial metabolism, synthesis and hydrolysis of ATP, calcium/calmodulin metabolism, nervous system, and transport of proteins and/or amino acids. Down-regulated proteins were related to mitochondrial metabolism. Expression of NGF in hippocampus, cortex, and adrenal gland of wild type animal tended to decrease following spaceflight. As for pleiotrophin transgenic mice, spaceflight-related reduction of NGF occured only in adrenal gland. Consistent trends between various portions of brain and adrenal gland were not observed in the responses of BDNF to spaceflight. Although exposure to real microgravity influenced the expression of a number of genes and proteins in the brain that have been shown to be involved in a wide spectrum of biological function, it is still unclear how the functional properties of brain were influenced by 3-month exposure to microgravity.
Collapse
Affiliation(s)
- Daniela Santucci
- Behavioural Neuroscience Section, Cellular Biology and Neuroscience Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Takashi Ohira
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Naoya Nakai
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nadia Francia
- Behavioural Neuroscience Section, Cellular Biology and Neuroscience Department, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Alleva
- Behavioural Neuroscience Section, Cellular Biology and Neuroscience Department, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Aloe
- Institute of Neurobiology and Molecular Medicine, CNR, European Brain Research Institute, Rome, Italy
| | | | | | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Yoshinobu Ohira
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
36
|
Ohno Y, Yamada S, Goto A, Ikuta A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice. Mol Cell Biochem 2012; 369:45-53. [DOI: 10.1007/s11010-012-1367-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
|
37
|
Van Dyke JM, Bain JLW, Riley DA. Preserving sarcomere number after tenotomy requires stretch and contraction. Muscle Nerve 2012; 45:367-75. [PMID: 22334171 DOI: 10.1002/mus.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Passive stretch therapy is utilized to improve the range of motion of chronically shortened muscles. However, human studies show conflicting results as whether passive stretch is clinically effective. METHODS The soleus muscles of adult rats were tenotomized to induce muscle shortening adaptation. Muscles included were non-treated normal, subjected to daily static stretch, or lengthened and isometrically contracted for 20 min/day. Muscle fiber structure was analyzed histochemically. Sarcomeres per millimeter length were counted to assess the effect of treatment. RESULTS Passive stretch significantly reduced central core lesion formation, but sarcomere loss was not prevented. The addition of isometric contraction during static stretch significantly (P < 0.001) reduced sarcomere loss. CONCLUSIONS Passive stretch alone does not prevent shortening adaptation. Contraction is required in combination with stretch to preserve the number of sarcomeres in series. The combination of stretch and contraction is necessary to maintain proper muscle fiber length.
Collapse
Affiliation(s)
- Jonathan M Van Dyke
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
38
|
Kawano F, Fujita R, Nakai N, Terada M, Ohira T, Ohira Y. HSP25 can modulate myofibrillar desmin cytoskeleton following the phosphorylation at Ser15 in rat soleus muscle. J Appl Physiol (1985) 2011; 112:176-86. [PMID: 21998265 DOI: 10.1152/japplphysiol.00783.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The main purpose of the present study was to investigate the role(s) of 25-kDa heat shock protein (HSP25) in the regulation and integration of myofibrillar Z-disc structure during down- or upregulation of the size in rat soleus muscle fibers. Hindlimb unloading by tail suspension was performed in adult rats for 7 days, and reloading was allowed for 5 days after the termination of suspension. Interaction of HSP25 and Z-disc proteins, phosphorylation status, distribution, and complex formation of HSP25 were investigated. Non- and single-phosphorylated HSP25s were generally expressed in the cytoplasmic fraction of normal muscle. The level of total HSP25, as well as the phosphorylation ratio, did not change significantly in response to atrophy. Increased expressions of HSP25, phosphorylated at serine 15 (p-Ser15) and dual-phosphorylated form, were noted, when atrophied muscles were reloaded. Myofibrillar HSP25 was also noted in reloaded muscle. Histochemical analysis further indicated the localization of p-Ser15 in the regions with disorganization of Z-disc structure in reloaded muscle fibers. HSP25 formed a large molecular complex in the cytoplasmic fraction of normal muscle, whereas dissociation of free HSP25 with Ser15 phosphorylation was noted in reloaded muscle. The interaction of p-Ser15 with desmin and actinin was detected in Z-discs by proximity ligation assay. Strong interaction between p-Ser15 and desmin, but not actinin, was noted in the disorganized areas. These results indicated that HSP25 contributed to the desmin cytoskeletal organization following the phosphorylation at Ser15 during reloading and regrowing of soleus muscle.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ohira T, Terada M, Kawano F, Nakai N, Ogura A, Ohira Y. Region-specific responses of adductor longus muscle to gravitational load-dependent activity in Wistar Hannover rats. PLoS One 2011; 6:e21044. [PMID: 21731645 PMCID: PMC3120817 DOI: 10.1371/journal.pone.0021044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022] Open
Abstract
Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive.
Collapse
Affiliation(s)
- Takashi Ohira
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka City, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Dupont E, Stevens L, Cochon L, Falempin M, Bastide B, Canu MH. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading. PLoS One 2011; 6:e17564. [PMID: 21408155 PMCID: PMC3050880 DOI: 10.1371/journal.pone.0017564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV). By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059) through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.
Collapse
|
41
|
Kawano F, Goto K, Wang XD, Terada M, Ohira T, Nakai N, Yoshioka T, Ohira Y. Role(s) of gravitational loading during developing period on the growth of rat soleus muscle fibers. J Appl Physiol (1985) 2010; 108:676-85. [PMID: 20056853 DOI: 10.1152/japplphysiol.00478.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from postnatal day 4 to month 3, and the reloading was allowed for 3 mo in some rats. Single expression of type I myosin heavy chain (MHC) was observed in approximately 82% of fibers in 3-mo-old controls, but the fibers expressing multiple MHC isoforms were noted in the unloaded rats. Although 97% of fibers in 3-mo-old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ohira Y, Kawano F, Dong Wang X, Nakai N, Ohira T, Okabe H, Naito H, Goto K. Role(s) of Mechanical Load and Satellite Cells in The Regulation of The Size of Soleus Muscle Fiber in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.2187/bss.24.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Nagatomo F, Ishihara A, Ohira Y. Effects of hindlimb unloading at early postnatal growth on cell body size in spinal motoneurons innervating soleus muscle of rats. Int J Dev Neurosci 2008; 27:21-6. [DOI: 10.1016/j.ijdevneu.2008.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/26/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fumiko Nagatomo
- Laboratory of NeurochemistryGraduate School of Human and Environmental Studies, Kyoto UniversityKyoto606‐8501Japan
| | - Akihiko Ishihara
- Laboratory of NeurochemistryGraduate School of Human and Environmental Studies, Kyoto UniversityKyoto606‐8501Japan
| | - Yoshinobu Ohira
- Section of Applied PhysiologyGraduate School of Medicine Osaka UniversityOsaka560‐0043Japan
| |
Collapse
|
44
|
Effects of hindlimb unloading and reloading on c-fos expression of spinal cord evoked by vibration of rat Achille tendon. Neurosci Lett 2008; 439:1-6. [DOI: 10.1016/j.neulet.2007.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/28/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022]
|
45
|
Kawano F, Takeno Y, Nakai N, Higo Y, Terada M, Ohira T, Nonaka I, Ohira Y. Essential role of satellite cells in the growth of rat soleus muscle fibers. Am J Physiol Cell Physiol 2008; 295:C458-67. [PMID: 18524941 DOI: 10.1152/ajpcell.00497.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were approximately 68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.
Collapse
|
46
|
Cornachione A, Cação-Benedini LO, Shimano MM, Volpon JB, Martinez EZ, Mattiello-Sverzut AC. Morphological comparison of different protocols of skeletal muscle remobilization in rats after hindlimb suspension. Scand J Med Sci Sports 2007; 18:453-61. [PMID: 18067520 DOI: 10.1111/j.1600-0838.2007.00720.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate and compare the efficacy of different remobilization protocols in different skeletal muscles considering the changes induced by hindlimb suspension of the tail. Thirty-six female Wistar rats were divided into six groups: control I, control II, suspended, suspended free, suspended trained on a declined treadmill and suspended trained on a flat treadmill. Fragments of soleus and tibialis anterior (TA) muscle were frozen and processed by different histochemical methods. The suspended soleus showed a significant increase in the proportional number of intermediate/hybrid fibers and a decrease in the number of type I fibers. Some of these changes proved to be reversible after remobilization. The three remobilization programs led to the recovery of both the proportional number of fibers and their size. The TA muscle presented a significant increase in the number and size of type I fibers and a cell size reduction of type IIB fibers, which were recovered after training on a declined treadmill and free movement. Especially regarding the soleus, the present findings indicate that, among the protocols, training on a declined treadmill was found to induce changes of a more regenerative nature, seemingly indicating a better tissue restructuring after the suspension procedure.
Collapse
Affiliation(s)
- A Cornachione
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Effect of tenotomy on metabosensitive afferent fibers from tibialis anterior muscle. Exp Brain Res 2007; 186:87-92. [DOI: 10.1007/s00221-007-1210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
48
|
Kawano F, Matsuoka Y, Oke Y, Higo Y, Terada M, Wang XD, Nakai N, Fukuda H, Imajoh-Ohmi S, Ohira Y. Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass. Am J Physiol Cell Physiol 2007; 293:C35-44. [PMID: 17182729 DOI: 10.1152/ajpcell.00297.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24%), associated with increased nucleolar number (from 1–2 to 3–5) within a myonucleus and myonuclear domain (+27%) compared with the preexperimental level, was induced by synergist ablation. Such phenomena were associated with increased levels of phosphorylated S6 (+84%) and HSP27 (+28%). Fiber atrophy (−52%), associated with decreased number (−31%) and domain size (−28%) of myonuclei and phosphorylation of S6 (−98%) and HSP27 (−63%), and with increased myonuclear size (+19%) and ubiquitination of myosin heavy chain (+33%, P > 0.05), was observed after unloading, which inhibited the mechanical load. Responses to deafferentation, which inhibited electromyogram level (−47%), were basically similar to those caused by hindlimb unloading, although the magnitudes were minor. The deafferentation-related responses were prevented and nucleolar number was even increased (+18%) by addition of synergist ablation, even though the integrated electromyogram level was still 30% less than controls. It is suggested that the load-dependent maintenance or upregulation of the nucleolar number and/or phosphorylation of S6 and HSP27 plays the important role(s) in the regulation of muscle mass. It was also indicated that such regulation was not necessarily associated with the neural activity.
Collapse
Affiliation(s)
- F Kawano
- Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Canu MH, Stevens L, Falempin M. Effect of hindlimb suspension on activation and MHC content of triceps brachii and on the representation of forepaw on the sensorimotor cortex. Exp Neurol 2007; 203:521-30. [PMID: 17055486 DOI: 10.1016/j.expneurol.2006.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/11/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
The aims of this work were to analyze the effects of a chronic (14 days) increase in the functional demand imposed on the triceps brachii and to evaluate the changes of the cortical representation of forelimb to this increased activity. The activation of triceps brachii was obtained by the hindlimb unloading (HU) model. Electromyographic activity changed from a phasic to a tonic pattern. Response amplitude increased during the first days of hyperactivity and then stabilized at an intermediate level. A transient decrease (-13% to -36% on day 2) in the mean frequency of motor units was observed. Content in myosin heavy chain of muscle fibers showed a reduction in IIb+IIx fibers in HU rats, whereas IIa+IIx fibers were more numerous. Thus, fibers tend to be more resistant to fatigue. Taken together, these observations reveal a dual plastic process. First, the nervous system reacts immediately to an environmental change, and second it reorganizes its motor command to impose a pattern of activity that is more adapted to a postural function. The extent of the cortical forelimb representation was delimited by oxidase histochemistry. No differences were detectable between control and HU animals for the period corresponding to enlarged receptive fields in the HU condition. Our observation lends support to our hypothesis that activation patterns contribute to the maintenance of neuronal properties in the somatosensory cortex. Moreover, the new tonic pattern resulting from the long contact of the paw with the floor may contribute to the adaptation of the central control of motoneuronal activity.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- Unité de Neurosciences et Physiologie Adaptatives-Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq cedex, France.
| | | | | |
Collapse
|
50
|
Ohira Y, Yoshinaga T, Ohara M, Kawano F, Wang XD, Higo Y, Terada M, Matsuoka Y, Roy RR, Edgerton VR. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs 2006; 182:129-42. [PMID: 16914916 DOI: 10.1159/000093963] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2006] [Indexed: 11/19/2022] Open
Abstract
The relative importance of neural and mechanical influences in maintaining normal slow and fast muscle properties remains unclear. To address this issue, we studied the effects of 10 days of hindlimb unloading (HU) with or without tenotomy and/or denervation on the cross-sectional area (CSA), myosin heavy chain (MHC) expression (immunohistochemistry) and composition (gel electrophoresis), and myonuclear number in soleus and plantaris fibers in adult male Wistar rats. In general, the adaptations in fiber type and size were similar using either single fiber gel or immunohistochemical analyses. HU resulted in atrophy of type I and I+IIa/x MHC fibers in the soleus and in type I, I+IIa/x, IIa/x, IIa/x+IIb, and IIb MHC fibers in the plantaris. Addition of tenotomy and/or denervation in HU rats had minimal effects on fiber CSA in the soleus, but fiber CSA in the plantaris further decreased, particularly in fibers expressing only fast MHCs. HU resulted in a de novo appearance of type I+IIa/x+IIb and IIa/x+IIb MHC fibers in the soleus and of type I+IIa/x+IIb MHC fibers in the plantaris. Tenotomy and/or denervation in HU rats had no further effect on the fiber type composition of either muscle. Mean myonuclear number/mm of type I fibers was decreased in the soleus of HU rats, and increased in type I and I+IIa/x fibers in HU plus tenotomy (HU+Ten) rats. In the plantaris, mean myonuclear number/mm of type IIa/x, IIa/x+IIb, and IIb fibers was lower after HU with or without tenotomy and/or denervation. Mean cytoplasmic volume/myonucleus ratio of type I and I+IIa/x fibers in the soleus of the HU group tended to be smaller than in controls. The largest decrease was noted in the HU+Ten group. In the plantaris, this ratio was unaffected by HU alone, but was decreased by addition of tenotomy and/or denervation when all fiber types were combined. These data indicate that the major cause of fiber atrophy and adaptations in myonuclear domain size in the slow soleus of HU rats is the chronic reduction in force generation, whereas the elimination of neuromuscular contact via denervation results in additional fiber atrophy and adaptations in myonuclear domain size in the fast plantaris.
Collapse
Affiliation(s)
- Yoshinobu Ohira
- Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|