1
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Meyer AM, Hess BW, Paisley SI, Du M, Caton JS. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation. J Anim Sci 2014; 92:3855-67. [PMID: 25057033 DOI: 10.2527/jas.2014-7646] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.
Collapse
Affiliation(s)
- A M Meyer
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - B W Hess
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - S I Paisley
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - M Du
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - J S Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo 58108
| |
Collapse
|
3
|
Józsa T, Magyar A, Cserni T, Szentmiklósi AJ, Erdélyi K, Kincses Z, Rákóczy G, Balla G, Roszer T. Short-term adaptation of rat intestine to ileostomy: implication for pediatric practice. J INVEST SURG 2010; 22:292-300. [PMID: 19842906 DOI: 10.1080/08941930903040106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Surgical neonates with complex intestinal conditions, such as enterocolitis, midgut volvulus with bowel loss and multiple atresias, often require temporary stomas. Little is known on the postsurgical response of the altered gut segments, although adaptation is an important consideration in neonatal postoperative care, particularly after stoma closure. MATERIALS AND METHODS Rats underwent bowel resection at a point 15 cm proximal to the ileocecal valve, and a split ileostomy was performed. On the 6th postoperative day the mucosal thickness was calculated with Soft Imaging System Analysis Pro, the rate of proliferation was measured following Ki67 immunohistochemistry and the apoptotic index was determined on sections stained with ApopTag Plus. The intestinal motor activity was recorded on isolated gut segments. Neuronal nitric oxide synthase (nNOS) expression and distribution was examined with NADPH-diaphorase histochemistry and Western blot analysis. RESULTS An increased wet weight of the mucosa and a pronounced mucosal thickening were observed in the proximal functional bowel segment. Enterocyte proliferation rate was increased significantly, while the apoptotic index remained unchanged in the epithelial layer. The dilation of the gut lumen resulted in a morphological change in the nitrergic myenteric network with an overexpression of nNOS. As a consequence of the surgical procedure, the functional proximal gut segment showed strong and frequent contraction waves, with an enhanced responsiveness to cholinergic stimuli. CONCLUSIONS The dilated functional bowel segment was characterized by hyperplasic changes in the mucosa and stronger mechanical activity with overproduction of nNOS. Although early restoration of intestinal continuity is recommended, our observations on adaptive changes may partly explain intestinal motility disorders after early stoma closure, suggesting the need for a careful approach to a redo-laparotomy.
Collapse
Affiliation(s)
- Tamás Józsa
- Department of Pediatrics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary. jozsa
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Drozdowski LA, Clandinin MT, Thomson ABR. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol 2009; 15:774-87. [PMID: 19230039 PMCID: PMC2653378 DOI: 10.3748/wjg.15.774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The process of intestinal adaptation (“enteroplasticity”) is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided.
Collapse
|
5
|
Chacon DDA, Araújo-Filho I, Villarim-Neto A, Rêgo ACM, Azevedo ÍM, Bernardo-Filho M, Brandão-Neto J, Medeiros AC. Biodistribution of the radiophamarceutical sodium pertechnetate (Na99mTcO4) after massive small bowel resection in rats. Acta Cir Bras 2007; 22:430-5. [DOI: 10.1590/s0102-86502007000600003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/18/2007] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. METHODS: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI/g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as significant. RESULTS: There were no significant differences in %ATI/g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was significantly greater than that of C and sham rats (p<0.05). CONCLUSION: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated.
Collapse
|
6
|
Tian J, Washizawa N, Gu LH, Levin MS, Wang L, Rubin DC, Mwangi S, Srinivasan S, Gao Y, Jones DP, Ziegler TR. Stimulation of colonic mucosal growth associated with oxidized redox status in rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1081-91. [PMID: 17095654 DOI: 10.1152/ajpregu.00050.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Limited data in animal models suggest that colonic mucosa undergoes adaptive growth following massive small bowel resection (SBR). In vitro data suggest that intestinal cell growth is regulated by reactive oxygen species and redox couples [e.g., glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) redox]. We investigated the effects of SBR and alterations in redox on colonic growth indexes in rats after either small bowel transection (TX) or 80% midjejunoileal resection (RX). Rats were pair fed +/- blockade of endogenous GSH synthesis with buthionine sulfoximine (BSO). Indexes of colonic growth, proliferation, and apoptosis and GSH/GSSG and Cys/CySS redox potentials (E(h)) were determined. RX significantly increased colonic crypt depth, number of cells per crypt, and epithelial cell proliferation [crypt cell bromodeoxyuridine (BrdU) incorporation]. Administration of BSO markedly decreased colonic mucosal GSH, GSSG, and Cys concentrations in both TX and RX groups, with a resultant oxidation of GSH/GSSG and Cys/CySS E(h). BSO did not alter colonic crypt cell apoptosis but significantly increased all colonic mucosal growth indexes (crypt depth, cells/crypt, and BrdU incorporation) in both TX and RX groups in a time- and dose-dependent manner. BSO significantly decreased plasma GSH and GSSG, oxidized GSH/GSSG E(h), and increased plasma Cys and CySS concentrations. Collectively, these data provide in vivo evidence indicating that oxidized colonic mucosal redox status stimulates colonic mucosal growth in rats. The data also suggest that GSH is required to maintain normal colonic and plasma Cys/CySS homeostasis in these animal models.
Collapse
Affiliation(s)
- Junqiang Tian
- General Clinical Research Center, Emory University Hospital, 1364 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.
Collapse
|
8
|
Veillette PA, Breves JP, Reardon DR, Specker JL. Adaptation for water balance in the partial gastrointestinal tract of summer flounder. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:211-7. [PMID: 16423546 DOI: 10.1016/j.cbpa.2005.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Marine teleosts continually drink and absorb water across the intestine to prevent dehydration. Surprisingly, summer flounder that are missing most of their intestine, due to necrotizing enteritis, maintain osmotic homeostasis. Here, we tested the hypothesis that this remnant gastrointestinal tract undergoes compensatory adaptation for fluid uptake. Flounder (Paralicthys dentatus) with a partial gastrointestinal tract had an emaciated liver. Moisture content of muscle however was similar to healthy cohorts with an intact gastrointestinal tract, indicative of an undisturbed osmoregulatory status. Mass-specific rates of fluid uptake across all segments of the partial gastrointestinal tract were less than or similar to rates in corresponding segments from intact flounder. In contrast, weights (percent of body mass) were doubled in stomach and partial intestine of the remnant gastrointestinal tract. Consequently, total capacity for fluid uptake (microL h(-1) g body mass(-1)) was similar for both groups. The functional capacity of the remnant gastrointestinal tract was therefore of a magnitude sufficient to maintain osmoregulatory ability, further evidencing a critical role of the intestine in salt and water balance of marine teleosts.
Collapse
Affiliation(s)
- Philip A Veillette
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197, United States.
| | | | | | | |
Collapse
|
9
|
Thiesen A, Drozdowski L, Iordache C, Neo CC, Woudstra TD, Xenodemetropoulos T, Keelan M, Clandinin MT, Thomson ABR, Wild G. Adaptation following intestinal resection: mechanisms and signals. Best Pract Res Clin Gastroenterol 2003; 17:981-95. [PMID: 14642861 DOI: 10.1016/s1521-6918(03)00097-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestine has an inherent ability to adapt morphologically and functionally in response to internal and external environmental changes. The functional adaptations encompass modifications of the brush border membrane fluidity and permeability, as well as up- or down-regulation of carrier-mediated transport. Intestinal adaptation improves the nutritional status following the loss of a major portion of the small intestine, following chronic ingestion of ethanol, following sublethal doses of abdominal irradiation, in diabetes, in pregnancy and lactation, with ageing, and with fasting and malnutrition. Following intestinal resection, morphological and functional changes occur depending upon the extent of the intestine removed, the site studied, and the lipid content of the diet. Therefore, intestinal adaptation has important implications in the survival potential and welfare of the host. An understanding of the mechanisms of, and signals for, intestinal adaptation in the experimental setting forms the basis for the use of management strategies in humans with the short-bowel syndrome.
Collapse
Affiliation(s)
- A Thiesen
- Nutrition and Metabolism Research Group, Division of Gastroenterology, Department of Medicine, University of Alberta, 519 Newton Research Building, 205 College Plaza, 8215-112 Street, Edmonton, Alta, Canada T6G 2C2.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ray EC, Avissar NE, Vukcevic D, Toia L, Ryan CK, Berlanga-Acosta J, Sax HC. Growth hormone and epidermal growth factor together enhance amino acid transport systems B0,+ and A in remnant small intestine after massive enterectomy. J Surg Res 2003; 115:164-70. [PMID: 14572788 DOI: 10.1016/s0022-4804(03)00225-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sodium-dependent brush-border nutrient transport is decreased 2 weeks after massive enterectomy. This down-regulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesize that glutamine (GLN) transport will be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B(0)/ASCT2. MATERIALS AND METHODS New Zealand White rabbits underwent 70% small bowel resection then immediately received parenteral EGF, GH, both EGF and GH, or neither for 2 weeks. Na(+)-dependent 3H-GLN uptake by jejunal and ileal brush-border membrane vesicles was measured and the contribution of systems A, B(0,+), and B(0) was then determined by competitive inhibition. Data were analyzed using one-way analysis of variance. RESULTS In nonresected animals, the relative contribution of the systems was similar in jejunum (A 9%, B(0,+) 20%, and B(0) 71%) and ileum (A 13%, B(0,+) 27%, and B(0) 60%). Na(+)-dependent GLN uptake was reduced by one half in resected untreated controls, primarily because of decreased B(0) activity. EGF or GH alone did not affect Na(+)-dependent GLN transport, but, as a combination, there was increased uptake in the residual ileum and jejunum by 144% and 150%, respectively, over resected controls (P < 0.05). This was twice that achieved by delayed and shorter-duration combination treatment. This augmentation was a result of a 6.1-8.2-fold increase in system A as well as a 3.8-3.9-fold enhancement of system B(0,+) activity in remnant ileum and jejunum (P < 0.01). CONCLUSIONS Parenteral EGF and GH, given in combination for 2 weeks immediately after massive enterectomy, synergistically enhance GLN uptake by systems A and B(0,+).
Collapse
Affiliation(s)
- Edward C Ray
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ray EC, Avissar NE, Vukcevic D, Toia L, Ryan CK, Berlanga-Acosta J, Sax HC. Growth hormone and epidermal growth factor together enhance amino acid transport systems B(0,+) and A in remnant small intestine after massive enterectomy. J Surg Res 2003; 113:257-63. [PMID: 12957138 DOI: 10.1016/s0022-4804(03)00185-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sodium-dependent brush border nutrient transport is decreased 2 weeks after massive enterectomy. This downregulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesized that glutamine (GLN) transport would be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B0/ASCT2. MATERIALS AND METHODS New Zealand White rabbits underwent 70% small bowel resection then immediately received parenteral EGF, GH, both, or neither for 2 weeks. Na(+)-dependent 3H-GLN uptake by jejunal and ileal brush-border membrane vesicles was measured and the contribution of systems A, B(0,+), and B0 then determined by competitive inhibition. Data were analyzed using one-way analysis of variance. RESULTS In nonresected animals, the relative contribution of the systems was similar in jejunum (A, 9%, B(0,+), 20%; and B0, 71%) and ileum (A, 13%; B(0,+), 27%; and B0, 60%). Na(+)-dependent GLN uptake was reduced by half in resected, untreated controls, primarily because of decreased B(0) activity. EGF or GH alone did not affect Na(+)-dependent GLN transport, but as a combination, increased uptake in the residual ileum and jejunum by 144% and 150%, respectively, over resected controls (P<0.05). This was twice that achieved by delayed and shorter-duration combination treatment. This augmentation was due to a 6.1- to 8.2-fold increase in system A as well as a 3.8- to 3.9-fold enhancement of system B(0,+) activity in remnant ileum and jejunum (P<0.01). CONCLUSIONS Parenteral EGF and GH, given in combination for 2 weeks immediately after massive enterectomy, synergistically enhance GLN uptake by systems A and B(0,+).
Collapse
Affiliation(s)
- Edward C Ray
- Department of Surgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Musch MW, Bookstein C, Rocha F, Lucioni A, Ren H, Daniel J, Xie Y, McSwine RL, Rao MC, Alverdy J, Chang EB. Region-specific adaptation of apical Na/H exchangers after extensive proximal small bowel resection. Am J Physiol Gastrointest Liver Physiol 2002; 283:G975-85. [PMID: 12223358 DOI: 10.1152/ajpgi.00528.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After massive small bowel resection (MSBR), the remnant small intestine adapts to restore Na absorptive function. The possibility that this occurs through increases in cellular Na absorptive capacity was examined by assessing the regional effects of 50% proximal MSBR on the function and expression of the apical membrane Na/H exchangers (NHEs) NHE2 and NHE3. Morphometric analysis confirmed adaptive changes consistent with villus hypertrophy, particularly distal to the anastomosis. Villus epithelium prepared by light mucosal scrapings from 2-wk-postresected and -posttransected control rats exhibited comparable brush-border hydrolase activities, total cell protein per DNA, and villin expression but increased basolateral Na-K-ATPase activity. Parallel increases of two- to threefold in protein and mRNA abundance of NHE2 and NHE3 were observed only in ileal regions distal to the anastomosis of resected rats. Basolateral NHE1 expression was unchanged. After 80% resection, increases in NHE2 and NHE3 became evident in proximal colon. We conclude that increased enterocyte expression and function of apical membrane NHEs in regions distal to the anastomosis play a role in the adaptive process after MSBR. The increased luminal Na load to distal bowel regions after proximal resection may stimulate increases in apical membrane NHE gene transcription and protein expression.
Collapse
Affiliation(s)
- Mark W Musch
- The Martin Boyer Laboratories, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components.
Collapse
Affiliation(s)
- Jared Diamond
- Department of Physiology, University of California Medical School, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|