1
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2025; 32:315-325. [PMID: 39313635 PMCID: PMC11832422 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
2
|
Tang WW, Naga Prasad SV. Autoantibodies and Cardiomyopathy: Focus on Beta-1 Adrenergic Receptor Autoantibodies. J Cardiovasc Pharmacol 2022; 80:354-363. [PMID: 35323150 PMCID: PMC9452444 DOI: 10.1097/fjc.0000000000001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
ABSTRACT Antibody response to self-antigens leads to autoimmune response that plays a determinant role in cardiovascular disease outcomes including dilated cardiomyopathy (DCM). Although the origins of the self-reactive endogenous autoantibodies are not well-characterized, it is believed to be triggered by tissue injury or dysregulated humoral response. Autoantibodies that recognize G protein-coupled receptors are considered consequential because they act as modulators of downstream receptor signaling displaying a wide range of unique pharmacological properties. These wide range of pharmacological properties exhibited by autoantibodies has cellular consequences that is associated with progression of disease including DCM. Increase in autoantibodies recognizing beta-1 adrenergic receptor (β1AR), a G protein-coupled receptor critical for cardiac function, is observed in patients with DCM. Cellular and animal model studies have indicated pathological roles for the β1AR autoantibodies but less is understood about the molecular basis of their modulatory effects. Despite the recognition that β1AR autoantibodies could mediate deleterious outcomes, emerging evidence suggests that not all β1AR autoantibodies are deleterious. Recent clinical studies show that β1AR autoantibodies belonging to the IgG3 subclass is associated with beneficial cardiac outcomes in patients. This suggests that our understanding on the roles the β1AR autoantibodies play in mediating outcomes is not well-understood. Technological advances including structural determinants of antibody binding could provide insights on the modulatory capabilities of β1AR autoantibodies in turn, reflecting their diversity in mediating β1AR signaling response. In this study, we discuss the significance of the diversity in signaling and its implications in pathology.
Collapse
Affiliation(s)
- W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Sathyamangla V. Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Skiba MA, Kruse AC. Autoantibodies as Endogenous Modulators of GPCR Signaling. Trends Pharmacol Sci 2020; 42:135-150. [PMID: 33358695 DOI: 10.1016/j.tips.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Endogenous self-reactive autoantibodies (AAs) recognize a range of G-protein-coupled receptors (GPCRs). They are frequently associated with cardiovascular, neurological, and autoimmune disorders, and in some cases directly impact disease progression. Many GPCR AAs modulate receptor signaling, but molecular details of their modulatory activity are not well understood. Technological advances have provided insight into GPCR biology, which now facilitates deeper understanding of GPCR AA function at the molecular level. Most GPCR AAs are allosteric modulators and exhibit a broad range of pharmacological properties, altering both receptor signaling and trafficking. Understanding GPCR AAs is not only important for defining how these unusual GPCR modulators function in disease, but also provides insight into the potential use and limitations of using therapeutic antibodies to modulate GPCR signaling.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Chen CR, McLachlan SM, Hubbard PA, McNally R, Murali R, Rapoport B. Structure of a Thyrotropin Receptor Monoclonal Antibody Variable Region Provides Insight into Potential Mechanisms for its Inverse Agonist Activity. Thyroid 2018; 28:933-940. [PMID: 29845889 PMCID: PMC6043401 DOI: 10.1089/thy.2018.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The high constitutive, or ligand-independent, activity of the thyrotropin receptor (TSHR) is of clinical importance in some thyroid conditions, particularly well-differentiated thyroid carcinoma remnants following incomplete ablative therapy (surgery and radioiodine). Under these conditions, even total suppression of TSH by thyroid hormone administration does not fully reduce TSHR activity, a driver of thyrocyte growth. METHODS CS-17 is a murine monoclonal antibody that has inverse agonist activity in that it suppresses TSHR constitutive activity. This study crystallized the CS-17 Fab and determined its atomic structure at a resolution of 3.4 Å. RESULTS In silico docking of this structure to that of the TSHR extracellular domain was accomplished by targeting to TSHR residue tyrosine 195 (Y195) known to contribute to the CS-17 epitope. High affinity interaction between these two molecules, primarily by the CS-17 immunoglobulin heavy chain, was validated by energetic analysis (KD of 8.7 × 10-11 M), as well as by previously obtained data on a number of individual TSHR amino acids in three regions whose mutagenesis reduced CS-17 binding as detected by flow cytometry. CONCLUSIONS Structural insight at atomic resolution of a TSHR antibody with inverse agonist activity opens the way for the development of a molecule with therapeutic potential, particularly in thyroid carcinoma. For this purpose, CS-17 will require "humanization" by substitution of its constant region (Fc component). In addition, with its epitope defined, the CS-17 affinity can be increased further by mutagenesis of selected amino acids in its heavy- and light-chain complementarity determining regions.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Thyroid Autoimmune Disease Unit, Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| | - Paul A. Hubbard
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| | - Randall McNally
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
5
|
Shpakov AO, Zharova OA, Derkach KV. Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Peter JC, Rossez H, Weckering M, Zipfel G, Lecourt AC, Owen JB, Banks WA, Hofbauer KG. Protective effects of an anti-melanocortin-4 receptor scFv derivative in lipopolysaccharide-induced cachexia in rats. J Cachexia Sarcopenia Muscle 2013; 4:79-88. [PMID: 22911214 PMCID: PMC3581610 DOI: 10.1007/s13539-012-0084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cachexia is a complex syndrome defined by weight loss due to an ongoing loss of skeletal muscle mass with or without loss of body fat. It is often associated with anorexia. Numerous results from experimental studies suggest that blockade of the melanocortin-4 receptor (MC4R) could be an effective treatment for anorexia and cachexia. In a previous study, we reported the basic pharmacological properties of a blocking anti-MC4R mAb 1E8a and its scFv derivative in vitro and in vivo. METHODS In the present study, we further characterized the mode of action of the 1E8a scFv, evaluated its pharmacokinetic properties in mice, and assessed its therapeutic potential in a lipopolysaccharide (LPS)-induced cachexia model in rats. RESULTS In vitro, scFv enhanced the efficacy of the endogenous inverse agonist Agouti-related protein. After intravenous (i.v.) administration in mice, the scFv penetrated the blood-brain barrier (BBB) and reached its central sites of action: the scFv brain-serum concentration ratios increased up to 15-fold which suggests an active uptake into brain tissue. In telemetry experiments, i.v. administration of the scFv in rats was well tolerated and only induced slight cardiovascular effects consistent with MC4R blockade, i.e., a small decrease in mean arterial pressure and heart rate. In the model of LPS-induced anorexia, i.v. administration of scFv 1E8a prevented anorexia and loss of body weight. Moreover, it stimulated a myogenic response which may contribute to the preservation of muscle mass in cachexia. CONCLUSION The pharmacological profile of scFv 1E8a suggests its potential value in the treatment of cachexia or anorexia.
Collapse
|
7
|
Peter JC, Zipfel G, Rossez H, Weckering M, Lecourt AC, Hofbauer KG. Anti-trkb Antibodies as Pharmacological Tools to Study the Function of the Trkb Receptor and its Role in the Regulation of Food Intake. ACTA ACUST UNITED AC 2013. [DOI: 10.5567/pharmacologia.2013.1.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ersoy BA, Pardo L, Zhang S, Thompson DA, Millhauser G, Govaerts C, Vaisse C. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR. Nat Chem Biol 2012; 8:725-30. [PMID: 22729149 PMCID: PMC3657613 DOI: 10.1038/nchembio.1008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/14/2012] [Indexed: 01/29/2023]
Abstract
Most of our understanding of G protein-coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single receptor, we used the unique properties of the melanocortin-4 receptor (MC4R), a GPCR that shows constitutive activity maintained by its N-terminal domain and is physiologically activated by the peptide α-melanocyte stimulating hormone (αMSH). We find that activation by the N-terminal domain and αMSH relies on different key residues in the transmembrane region. We also demonstrate that agouti-related protein, a physiological antagonist of MC4R, acts as an inverse agonist by inhibiting N terminus-mediated activation, leading to the speculation that a number of constitutively active orphan GPCRs could have physiological inverse agonists as sole regulators.
Collapse
Affiliation(s)
- Baran A Ersoy
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sumei Zhang
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| | - Darren A Thompson
- Department of Chemistry and Biochemistry, University of California–Santa Cruz, Santa Cruz, California, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California–Santa Cruz, Santa Cruz, California, USA
| | - Cedric Govaerts
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian Vaisse
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- The Diabetes Center, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Peter JC, Zipfel G, Lecourt AC, Bekel A, Hofbauer KG. Antibodies raised against different extracellular loops of the melanocortin-3 receptor affect energy balance and autonomic function in rats. J Recept Signal Transduct Res 2011; 30:444-53. [PMID: 21091037 DOI: 10.3109/10799893.2010.534485] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Melanocortin receptors (MCR) play an important role in the regulation of energy balance and autonomic function. In the present studies, we used active immunization against peptide sequences from the first and the third extracellular loop (EL1 and EL3) of the MC3R to generate selective antibodies (Abs) against this MCR subtype in rats. Immunization with the EL1 peptide resulted in Abs that enhanced the effects of the endogenous ligand α-melanocyte-stimulating hormone (α-MSH), whereas immunization with the EL3 peptide resulted in Abs acting as non-competitive antagonists. The phenotype of immunized rats chronically instrumented with telemetry transducers was studied under four different conditions: a high-fat diet was followed by standard lab chow, by fasting, and finally by an intraperitoneal injection of lipopolysaccharide (LPS). Under high-fat diet, food intake and body weight were higher in the EL3 than in the EL1 or the control group. Blood pressure was increased in EL3 rats and locomotor activity was reduced. Plasma concentrations of triglycerides, insulin, and leptin tended to rise in the EL3 group. After switching to standard lab chow, the EL1 group showed a small significant increase in blood pressure that was more pronounced and associated with an increase in heart rate during food restriction. No differences between the EL1 or the EL3 group were observed after LPS injection. These results show that immunization against the MC3R resulted in the production of Abs with positive or negative allosteric properties. The presence of such Abs induced small changes in metabolic and cardiovascular parameters.
Collapse
|
10
|
Siljee-Wong JE. Melanocortin MC₄ receptor expression sites and local function. Eur J Pharmacol 2011; 660:234-40. [PMID: 21199645 DOI: 10.1016/j.ejphar.2010.10.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 01/09/2023]
Abstract
The melanocortin MC(4) receptor plays an important role in energy metabolism, but also affects blood pressure, heart rate and erectile function. Localization of the receptors that fulfill these distinct roles is only partially known. Mapping of the melanocortin MC(4) receptor has been stymied by the absence of a functional antibody. Several groups have examined mRNA expression of the melanocortin MC(4) receptor in the rodent brain and transgenic approaches have also been utilized to visualize melanocortin MC(4) receptor expression sites within the brain. Ligand expression and binding studies have provided additional information on the areas of the brain where this elusive receptor is functionally expressed. Finally, microinjection of melanocortin MC(4) receptor ligands in specific nuclei has further served to elucidate the function of melanocortin MC(4) receptors in these nuclei. These combined approaches have helped link the anatomy and function of this receptor, such as the role of paraventricular hypothalamic nucleus melanocortin MC(4) receptor in the regulation of food intake. Intriguingly, however, numerous expression-sites have been identified that have not been linked to a specific receptor function such as those along the optic tract and olfactory tubercle. Further research is needed to clarify the function of the melanocortin MC(4) receptor at these sites.
Collapse
Affiliation(s)
- Jacqueline E Siljee-Wong
- Department of Endocrinology and Metabolism, Amsterdam Medical Center, Meibergdreef 47 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Peter JC, Lecourt AC, Weckering M, Zipfel G, Niehoff ML, Banks WA, Hofbauer KG. A pharmacologically active monoclonal antibody against the human melanocortin-4 receptor: effectiveness after peripheral and central administration. J Pharmacol Exp Ther 2010; 333:478-90. [PMID: 20118207 PMCID: PMC3202465 DOI: 10.1124/jpet.109.163279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/26/2010] [Indexed: 01/24/2023] Open
Abstract
The hypothalamic melanocortin-4 receptor (MC4R) is a constituent of an important pathway regulating food intake and energy expenditure. We produced a monoclonal antibody (mAb) directed against the N-terminal domain of the MC4R and evaluated its potential as a possible therapeutic agent. This mAb (1E8a) showed specific binding to the MC4R in human embryonic kidney 293 cells expressing the human MC4R and blocked the activity of the MC4R under basal conditions and after stimulation with alpha-melanocyte-stimulating hormone (alpha-MSH). The inverse agonist action of Agouti-related protein was significantly enhanced in the presence of mAb 1E8a. After a single intracerebroventricular injection into the third ventricle, mAb 1E8a (1 microg) increased 24-h food intake in rats. After 7 days of continuous intracerebroventricular administration, mAb 1E8a increased food intake, body weight, and fat pad weight and induced hyperglycemia. Because the complete mAb was ineffective after intravenous injection, we produced single-chain variable fragments (scFvs) derived from mAb 1E8a. In pharmacokinetic studies it was demonstrated that these scFvs crossed the blood-brain barrier and reached the hypothalamus. Consequently, the scFv 1E8a increased significantly food intake and body weight in rats after intravenous administration (300 mug/kg). The pharmacological profile of mAb 1E8a and the fact that its scFv was active after peripheral administration suggest that derivatives of anti-MC4R mAbs may be useful in the treatment of patients with anorexia or cachexia.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Blood-Brain Barrier/metabolism
- Blotting, Western
- Brain/drug effects
- Brain/immunology
- Cell Line
- Eating/drug effects
- Fluorescent Antibody Technique
- Humans
- Immunoglobulin Variable Region/immunology
- Injections, Intravenous
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred C57BL/immunology
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 4/drug effects
- Receptor, Melanocortin, Type 4/immunology
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Jean-Christophe Peter
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - Anne-Catherine Lecourt
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - Marjorie Weckering
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - Géraldine Zipfel
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - Michael L. Niehoff
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - William A. Banks
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| | - Karl G. Hofbauer
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland (J.-C.P., A.-C.L., M.W., G.Z., K.G.H.); and Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center of St. Louis and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri (M.L.N., W.A.B.)
| |
Collapse
|
12
|
Peter JC, Bekel A, Lecourt AC, Zipfel G, Eftekhari P, Nesslinger M, Breidert M, Muller S, Kessler L, Hofbauer KG. Anti-melanocortin-4 receptor autoantibodies in obesity. J Clin Endocrinol Metab 2009; 94:793-800. [PMID: 19050052 DOI: 10.1210/jc.2008-1749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The melanocortin-4 receptor (MC4R) is part of an important pathway regulating energy balance. Here we report the existence of autoantibodies (autoAbs) against the MC4R in sera of obese patients. METHODS The autoAbs were detected after screening of 216 patients' sera by using direct and inhibition ELISA with an N-terminal sequence of the MC4R. Binding to the native MC4R was evaluated by flow cytometry, and pharmacological effects were evaluated by measuring adenylyl cyclase activity. RESULTS Positive results in all tests were obtained in patients with overweight or obesity (prevalence, 3.6%) but not in normal weight patients. The selective binding properties of anti-MC4R autoAbs were confirmed by surface plasmon resonance and by immunoprecipitation with the native MC4R. Finally, it was demonstrated that these autoAbs increased food intake in rats after passive transfer via intracerebroventricular injection. CONCLUSION These observations suggest that inhibitory anti-MC4R autoAbs might contribute to the development of obesity in a small subpopulation of patients.
Collapse
|
13
|
|
14
|
Sinno MH, Do Rego JC, Coëffier M, Bole-Feysot C, Ducrotté P, Gilbert D, Tron F, Costentin J, Hökfelt T, Déchelotte P, Fetissov SO. Regulation of feeding and anxiety by alpha-MSH reactive autoantibodies. Psychoneuroendocrinology 2009; 34:140-9. [PMID: 18842346 DOI: 10.1016/j.psyneuen.2008.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 01/08/2023]
Abstract
alpha-Melanocyte-stimulating hormone (alpha-MSH) is a stress-related neuropeptide involved in the regulation of motivated behavior, appetite and emotion including stimulation of satiety and anxiety. Although autoantibodies (autoAbs) reactive with alpha-MSH have been identified in human subjects and in rats, it remained unknown if these autoAbs are involved in the regulation of feeding and anxiety and if their production is related to stress. Here we show that repeated exposure of rats to anxiolytic mild stress by handling increases the levels and affinity of alpha-MSH reactive IgG autoAbs and that these changes are associated with adaptive feeding and anxiety responses during exposure of rats to a strong stress by food restriction. Importantly, an increase in affinity of alpha-MSH reactive autoAbs was associated with changes of their functional roles from stimulation to inhibition of alpha-MSH-mediated behavioural responses, suggesting that these autoAbs can be a carrier or a neutralizing molecule of alpha-MSH peptide, respectively. Using a model of passive transfer into the brain, we show that alpha-MSH autoAbs affinity purified from blood of rats exposed to repeated mild stress, but not from control rats, are able to increase acutely food intake, suppress anxiety and modify gene expression of hypothalamic neuropeptides in naïve rats. These data provide the first evidence that autoAbs reactive with alpha-MSH are involved in the physiological regulation of feeding and mood, supporting a further role of the immune system in the control of motivated behavior and adaptation to stress.
Collapse
Affiliation(s)
- Maria Hamze Sinno
- Digestive System & Nutrition Laboratory (ADEN EA4311), Institute of Biomedical Research, Rouen University & Hospital, IFR23, 76183 Rouen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Hofbauer KG, Lecourt AC, Peter JC. Antibodies as pharmacologic tools for studies on the regulation of energy balance. Nutrition 2008; 24:791-7. [PMID: 18662861 DOI: 10.1016/j.nut.2008.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Active immunization in rats may serve several purposes: the production of a disease-like phenotype, the generation of pharmacologic tools, and the development of clinically useful therapies. We selected the melanocortin-4 receptor (MC4R) as a target because its blockade could provide a treatment for anorexia and cachexia. METHODS We used a sequence of the N-terminal (NT) domain of the MC4R as an antigen. Rats immunized against the NT peptide produced specific MC4R antibodies (Abs) that were purified and characterized in vitro and in vivo. RESULTS The Abs acted as inverse agonists and reduced under basal conditions the production of cyclic adenosine monophosphate in HEK-293 cells expressing the human MC4R. Rats immunized against the NT peptide developed a phenotype consistent with hypothalamic MC4R blockade, i.e., increased food intake and body weight, liver and fat-pad weights, hepatic steatosis, and increased plasma triacylglycerols. With a high-fat diet, plasma insulin levels were significantly increased. In separate experiments an increase in food intake was observed after injection of purified MC4R Abs into the third ventricle. When lipopolysaccharide was administered in NT-immunized rats the reduction of food intake was partly prevented in this model of cytokine-induced anorexia. CONCLUSION Our results show that active immunization of rats against the MC4R resulted in the generation of specific Abs that stimulated food intake by acting as inverse agonists of the hypothalamic MC4R. Pharmacologically active monoclonal MC4R Abs could be the starting point for the development of novel treatments for patients with anorexia or cachexia.
Collapse
Affiliation(s)
- Karl G Hofbauer
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
17
|
Gupta A, Heimann AS, Gomes I, Devi LA. Antibodies against G-protein coupled receptors: novel uses in screening and drug development. Comb Chem High Throughput Screen 2008; 11:463-7. [PMID: 18673273 PMCID: PMC3125642 DOI: 10.2174/138620708784911465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibodies are components of the body's humoral immune system that are generated in response to foreign pathogens. Modern biomedical research has employed these very specific and efficient molecules designed by nature in the diagnosis of diseases, localization of gene products as well as in the rapid screening of targets for drug discovery and testing. In addition, the introduction of antibodies with fluorescent or enzymatic tags has significantly contributed to advances in imaging and microarray technology, which are revolutionizing disease research and the search for effective therapeutics. More recently antibodies have been used in the isolation of dimeric G protein-coupled receptor (GPCR) complexes. In this review, we discuss antibodies as powerful research tools for studying GPCRs, and their potential to be developed as drugs themselves.
Collapse
Affiliation(s)
| | - Andrea S. Heimann
- Proteimax Biotecnologia Ltda., Via das Margaridas 413, Cotia, São Paulo, Brazil
| | | | - Lakshmi A. Devi
- Corresponding Author: Lakshmi A. Devi, Ph.D., Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 19-84 Annenberg Building, One Gustave L. Levy Place, New York, NY 10029, Phone: (212) 241-8345, Fax: (212) 996-7214,
| |
Collapse
|
18
|
Tolle V, Low MJ. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 2008; 57:86-94. [PMID: 17909095 DOI: 10.2337/db07-0733] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Melanocyte-stimulating hormone (MSH) peptides processed from proopiomelanocortin (POMC) regulate energy homeostasis by activating neuronal melanocortin receptor (MC-R) signaling. Agouti-related peptide (AgRP) is a naturally occurring MC-R antagonist but also displays inverse agonism at constitutively active melanocortin-4 receptor (MC4-R) expressed on transfected cells. We investigated whether AgRP functions similarly in vivo using mouse models that lack all neuronal MSH, thereby precluding competitive antagonism of MC-R by AgRP. RESEARCH DESIGN AND METHODS Feeding and metabolic effects of the MC-R agonist melanotan II (MTII), AgRP, and ghrelin were investigated after intracerebroventricular injection in neural-specific POMC-deficient (Pomc(-/-)Tg/+) and global POMC-deficient (Pomc(-/-)) mice. Gene expression was quantified by RT-PCR. RESULTS Hyperphagic POMC-deficient mice were more sensitive than wild-type mice to the anorectic effects of MTII. Hypothalamic melanocortin-3 (MC3)/4-R mRNAs in POMC-deficient mice were unchanged, suggesting increased receptor sensitivity as a possible mechanism for the heightened anorexia. AgRP reversed MTII-induced anorexia in both mutant strains, demonstrating its ability to antagonize MSH agonists at central MC3/4-R, but did not produce an acute orexigenic response by itself. The action of ghrelin was attenuated in Pomc(-/-)Tg/+ mice, suggesting decreased sensitivity to additional orexigenic signals. However, AgRP induced delayed and long-lasting modifications of energy balance in Pomc(-/-)Tg/+, but not glucocorticoid-deficient Pomc(-/-) mice, by decreasing oxygen consumption, increasing the respiratory exchange ratio, and increasing food intake. CONCLUSIONS These data demonstrate that AgRP can modulate energy balance via a mechanism independent of MSH and MC3/4-R competitive antagonism, consistent with either inverse agonist activity at MC-R or interaction with a distinct receptor.
Collapse
Affiliation(s)
- Virginie Tolle
- Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, Oregon, USA.
| | | |
Collapse
|