1
|
Prabhakar NR, Peng YJ, Nanduri J. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol 2023; 601:5481-5494. [PMID: 37029496 DOI: 10.1113/jp284111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Carotid bodies are the principal sensory organs for detecting changes in arterial blood oxygen concentration, and the carotid body chemoreflex is a major regulator of the sympathetic tone, blood pressure and breathing. Intermittent hypoxia is a hallmark manifestation of obstructive sleep apnoea (OSA), which is a widespread respiratory disorder. In the first part of this review, we discuss the role of carotid bodies in heightened sympathetic tone and hypertension in rodents treated with intermittent hypoxia, and the underlying cellular, molecular and epigenetic mechanisms. We also present evidence for hitherto-uncharacterized role of carotid body afferents in triggering cellular and molecular changes induced by intermittent hypoxia. In the second part of the review, we present evidence for a contribution of a hypersensitive carotid body to OSA and potential therapeutic intervention to mitigate OSA in a murine model.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Panza GS, Kissane DM, Puri S, Mateika JH. The hypoxic ventilatory response and hypoxic burden are predictors of the magnitude of ventilatory long-term facilitation in humans. J Physiol 2023; 601:4611-4623. [PMID: 37641466 PMCID: PMC11006398 DOI: 10.1113/jp285192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Mild intermittent hypoxia initiates progressive augmentation (PA) and ventilatory long-term facilitation (vLTF) in humans. The magnitude of these forms of plasticity might be influenced by anthropometric and physiological variables, as well as protocol elements. However, the impact of many of these variables on the magnitude of respiratory plasticity has not been established in humans. A meta-analysis was completed using anthropometric and physiological variables obtained from 124 participants that completed one of three intermittent hypoxia protocols. Simple correlations between the aggregate variables and the magnitude of PA and vLTF standardized to baseline was completed. Thereafter, the variables correlated to PA or vLTF were input into a multilinear regression equation. Baseline measures of the hypoxic ventilatory response was the sole predictor of PA (R = 0.370, P = 0.012). Similarly, this variable along with the hypoxic burden predicted the magnitude of vLTF (R = 0.546, P < 0.006 for both variables). In addition, the magnitude of PA was strongly correlated to vLTF (R = 0.617, P < 0.001). Anthropometric measures do not predict the magnitude of PA and vLTF in humans. Alternatively, the hypoxic ventilatory response was the sole predictor of PA, and in combination with the hypoxic burden, predicted the magnitude of vLTF. These influences should be considered in the design of mild intermittent hypoxia protocol studies in humans. Moreover, the strong correlation between PA and vLTF suggests that a common mechanistic pathway may have a role in the initiation of these forms of plasticity. KEY POINTS: Mild intermittent hypoxia initiates progressive augmentation (PA) and ventilatory long-term facilitation (vLTF) in humans. Many of the anthropometric and physiological variables that could impact the magnitude of these forms of plasticity are unknown. Anthropometric and physiological variables were measured from a total of 124 participants that completed one of three distinct intermittent hypoxia protocols. The variables correlated to PA or vLTF were input into a multilinear regression analysis. The hypoxic ventilatory response was the sole predictor of PA, while this variable in addition to the average hypoxic burden predicted the magnitude of vLTF. A strong correlation between PA and vLTF was also revealed. These influences should be considered in the design of mild intermittent hypoxia protocol studies in humans. Moreover, the strong correlation between PA and vLTF suggests that a common mechanistic pathway may have a role in the initiation of these forms of plasticity.
Collapse
Affiliation(s)
- Gino S Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
| | - Dylan M Kissane
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Ostrowski D, Heesch CM, Kline DD, Hasser EM. Nucleus tractus solitarii is required for the development and maintenance of phrenic and sympathetic long-term facilitation after acute intermittent hypoxia. Front Physiol 2023; 14:1120341. [PMID: 36846346 PMCID: PMC9949380 DOI: 10.3389/fphys.2023.1120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Biology, Truman State University, Kirksville, MO, United States
| | - Cheryl M. Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States,*Correspondence: Eileen M. Hasser,
| |
Collapse
|
4
|
Barioni NO, Derakhshan F, Tenorio Lopes L, Onimaru H, Roy A, McDonald F, Scheibli E, Baghdadwala MI, Heidari N, Bharadia M, Ikeda K, Yazawa I, Okada Y, Harris MB, Dutschmann M, Wilson RJA. Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. SCIENCE ADVANCES 2022; 8:eabm1444. [PMID: 35333571 PMCID: PMC8956269 DOI: 10.1126/sciadv.abm1444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.
Collapse
Affiliation(s)
- Nicole O. Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Arijit Roy
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fiona McDonald
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erika Scheibli
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mufaddal I. Baghdadwala
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Negar Heidari
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manisha Bharadia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keiko Ikeda
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Yasumasa Okada
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Michael B. Harris
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Arias-Reyes C, Laouafa S, Zubieta-DeUrioste N, Joseph V, Bairam A, Schneider Gasser EM, Soliz J. Erythropoietin Produces a Dual Effect on Carotid Body Chemoreception in Male Rats. Front Pharmacol 2021; 12:727326. [PMID: 34594222 PMCID: PMC8476757 DOI: 10.3389/fphar.2021.727326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated "en bloc" carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO's action.
Collapse
Affiliation(s)
- Christian Arias-Reyes
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | | | - Vincent Joseph
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Aida Bairam
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada.,High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
| |
Collapse
|
6
|
Keough JRG, Tymko MM, Boulet LM, Jamieson AN, Day TA, Foster GE. Cardiorespiratory plasticity in humans following two patterns of acute intermittent hypoxia. Exp Physiol 2021; 106:1524-1534. [PMID: 34047414 DOI: 10.1113/ep089443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do cardiorespiratory experience-dependent effects (EDEs) differ between two different stimulus durations of acute isocapnic intermittent hypoxia (IHx; 5-min vs. 90-s cycles between hypoxia and normoxia)? What is the main finding and its importance? There was long-term facilitation in ventilation and blood pressure in both IHx protocols, but there was no evidence of progressive augmentation or post-hypoxia frequency decline. Not all EDEs described in animal models translate to acute isocapnic IHx responses in humans, and cardiorespiratory responses to 5-min versus 90-s on/off IHx protocols are largely similar. ABSTRACT Peripheral respiratory chemoreceptors monitor breath-by-breath changes in arterial CO2 and O2 , and mediate ventilatory changes to maintain homeostasis. Intermittent hypoxia (IHx) elicits hypoxic ventilatory responses, with well-described experience-dependent effects (EDEs), derived mostly from animal work involving intermittent 5-min cycles of hypoxia and normoxia. These EDEs include post-hypoxia frequency decline (PHxFD), progressive augmentation (PA) and long-term facilitation (LTF). Comparisons of these EDEs between animal models and humans using similar IHx protocols are lacking. In addition, it is unknown whether shorter bouts of hypoxia, which may be more relevant to clinical conditions, elicit EDEs of similar magnitudes in humans. Respiratory (frequency, tidal volume and minute ventilation ( V ̇ I ) and cardiovascular (heart rate and mean arterial pressure (MAP)) variables were measured during and following two patterns of acute isocapnic IHx in 14 healthy human participants (four female): (1) 5 × 5 min and (2) 5 × 90 s on/off hypoxia. Participants' end-tidal P O 2 was clamped at 45 Torr during hypoxia and 100 Torr during normoxia. We found that (1) PHxFD and PA were not present in either IHx pattern (P > 0.14), (2) LTF was present in V ̇ I following both 5-min (P < 0.001) and 90-s isocapnic IHx trials (P < 0.001), and (3) LTF was present in MAP following 5-min isocapnic IHx (P < 0.001), and trended towards significance following 90-s IHx (P = 0.058). We demonstrate that acute isocapnic IHx alone may not elicit all of the EDEs that have been described in animal models. Additionally, ventilatory LTF occurred regardless of the length of hypoxia-normoxia cycles.
Collapse
Affiliation(s)
- Joanna R G Keough
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alenna N Jamieson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
7
|
Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, Herrington BA, Visser F, Altier C, Wilson RJA. PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol 2020; 599:1335-1354. [PMID: 33180962 PMCID: PMC7898719 DOI: 10.1113/jp280749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Key points We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma‐associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε–transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies’ oxygen sensitivity is independent of PKCε–TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen‐induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε–TRPV1 pathway, systemic delivery of a PKCε‐blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.
Abstract The autonomic nervous system orchestrates organ‐specific, systemic and behavioural responses to inflammation. Recently, we demonstrated a vital role for lysophosphatidic acid in stimulating the primary autonomic oxygen chemoreceptors, the carotid bodies, in parasympathetic‐mediated asthmatic airway hyperresponsiveness. However, the cacophony of stimulatory factors and cellular mechanisms of carotid body activation are unknown. Therefore, we set out to determine the intracellular signalling involved in carotid body‐mediated sensing of asthmatic blood‐borne inflammatory mediators. We employed a range of in vitro and rat in situ preparations, site‐directed mutagenesis, patch‐clamp, nerve recordings and pharmacological inhibition to assess cellular signalling. We show that the carotid bodies are also sensitive to asthma‐associated prototypical Th2 cytokines which elicit sensory nerve excitation. This provides additional asthmatic ligands contributing to the previously established reflex arc resulting in efferent vagal activity and asthmatic bronchoconstriction. This novel sensing role for the carotid body is mediated by a PKCε‐dependent stimulation of transient receptor potential vanilloid 1 (TRPV1), likely via TRPV1 phosphorylation at sites T704 and S502. Importantly, carotid body oxygen sensing was unaffected by blocking either PKCε or TRPV1. Further, we demonstrate that systemic PKCε blockade reduces asthmatic respiratory distress in response to allergen and airway hyperresponsiveness. These discoveries support an inflammation‐dependent, oxygen‐independent function for the carotid body and suggest that targeting PKCε provides a novel therapeutic option to abate allergic airway disease without altering life‐saving autonomic hypoxic reflexes. We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma‐associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε–transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies’ oxygen sensitivity is independent of PKCε–TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen‐induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε–TRPV1 pathway, systemic delivery of a PKCε‐blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arijit Roy
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Margaret M Kelly
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brittney A Herrington
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Postnatal changes in O2 and CO2 sensitivity in rodents. Respir Physiol Neurobiol 2020; 272:103313. [DOI: 10.1016/j.resp.2019.103313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
9
|
Loprinzi PD, Matalgah A, Crawford L, Yu JJ, Kong Z, Wang B, Liu S, Zou L. Effects of Acute Normobaric Hypoxia on Memory Interference. Brain Sci 2019; 9:323. [PMID: 31739561 PMCID: PMC6896077 DOI: 10.3390/brainsci9110323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Previous research has evaluated the effects of acute hypoxia exposure on cognitive function, notably executive function. No studies, to date, have evaluated the effects of acute hypoxia exposure on memory interference, which was the purpose of this experiment. METHODS A within-subjects, counterbalanced experimental design was employed, with condition (hypoxia vs. normoxia) and time (immediate vs. delayed) being the independent variables. Participants (N = 21; Mage = 21.0 years) completed two laboratory visits, involving 30 min of exposure to either hypoxia (FIO2 = 0.12) or normoxia (FIO2 = 0.21). Following this, they completed a memory interference task (AB/AC paradigm), assessing immediate and delayed proactive and retroactive interference. RESULTS For retroactive interference, we observed a significant main effect for condition, F(1, 20) = 5.48, p = 0.03, ƞ2 = 0.10, condition by time interaction, F(1, 20) = 4.96, p = 0.03, ƞ2 = 0.01, but no main effect for time, F(1, 20) = 1.75, p = 0.20, ƞ2 = 0.004. CONCLUSION Our results demonstrate that acute hypoxia exposure was facilitative in reducing memory interference. We discuss these findings in the context of the potential therapeutic effects of acute hypoxia exposure on synaptic plasticity.
Collapse
Affiliation(s)
- Paul D. Loprinzi
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA; (P.D.L.); (A.M.); (L.C.)
| | - Aala’a Matalgah
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA; (P.D.L.); (A.M.); (L.C.)
| | - Lindsay Crawford
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA; (P.D.L.); (A.M.); (L.C.)
| | - Jane J. Yu
- Exercise Psychology and Motor Learning Laboratory, Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Av. da Universidade, Taipa, Macau 999078, China;
| | - Bo Wang
- Department of Psychology, Central University of Finance and Economics, Beijing 100081, China;
| | - Shijie Liu
- Exercise and Mental Health Laboratory, Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen 518060, China;
| | - Liye Zou
- Exercise and Mental Health Laboratory, Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
10
|
Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors. Nat Commun 2018; 9:4030. [PMID: 30279412 PMCID: PMC6168495 DOI: 10.1038/s41467-018-06189-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 08/23/2018] [Indexed: 02/01/2023] Open
Abstract
Asthma accounts for 380,000 deaths a year. Carotid body denervation has been shown to have a profound effect on airway hyper-responsiveness in animal models but a mechanistic explanation is lacking. Here we demonstrate, using a rat model of asthma (OVA-sensitized), that carotid body activation during airborne allergic provocation is caused by systemic release of lysophosphatidic acid (LPA). Carotid body activation by LPA involves TRPV1 and LPA-specific receptors, and induces parasympathetic (vagal) activity. We demonstrate that this activation is sufficient to cause acute bronchoconstriction. Moreover, we show that prophylactic administration of TRPV1 (AMG9810) and LPA (BrP-LPA) receptor antagonists prevents bradykinin-induced asthmatic bronchoconstriction and, if administered following allergen exposure, reduces the associated respiratory distress. Our discovery provides mechanistic insight into the critical roles of carotid body LPA receptors in allergen-induced respiratory distress and suggests alternate treatment options for asthma. Acute bronchoconstriction is the leading cause of asthmatic sudden death following allergen exposure. The authors show that the systemic increase of LPA following inhaled allergen or bradykinin challenge activates the carotid bodies through TRPV1 and LPA-specific receptors and that systemic TRPV1 and LPA-specific receptor antagonists ameliorate acute bronchoconstriction.
Collapse
|
11
|
Roy A, Farnham MMJ, Derakhshan F, Pilowsky PM, Wilson RJA. Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor-dependent sensory long-term facilitation in naïve carotid bodies. J Physiol 2018; 596:3149-3169. [PMID: 29159869 PMCID: PMC6068228 DOI: 10.1113/jp275001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Activity-dependent plasticity can be induced in carotid body (CB) chemosensory afferents without chronic intermittent hypoxia (CIH) preconditioning by acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc). Several properties of this acute plasticity are shared with CIH-dependent sensory long-term facilitation (LTF) in that induction is dependent on 5-HT, angiotensin II, protein kinase C and reactive oxygen species. Several properties differ from CIH-dependent sensory LTF; H2 O2 appears to play no part in induction, whereas maintenance requires purinergic P2X2/3 receptor activation and is dependent on transient receptor potential vanilloid type 1 (TRPV1) receptor sensitization. Because P2X2/3 and TRPV1 receptors are located in carotid sinus nerve (CSN) terminals but not presynaptic glomus cells, a primary site of the acute AIH-Hc induced sensory LTF appears to be postsynaptic. Our results obtained in vivo suggest a role for TRPV1-dependent CB activity in acute sympathetic LTF. We propose that P2X-TRPV1-receptor-dependent sensory LTF may constitute an important early mechanism linking sleep apnoea with hypertension and/or cardiovascular disease. ABSTRACT Apnoeas constitute an acute existential threat to neonates and adults. In large part, this threat is detected by the carotid bodies, which are the primary peripheral chemoreceptors, and is combatted by arousal and acute cardiorespiratory responses, including increased sympathetic output. Similar responses occur with repeated apnoeas but they continue beyond the last apnoea and can persist for hours [i.e. ventilatory and sympathetic long-term facilitation (LTF)]. These long-term effects may be adaptive during acute episodic apnoea, although they may prolong hypertension causing chronic cardiovascular impairment. We report a novel mechanism of acute carotid body (CB) plasticity (sensory LTF) induced by repeated apnoea-like stimuli [i.e. acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc)]. This plasticity did not require chronic intermittent hypoxia preconditioning, was dependent on P2X receptors and protein kinase C, and involved heat-sensitive transient receptor potential vanilloid type 1 (TRPV1) receptors. Reactive oxygen species (O2 ·¯) were involved in initiating plasticity only; no evidence was found for H2 O2 involvement. Angiotensin II and 5-HT receptor antagonists, losartan and ketanserin, severely reduced CB responses to individual hypoxic-hypercapnic challenges and prevented the induction of sensory LTF but, if applied after AIH-Hc, failed to reduce plasticity-associated activity. Conversely, TRPV1 receptor antagonism had no effect on responses to individual hypoxic-hypercapnic challenges but reduced plasticity-associated activity by ∼50%. Further, TRPV1 receptor antagonism in vivo reduced sympathetic LTF caused by AIH-Hc, although only if the CBs were functional. These data demonstrate a new mechanism of CB plasticity and suggest P2X-TRPV1-dependent sensory LTF as a novel target for pharmacological intervention in some forms of neurogenic hypertension associated with recurrent apnoeas.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Fatemeh Derakhshan
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Richard J. A. Wilson
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
12
|
Rakoczy RJ, Pye RL, Fayyad TH, Santin JM, Barr BL, Wyatt CN. High Fat Feeding in Rats Alters Respiratory Parameters by a Mechanism That Is Unlikely to Be Mediated by Carotid Body Type I Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:137-142. [DOI: 10.1007/978-3-319-91137-3_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lee KZ, Chiang SC, Li YJ. Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion. Neurorehabil Neural Repair 2016; 31:364-375. [DOI: 10.1177/1545968316680494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Mild intermittent hypoxia has been considered a potential approach to induce respiratory neuroplasticity. Objective. The purpose of the present study was to investigate whether mild acute intermittent hypoxia can improve breathing function in a clinically relevant spinal cord injury animal model. Methods. Adult male rats received laminectomy or unilateral contusion at the C3-C4 spinal cord using a MASCIS Impactor (height: 6.25 or 12.5 mm). At 4 weeks postinjury, the breathing patterns of unanesthetized rats were measured by whole body plethysmography before, during and after 10 episodes of 5 minutes of hypoxia (10% O2, 4% CO2, balance N2) with 5 minutes of normoxia intervals. Results. The results demonstrated that cervical contusion resulted in reduction in breathing capacity and number of phrenic motoneurons. Acute hypoxia induced significant increases in frequency and tidal volume in sham surgery and contused animals. In addition, there was a progressive decline in the magnitude of hypoxic ventilatory response during intermittent hypoxia. Further, the tidal volume was significantly enhanced in contused but not sham surgery rats at 15 and 30 minutes postintermittent hypoxia, suggesting intermittent hypoxia can bring about long-term facilitation of tidal volume following cervical spinal contusion. Conclusions. These results suggest that mild acute intermittent hypoxia can elicit differential forms of respiratory plasticity in sham surgery versus contused animals, and may be a promising neurorehabilitation approach to improve respiratory function after cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Jie Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Soliz J, Tam R, Kinkead R. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats. Front Physiol 2016; 7:432. [PMID: 27729873 PMCID: PMC5037225 DOI: 10.3389/fphys.2016.00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders.
Collapse
Affiliation(s)
| | | | - Richard Kinkead
- Department of Pediatrics, Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, Université LavalQuébec, QC, Canada
| |
Collapse
|
15
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Prabhakar NR, Peng YJ, Kumar GK, Nanduri J. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol 2016; 5:561-77. [PMID: 25880505 DOI: 10.1002/cphy.c140039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Illinois, USA
| | | | | | | |
Collapse
|
18
|
Mendoza JP, Passafaro RJ, Baby SM, Young AP, Bates JN, Gaston B, Lewis SJ. Role of nitric oxide-containing factors in the ventilatory and cardiovascular responses elicited by hypoxic challenge in isoflurane-anesthetized rats. J Appl Physiol (1985) 2014; 116:1371-81. [PMID: 24744389 DOI: 10.1152/japplphysiol.00842.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exposure to hypoxia elicits changes in mean arterial blood pressure (MAP), heart rate, and frequency of breathing (fR). The objective of this study was to determine the role of nitric oxide (NO) in the cardiovascular and ventilatory responses elicited by brief exposures to hypoxia in isoflurane-anesthetized rats. The rats were instrumented to record MAP, heart rate, and fR and then exposed to 90 s episodes of hypoxia (10% O2, 90% N2) before and after injection of vehicle, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), or the inactive enantiomer D-NAME (both at 50 μmol/kg iv). Each episode of hypoxia elicited a decrease in MAP, bidirectional changes in heart rate (initial increase and then a decrease), and an increase in fR. These responses were similar before and after injection of vehicle or D-NAME. In contrast, the hypoxia-induced decreases in MAP were attenuated after administration of L-NAME. The initial increases in heart rate during hypoxia were amplified whereas the subsequent decreases in heart rate were attenuated in L-NAME-treated rats. Finally, the hypoxia-induced increases in fR were virtually identical before and after administration of L-NAME. These findings suggest that NO factors play a vital role in the expression of the cardiovascular but not the ventilatory responses elicited by brief episodes of hypoxia in isoflurane-anesthetized rats. Based on existing evidence that NO factors play a vital role in carotid body and central responses to hypoxia in conscious rats, our findings raise the novel possibility that isoflurane blunts this NO-dependent signaling.
Collapse
Affiliation(s)
- James P Mendoza
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachael J Passafaro
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Santhosh M Baby
- Division of Biology, Galleon Pharmaceuticals, Horsham, Pennsylvania
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and
| | - Benjamin Gaston
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
19
|
Tester NJ, Fuller DD, Fromm JS, Spiess MR, Behrman AL, Mateika JH. Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med 2014; 189:57-65. [PMID: 24224903 DOI: 10.1164/rccm.201305-0848oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Intermittent stimulation of the respiratory system with hypoxia causes persistent increases in respiratory motor output (i.e., long-term facilitation) in animals with spinal cord injury. This paradigm, therefore, has been touted as a potential respiratory rehabilitation strategy. OBJECTIVES To determine whether acute (daily) exposure to intermittent hypoxia can also evoke long-term facilitation of ventilation after chronic spinal cord injury in humans, and whether repeated daily exposure to intermittent hypoxia enhances the magnitude of this response. METHODS Eight individuals with incomplete spinal cord injury (>1 yr; cervical [n = 6], thoracic [n = 2]) were exposed to intermittent hypoxia (eight 2-min intervals of 8% oxygen) for 10 days. During all exposures, end-tidal carbon dioxide levels were maintained, on average, 2 mm Hg above resting values. Minute ventilation, tidal volume, and breathing frequency were measured before (baseline), during, and 30 minutes after intermittent hypoxia. Sham protocols consisted of exposure to room air and were administered to a subset of the participants (n = 4). MEASUREMENTS AND MAIN RESULTS Minute ventilation increased significantly for 30 minutes after acute exposure to intermittent hypoxia (P < 0.001), but not after sham exposure. However, the magnitude of ventilatory long-term facilitation was not enhanced over 10 days of intermittent hypoxia exposures. CONCLUSIONS Ventilatory long-term facilitation can be evoked by brief periods of hypoxia in humans with chronic spinal cord injury. Thus, intermittent hypoxia may represent a strategy for inducing respiratory neuroplasticity after declines in respiratory function that are related to neurological impairment. Clinical trial registered with www.clinicaltrials.gov (NCT01272011).
Collapse
Affiliation(s)
- Nicole J Tester
- 1 Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | | | | | | | | | | |
Collapse
|
20
|
Mechanism of sympathetic activation and blood pressure elevation in humans and animals following acute intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 209:131-46. [PMID: 24746046 DOI: 10.1016/b978-0-444-63274-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep apnea is associated with repeated episodes of hypoxemia, causing marked increase in sympathetic nerve activity and blood pressure. Considerable evidence suggests that intermittent hypoxia (IH) resulting from apnea is the primary stimulus for sympathetic overactivity in sleep apnea patients. Several IH protocols have been developed either in animals or in humans to investigate mechanisms underlying the altered autonomic regulation of the circulation. Most of these protocols involve several days (10-40 days) of IH exposure, that is, chronic intermittent hypoxia (CIH). Recent data suggest that a single session of IH exposure, that is, acute intermittent hypoxia (AIH), is already capable of increasing tonic sympathetic nerve output (sympathetic long-term facilitation, LTF) and altering chemo- and baroreflexes with or without elevation of blood pressure. This indicates that IH alters the autonomic neurocirculatory at a very early time point, although the mechanisms underlying this neuroplasticity have not been explored in detail. The purpose of this chapter is to briefly review the effects of AIH on sympathetic LTF and alteration of autonomic reflexes in comparison with the studies from CIH studies. We will also discuss the potential central and peripheral mechanism underlying sympathetic LTF.
Collapse
|
21
|
Fiamma MN, O'Connor ET, Roy A, Zuna I, Wilson RJA. The essential role of peripheral respiratory chemoreceptor inputs in maintaining breathing revealed when CO2 stimulation of central chemoreceptors is diminished. J Physiol 2013; 591:1507-21. [PMID: 23359670 DOI: 10.1113/jphysiol.2012.247304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central sleep apnoea is a condition characterized by oscillations between apnoea and hyperpnoea during sleep. Studies in sleeping dogs suggest that withdrawal of peripheral chemoreceptor (carotid body) activation following transient ventilatory overshoots plays an essential role in causing apnoea, raising the possibility that sustaining carotid body activity during ventilatory overshoots may prevent apnoea. To test whether sustained peripheral chemoreceptor activation is sufficient to drive breathing, even in the absence of central chemoreceptor stimulation and vagal feedback, we used a vagotomized, decerebrate dual-perfused in situ rat preparation in which the central and peripheral chemoreceptors are independently and artificially perfused with gas-equilibrated medium. At varying levels of carotid body stimulation (CB PO2/PCO2: 40/60, 100/40, 200/15, 500/15 Torr), we decreased the brainstem perfusate PCO2 in 5 Torr steps while recording phrenic nerve activity to determine the central apnoeic thresholds. The central apnoeic thresholds decreased with increased carotid body stimulation. When the carotid bodies were strongly stimulated (CB 40/60), the apnoeic threshold was 3.6 ± 1.4 Torr PCO2 (mean ± SEM, n = 7). Stimulating carotid body afferent activity with either hypercapnia (60 Torr PCO2) or the neuropeptide pituitary adenylate cyclase-activating peptide restored phrenic activity during central apnoea. We conclude that peripheral stimulation shifts the central apnoeic threshold to very hypocapnic levels that would likely increase the CO2 reserve and have a protective effect on breathing. These data demonstrate that peripheral respiratory chemoreceptors are sufficient to stave off central apnoeas when the brainstem is perfused with low to no CO2.
Collapse
Affiliation(s)
- Marie-Noëlle Fiamma
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
22
|
Steinback CD, Kevin Shoemaker J. Differential regulation of sympathetic burst frequency and amplitude following acute hypoxia in humans. Am J Physiol Regul Integr Comp Physiol 2012; 303:R633-8. [DOI: 10.1152/ajpregu.00130.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current evidence suggests that the persistent sympathetic nerve activity (SNA), commonly observed after exposure to hypoxia (HX), is mediated by chemoreceptor sensitization and or baroreflex resetting. Evidence in humans and animals suggests that these reflexes may independently regulate the frequency (gating) and amplitude (neuronal recruitment) of SNA bursts. In humans ( n = 7), we examined the regulation of SNA following acute isocapnic HX (5 min; end-tidal Po2 = 45 Torr) and euoxic hypercapnia (HC; 5 min; end-tidal Pco2 = +10 from baseline). HX increased SNA burst frequency (21 ± 7 to 28 ± 8 bursts/min, P < 0.05) and amplitude (99 ± 10 to 125 ± 19 au, P < 0.05) as did HC (14 ± 6 to 22 ± 10 bursts/min, P < 0.05 and 100 ± 12 to 133 ± 29 au, P < 0.05, respectively). Burst frequency (26 ± 7 bursts/min, P < 0.05), but not amplitude (97 ± 12 au), remained elevated 10 min post-HX. The change in burst amplitude (but not frequency) was significantly related to the measured change in ventilation ( r2 = 0.527, P < 0.001). Both frequency and amplitude decreased during recovery following HC. These data indicate the differential regulation of pattern and magnitude of sympathetic outflow in humans with sympathetic persistence following HX being specific to burst frequency and not amplitude.
Collapse
Affiliation(s)
- Craig D. Steinback
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; and School of
| | - J. Kevin Shoemaker
- Kinesiology and
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Darnall RA. The carotid body and arousal in the fetus and neonate. Respir Physiol Neurobiol 2012; 185:132-43. [PMID: 22684039 DOI: 10.1016/j.resp.2012.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/18/2012] [Accepted: 06/01/2012] [Indexed: 02/02/2023]
Abstract
Arousal from sleep is a major defense mechanism in infants against hypoxia and/or hypercapnia. Arousal failure may be an important contributor to SIDS. Areas of the brainstem that have been found to be abnormal in a majority of SIDS infants are involved in the arousal process. Arousal is sleep state dependent, being depressed during AS in most mammals, but depressed during QS in human infants. Repeated exposure to hypoxia causes a progressive blunting of arousal that may involve medullary raphe GABAergic mechanisms. Whereas CB chemoreceptors contribute heavily to arousal in response to hypoxia, serotonergic central chemoreceptors have been implicated in the arousal response to CO(2). Pulmonary or chest wall mechanoreceptors also contribute to arousal in proportion to the ventilatory response and decreases in their input may contribute to depressed arousal during AS. Little is known about specific arousal pathways beyond the NTS. Whether CB chemoreceptor stimulation directly stimulates arousal centers or whether this is done indirectly through respiratory networks remains unknown. This review will focus on arousal in response to hypoxia and CO(2) in the fetus and newborn and will outline what we know (and do not know) about the involvement of the carotid body in this process.
Collapse
Affiliation(s)
- Robert A Darnall
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, United States.
| |
Collapse
|
24
|
Bautista TG, Xing T, Fong AY, Pilowsky PM. Recurrent laryngeal nerve activity exhibits a 5-HT-mediated long-term facilitation and enhanced response to hypoxia following acute intermittent hypoxia in rat. J Appl Physiol (1985) 2012; 112:1144-56. [DOI: 10.1152/japplphysiol.01356.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A progressive and sustained increase in inspiratory-related motor output (“long-term facilitation”) and an augmented ventilatory response to hypoxia occur following acute intermittent hypoxia (AIH). To date, acute plasticity in respiratory motor outputs active in the postinspiratory and expiratory phases has not been studied. The recurrent laryngeal nerve (RLN) innervates laryngeal abductor muscles that widen the glottic aperture during inspiration. Other efferent fibers in the RLN innervate adductor muscles that partially narrow the glottic aperture during postinspiration. The aim of this study was to investigate whether or not AIH elicits a serotonin-mediated long-term facilitation of laryngeal abductor muscles, and if recruitment of adductor muscle activity occurs following AIH. Urethane anesthetized, paralyzed, unilaterally vagotomized, and artificially ventilated adult male Sprague-Dawley rats were subjected to 10 exposures of hypoxia (10% O2 in N2, 45 s, separated by 5 min, n = 7). At 60 min post-AIH, phrenic nerve activity and inspiratory RLN activity were elevated (39 ± 11 and 23 ± 6% above baseline, respectively). These responses were abolished by pretreatment with the serotonin-receptor antagonist, methysergide ( n = 4). No increase occurred in time control animals ( n = 7). Animals that did not exhibit postinspiratory RLN activity at baseline did not show recruitment of this activity post-AIH ( n = 6). A repeat hypoxia 60 min after AIH produced a significantly greater peak response in both phrenic and RLN activity, accompanied by a prolonged recovery time that was also prevented by pretreatment with methysergide. We conclude that AIH induces neural plasticity in laryngeal motoneurons, via serotonin-mediated mechanisms similar to that observed in phrenic motoneurons: the so-called “Q-pathway”. We also provide evidence that the augmented responsiveness to repeat hypoxia following AIH also involves a serotonergic mechanism.
Collapse
Affiliation(s)
- Tara G. Bautista
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Tao Xing
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Angelina Y. Fong
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Paul M. Pilowsky
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
26
|
Roy A, Mandadi S, Fiamma MN, Rodikova E, Ferguson EV, Whelan PJ, Wilson RJA. Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. J Appl Physiol (1985) 2011; 112:212-24. [PMID: 21903882 DOI: 10.1152/japplphysiol.01303.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal respiratory chemosensitivity is implicated in recurrent apnea syndromes, with the peripheral chemoreceptors, the carotid bodies, playing a particularly important role. Previous work suggests that supraphysiological concentrations of the endocannabinoid endovanilloid and TASK channel blocker anandamide (ANA) excite carotid bodies, but the mechanism(s) and physiological significance are unknown. Given that carotid body output is temperature-sensitive, we hypothesized that ANA stimulates carotid body chemosensory afferents via temperature-sensitive vanilloid (TRPV1) receptors. To test this hypothesis, we used the dual-perfused in situ rat preparation to confirm that independent perfusion of carotid arteries with supraphysiological concentrations of ANA strongly excites carotid sinus nerve afferents and that this activity is sufficient to increase phrenic activity. Next, using ex vivo carotid body preparations, we demonstrate that these effects are mediated by TRPV1 receptors, not CB1 receptors or TASK channels: in CB1-null mouse preparations, ANA increased afferent activity across all levels of Po(2), whereas in TRPV1-null mouse preparations, the stimulatory effect of ANA was absent. In rat ex vivo preparations, ANA's stimulatory effects were mimicked by olvanil, a nonpungent TRPV1 agonist, and suppressed by the TRPV1 antagonist AMG-9810. The specific CB1 agonist oleamide had no effect. Physiological levels of ANA had no effect alone but increased sensitivity to mild hyperthermia. AMG-9810 blocked ANA's effect on the temperature response. Immunolabeling and RT-PCR demonstrated that TRPV1 receptors are not expressed in carotid body glomus cells but reside in petrosal sensory afferents. Together, these results suggest that ANA plays a physiological role in augmenting afferent responses to mild hyperthermia by activating TRPV1 receptors on petrosal afferents.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Prabhakar NR. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol 2011; 178:375-80. [PMID: 21621009 DOI: 10.1016/j.resp.2011.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that acute intermittent hypoxia (IH) induces sensory plasticity of the carotid body manifested as sensory long-term facilitation (LTF), which requires prior conditioning with chronic IH and is mediated by reactive oxygen species (ROS). The purpose of this article is to provide a brief review of chronic IH-induced sensory LTF of the carotid body, sources of ROS, mechanisms underlying sensory LTF and its functional significance. Development of sensory LTF requires conditioning with several days of chronic IH. It is completely reversible following re-oxygenation, does not depend on the severity of hypoxia used for IH conditioning, not species specific and is selectively evoked by acute repetitive hypoxia but not by repetitive hypercapnia. Sensory LTF is not associated morphological changes in the carotid body and is expressed in chronic IH treated adult but not in neonatal rat carotid bodies. Chronic IH increases ROS levels in the carotid body involving 5-HT mediated activation of NADPH oxidase-2 (NOX2) and subsequent inhibition of the mitochondrial complex I. Sensory LTF can be prevented by inhibitors of 5-HT receptors, NOX inhibitors as well as by anti-oxidants. The signaling pathways mediating the sensory LTF are summarized in the second figure. It is suggested that sensory LTF contributes to the persistent sympathetic excitation under chronic IH.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, 5841 S. Maryland Avenue, MC 5068, Room N-711, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Niane L, Joseph V, Bairam A. Role of cholinergic-nicotinic receptors on hypoxic chemoreflex during postnatal development in rats. Respir Physiol Neurobiol 2009; 169:323-32. [DOI: 10.1016/j.resp.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
|
29
|
Lee DS, Badr MS, Mateika JH. Progressive augmentation and ventilatory long-term facilitation are enhanced in sleep apnoea patients and are mitigated by antioxidant administration. J Physiol 2009; 587:5451-67. [PMID: 19805747 PMCID: PMC2793876 DOI: 10.1113/jphysiol.2009.178053] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/25/2009] [Indexed: 01/27/2023] Open
Abstract
Progressive augmentation (PA) and ventilatory long-term facilitation (vLTF) of respiratory motor output are forms of respiratory plasticity that are initiated during exposure to intermittent hypoxia. The present study was designed to determine whether PA and vLTF are enhanced in obstructive sleep apnoea (OSA) participants compared to matched healthy controls. The study was also designed to determine whether administration of an antioxidant cocktail mitigates PA and vLTF. Thirteen participants with sleep apnoea and 13 controls completed two trials. During both trials participants were exposed to intermittent hypoxia which included twelve 4-min episodes of hypoxia (P(ETCO(2)), 50 mmHg; P(ETCO(2)), 4 mmHg above baseline) followed by 30 min of recovery. Prior to exposure to intermittent hypoxia, participants were administered, in a randomized fashion, either an antioxidant or a placebo cocktail. Baseline measures of minute ventilation during the placebo and antioxidant trials were not different between or within groups. During the placebo trial, PA was evident in both groups; however it was enhanced in the OSA group compared to control (last hypoxic episode 36.9 +/- 2.8 vs. 27.7 +/- 2.2 l min(-1); P
Collapse
Affiliation(s)
- Dorothy S Lee
- John D. Dingell Veterans Administration Medical Center, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
30
|
Feng J, Chen BY, Cui LY, Wang BL, Liu CX, Chen PF, Guo MN, Dong LX, Li S. Inflammation status of rabbit carotid artery model endothelium during intermittent hypoxia exposure and its relationship with leptin. Sleep Breath 2009; 13:277-83. [PMID: 19290558 DOI: 10.1007/s11325-009-0246-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/10/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To develop an intermittent hypoxia/reoxygenation (IH/ROX) rabbit carotid artery model and then investigate the inflammation status of rabbit carotid artery endothelium after IH exposure and its relationship with leptin. MATERIALS AND METHODS After anesthetization, rabbit's right common carotid artery was cleared of surrounding tissue with anatomic microscope, cannulated to its distal part and the proximal part was ligated. Preparations were challenged by changing the PO(2) of the gas mixture equilibrating the perfusate. Alternate perfusing (2 mL/min) of equilibrated perfusate bubbled with normoxia or hypoxia gas mixtures formed IH/ROX cycles in the right carotid common artery, simulating the pattern of hypoxic episodes seen in obstructive sleep apnea (OSA), or continuous perfusing of hypoxia perfusate to form continuous hypoxia (CH) modes. Sixty adult male New Zealand White rabbits (2.5-3.0 kg) were separated into six groups, ten per group. Groups were: A, intermittent normoxia (IN) group, perfused with perfusion equilibrated with 21% O(2) [PO(2) about 141 +/- 2.87 mmHg] for 15 s and 21% O(2) for 1 min 45 s, 60 cycles; B, severe IH group, 5% O(2) [PO(2) about 35.2 +/- 1.27 mmHg] 15 s and 21% O(2) 1 min 45 s, 60 cycles; C, mild IH group, 10% O(2) [PO(2) about 54.3 +/- 3.31 mmHg] 15 s and 21% O(2) 1 min 45 s, 60 cycles; D, severe IH+Lep group, protocol was the same with severe IH group; E, CH group, IN for 1 h 45 min and then 5% O(2) for 15 min; and F, Lep group, the same with IN group. Right common carotid artery parts distal to the cannula were harvested after exposure, and endothelial cell layers were gotten from longitudinal outspread vessels. Nuclear factor kappaB (NFkappaB) DNA binding activities of partial cell layers were measured with electrophoretic mobility shift assay in the IN group, severe IH group, mild IH group, and CH group nuclear extracts. The other part of the cell layers in the IN group, severe IH group, severe IH+Lep group, and Lep group were cultured for 2 h, and during the culture procedure, recombinated human leptin solutions were added to culture dishes of severe IH+Lep group and Lep group (resulted concentration, 10 ng/mL). Enzyme-linked immunosorbent assay was used to analyze medium interleukin-6 (IL-6) concentrations, reverse transcription polymerase chain reaction was used to analyze endothelial cell Ras homology A (RhoA) mRNA expression levels. Statistical analysis was done with SPSS 11.5 software package. RESULTS NFkappaB DNA binding activities were significantly different between groups (F = 112.428, P < 0.001). This activity in the severe IH group (4.27 +/- 0.64) was higher than that in the mild IH group (2.33 +/- 0.45, P < 0.001), IN group (1.00 +/- 0.26, P < 0.001), and CH group (1.15 +/- 0.36, P < 0.001). RhoA mRNA expression levels were different in groups (F = 26.634, P < 0.001).This level in the severe IH+Lep group (2.54 +/- 0.53) was higher than that in the severe IH group (1.57 +/- 0.44, P = 0.002), IN group (1.00 +/- 0.31, P < 0.001), and Lep group (1.31 +/- 0.30, P < 0.001). IL-6 concentrations were different in groups (F = 79.922, P < 0.001). IL-6 concentration in the severe IH+Lep group (1591.50 +/- 179.57 pg/mL) was higher than that in the severe IH group (1217.20 +/- 320.62 pg/mL, P = 0.036), IN group (325.40 +/- 85.26 pg/mL, P < 0.001), and Lep group (517.40 +/- 183.09 pg/mL, P < 0.001). CONCLUSIONS IH/ROX activated the inflammation pathway significantly in the endothelium, which was more intensive than CH and intensity-dependent. When exposed to both IH/ROX and leptin, inflammation occurs more dramatically. It means that synergic activating roles were performed by IH/ROX and leptin. This study may have a clinical implication that IH can cause endothelial damage through activated inflammation in OSA patients, and if the OSA patients have obesity at the same time, the endothelial damage or the inflammation would be more significant because of elevated leptin level as a synergic factor.
Collapse
Affiliation(s)
- Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mateika JH, Narwani G. Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea? Exp Physiol 2009; 94:279-96. [PMID: 19060117 PMCID: PMC2771401 DOI: 10.1113/expphysiol.2008.045153] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review focuses on two phenomena that are initiated during and after exposure to intermittent hypoxia. The two phenomena are referred to as long-term facilitation and progressive augmentation of respiratory motor output. Both phenomena are forms of respiratory plasticity. Long-term facilitation is characterized by a sustained elevation in respiratory activity after exposure to intermittent hypoxia. Progressive augmentation is characterized by a gradual increase in respiratory activity from the initial to the final hypoxic exposure. There is much speculation that long-term facilitation may have a significant role in individuals with sleep apnoea because this disorder is characterized by periods of upper airway collapse accompanied by intermittent hypoxia, one stimulus known to induce long-term facilitation. It has been suggested that activation of long-term facilitation may serve to mitigate apnoea by facilitating ventilation and, more importantly, upper airway muscle activity. We examine the less discussed but equally plausible situation that exposure to intermittent hypoxia might ultimately lead to the promotion of apnoea. There are at least two scenarios in which apnoea might be promoted following exposure to intermittent hypoxia. In both scenarios, long-term facilitation of upper airway muscle activity is initiated but ultimately rendered ineffective because of other physiological conditions. Thus, one of the primary goals of this review is to discuss, with support from basic and clinical studies, whether various forms of respiratory motor neuronal plasticity have a beneficial and/or a detrimental impact on breathing stability in individuals with sleep apnoea.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell VA Medical Center, 4646 John R (11R), Room 4332, Detroit, MI 48201, USA.
| | | |
Collapse
|
32
|
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
33
|
Song G, Poon CS. Lateral parabrachial nucleus mediates shortening of expiration during hypoxia. Respir Physiol Neurobiol 2009; 165:1-8. [PMID: 18992853 PMCID: PMC2693007 DOI: 10.1016/j.resp.2008.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/23/2008] [Accepted: 10/09/2008] [Indexed: 11/21/2022]
Abstract
Acute hypoxia elicits complex time-dependent responses including rapid augmentation of inspiratory drive, shortening of inspiratory and expiratory durations (T(I), T(E)), and short-term potentiation and depression. The central pathways mediating these varied effects are largely unknown. Here, we show that the lateral parabrachial nucleus (LPBN) of the dorsolateral pons specifically mediates T(E)-shortening during hypoxia and not other hypoxic response components. Twelve urethane-anesthetized and vagotomized adult Sprague-Dawley rats were exposed to 1-min poikilocapnic hypoxia before and after unilateral kainic acid or bilateral electrolytic lesioning of the LPBN. Bilateral lesions resulted in a significant increase in baseline T(E) under hyperoxia. After unilateral or bilateral lesions, the decrease in T(E) during hypoxia was markedly attenuated without appreciable changes in all other hypoxic response components. These findings add to the mounting evidence that the central processing of peripheral chemoafferent inputs is segregated into parallel integrator and differentiator (low-pass and high-pass filter) pathways that separately modulate inspiratory drive, T(I), T(E) and resultant short-term potentiation and depression.
Collapse
Affiliation(s)
- Gang Song
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Carotid body-mediated changes of sympathetic nerve and their relationships with hypertension. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200809010-00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Julien C, Bairam A, Joseph V. Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1356-66. [PMID: 18287216 DOI: 10.1152/ajpregu.00884.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ventilatory long-term facilitation (LTF; defined as gradual increase of minute ventilation following repeated hypoxic exposures) is well described in adult mammals and is hypothesized to be a protective mechanism against apnea. In newborns, LTF is absent during the first postnatal days, but its precise developmental pattern is unknown. Accordingly, this study describes this pattern of postnatal development. Additionally, we tested the hypothesis that chronic intermittent hypoxia (CIH) from birth alters this development. LTF was estimated in vivo using whole body plethysmography by exposing rat pups at postnatal days 1, 4, and 10 (P1, P4, and P10) to 10 brief hypoxic cycles (nadir 5% O2) and respiratory recordings during the following 2 h (recovery, 21% O2). Under these conditions, ventilatory LTF (gradual increase of minute ventilation during recovery) was clearly expressed in P10 rats but not in P1 and P4. In a second series of experiments, rat pups were exposed to CIH during the first 10 postnatal days (6 brief cyclic exposures at 5% O2 every 6 min followed by 1 h under normoxia, 24 h a day). Compared with P10 control rats, CIH enhanced hypoxic ventilatory response (estimated during the hypoxic cycles) specifically in male rat pups. Ventilatory LTF was drastically reduced in P10 rats exposed to CIH, which was associated with higher apnea frequency during recovery. We conclude that CIH from birth enhances hypoxic chemoreflex and disrupts LTF development, thus likely contributing to increase apnea frequency.
Collapse
Affiliation(s)
- Cécile Julien
- Department of Pediatrics, Laval University, Centre de Recherche, Hôpital St-François d'Assise, Québec, Canada
| | | | | |
Collapse
|
36
|
Ohshima Y, Iwase M, Izumizaki M, Ishiguro T, Kanamaru M, Nakayama H, Gejyo F, Homma I. Hypoxic ventilatory response during light and dark periods and the involvement of histamine H1 receptor in mice. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1350-6. [PMID: 17626131 DOI: 10.1152/ajpregu.00318.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventilation oscillates throughout a day in parallel with oscillations in metabolic rate. Histamine affects ventilation and the balance of the energy metabolism via H1 receptors in the brain. We tested the hypothesis that the ventilatory response to hypoxia varies between light and dark periods and that histamine H1 receptors are required for the circadian variation, using wild-type (WT) and histamine H1 receptor knockout (H1RKO) mice. Mice were exposed to hypoxic gas (7% O(2) + 3% CO(2) in N(2)) during light and dark periods. Ventilation initially increased and then declined. In WT mice, minute ventilation (.Ve) during hypoxia was higher in the dark period than in the light period, which was an upward shift along with the baseline ventilation. Hypoxia decreased the metabolic rate, whereas O2 consumption (.VO(2)) and CO(2) excretion were higher in the dark period than in the light period. However, in H1RKO mice, changes in Ve during hypoxia between light and dark periods were minimal, because .Ve was increased relative to .VO(2), particularly in the light period. In H1RKO mice, the HCO(3)(-) concentration and base excess values were increased in arterial blood, and the level of ketone bodies was increased in the serum, indicating that metabolic acidosis occurred. Respiratory compensation takes part in the .Ve increase relative to .VO(2) during hypoxia. These results suggested that changes in .Ve during hypoxia vary between light and dark periods and that H1 receptors play a role in circadian variation in .Ve through control of the acid-base status and metabolism in mice.
Collapse
Affiliation(s)
- Yasuyoshi Ohshima
- 2nd Dept. of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Harris DP, Balasubramaniam A, Badr MS, Mateika JH. Long-term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1111-9. [PMID: 16627688 DOI: 10.1152/ajpregu.00896.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that long-term facilitation (LTF) of minute ventilation and peak genioglossus muscle activity manifests itself in awake healthy humans when carbon dioxide is sustained at elevated levels. Eleven subjects completed two trials. During trial 1, baseline carbon dioxide levels were maintained during and after exposure to eight 4-min episodes of hypoxia. During trial 2, carbon dioxide was sustained 5 mmHg above baseline levels during exposure to episodic hypoxia. Seven subjects were exposed to sustained elevated levels of carbon dioxide in the absence of episodic hypoxia, which served as a control experiment. Minute ventilation was measured during trial 1, trial 2, and the control experiment. Peak genioglossus muscle activity was measured during trial 2. Minute ventilation during the recovery period of trial 1 was similar to baseline (9.3 +/- 0.5 vs. 9.2 +/- 0.7 l/min). Likewise, minute ventilation remained unchanged during the control experiment (beginning vs. end of control experiment, 14.4 +/- 1.7 vs. 14.7 +/- 1.4 l/min). In contrast, minute ventilation and peak genioglossus muscle activity during the recovery period of trial 2 was greater than baseline (minute ventilation: 28.4 +/- 1.7 vs. 19.6 +/- 1.0 l/min, P < 0.001; peak genioglossus activity: 1.6 +/- 0.3 vs. 1.0 fraction of baseline, P < 0.001). We conclude that exposure to episodic hypoxia is necessary to induce LTF of minute ventilation and peak genioglossus muscle activity and that LTF is only evident in awake humans in the presence of sustained elevated levels of carbon dioxide.
Collapse
Affiliation(s)
- Daniel P Harris
- John D. Dingell VA Medical Center, 4646 John R (11R Rm. 4308, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
38
|
Day TA, Wilson RJA. Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R532-R544. [PMID: 15802555 DOI: 10.1152/ajpregu.00812.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-dependent ventilatory responses to hypoxic and hypercapnic challenges, such as posthypoxic frequency decline (PHxFD) and posthypercapnic frequency decline (PHcFD), could profoundly affect breathing stability. However, little is known about the mechanisms that mediate these phenomena. To determine the contribution of specific carotid body chemostimuli to PHxFD and PHcFD, we developed a novel in situ arterially perfused, vagotomized, decerebrate rat preparation in which central and peripheral chemoreceptors are perfused separately (i.e., a nonanesthetized in situ dual perfused preparation). We confirmed that 1) the perfusion of central and peripheral chemoreceptor compartments was independent by applying specific carotid body hypoxia and hypercapnia before and after carotid sinus nerve transection, 2) the PCO(2) chemoresponse of the dual perfused preparation was similar to other decerebrate preparations, and 3) the phrenic output was stable enough to allow investigation of time-dependent phenomena. We then applied four 5-min bouts (separated by 5 min) of specific carotid body hypoxia (40 Torr PO(2) and 40 Torr PCO(2)) or hypercapnia (100 Torr PO(2) and 60 Torr PCO(2)) while holding the brain stem PO(2) and PCO(2) constant. We report the novel finding that specific carotid body chemostimuli were sufficient to elicit several phrenic time-dependent phenomena in the rat. Hypoxic challenges elicited PHxFD that increased with bout, leading to progressive augmentation of the phrenic response. Conversely, hypercapnia elicited short-term depression and PHcFD, neither of which was bout dependent. These results, placed in the context of previous findings, suggest multiple physiological mechanisms are responsible for PHxFD and PHcFD, a redundancy that may illustrate that these phenomena have significant adaptive advantages.
Collapse
Affiliation(s)
- Trevor A Day
- Dept. of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|