1
|
Gramaglia I, Velez J, Chang YS, Caparros-Wanderley W, Combes V, Grau G, Stins MF, van der Heyde HC. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak. PLoS One 2019; 14:e0213428. [PMID: 30849122 PMCID: PMC6407779 DOI: 10.1371/journal.pone.0213428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Clinical and model studies indicate that low nitric oxide (NO) bioavailability due in part to profound hypoargininemia contributes to cerebral malaria (CM) pathogenesis. Protection against CM pathogenesis may be achieved by altering the diet before infection with Plasmodium falciparum infection (nutraceutical) or by administering adjunctive therapy that decreases CM mortality (adjunctive therapy). This hypothesis was tested by administering citrulline or arginine in experimental CM (eCM). We report that citrulline injected as prophylaxis immediately post infection (PI) protected virtually all mice by ameliorating (i) hypoargininemia, (ii) urea cycle impairment, and (iii) disruption of blood brain barrier. Citrulline prophylaxis inhibited plasma arginase activity. Parasitemia was similar in citrulline- and vehicle control-groups, indicating that protection from pathogenesis was not due to decreased parasitemia. Both citrulline and arginine administered from day 1 PI in the drinking water significantly protected mice from eCM. These observations collectively indicate that increasing dietary citrulline or arginine decreases eCM mortality. Citrulline injected ip on day 4 PI with quinine-injected ip on day 6 PI partially protected mice from eCM; citrulline plus scavenging of superoxide with pegylated superoxide dismutase and pegylated catalase protected all recipients from eCM. These findings indicate that ameliorating hypoargininemia with citrulline plus superoxide scavenging decreases eCM mortality.
Collapse
Affiliation(s)
- Irene Gramaglia
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- * E-mail:
| | - Joyce Velez
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
| | | | | | - Valery Combes
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Georges Grau
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- Vascular Immunology Unit, University of Sydney, Sydney, Australia
| | - Monique F. Stins
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | | |
Collapse
|
2
|
Hashemi M, Omidi M, Muralidharan B, Smyth H, Mohagheghi MA, Mohammadi J, Milner TE. Evaluation of the Photothermal Properties of a Reduced Graphene Oxide/Arginine Nanostructure for Near-Infrared Absorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32607-32620. [PMID: 28841283 DOI: 10.1021/acsami.7b11291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strong near-infrared (NIR) absorption of reduced graphene oxide (rGO) make this material a candidate for photothermal therapy. The use of rGO has been limited by low stability in aqueous media due to the lack of surface hydrophilic groups. We report synthesis of a novel form of reduced graphene-arginine (rGO-Arg) as a nanoprobe. Introduction of Arg to the surface of rGO not only increases the stability in aqueous solutions but also increases cancer cell uptake. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images are recorded to characterize the morphology of rGO-Arg. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, and UV-vis spectroscopy are utilized to analyze the physiochemical properties of rGO-Arg. Interaction of rGO-Arg with 808 nm laser light has been evaluated by measuring the absorption cross section in response to periodically modulated intensity to minimize artifacts arising from lateral thermal diffusion with a material scattering matched to a low scattering optical standard. Cell toxicity and cellular uptake by MD-MB-231 cell lines provide supporting data for the potential application of rGO-Arg for photothermal therapy. Absorption cross-section results suggest rGO-Arg is an excellent NIR absorber that is 3.2 times stronger in comparison to GO.
Collapse
Affiliation(s)
- Mohadeseh Hashemi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Meisam Omidi
- Protein Research Centre, Shahid Beheshti University , GC, Velenjak, Tehran 1985717443, Iran
| | - Bharadwaj Muralidharan
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Hugh Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mohammad A Mohagheghi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences , Tehran 1419733141, Iran
| | - Javad Mohammadi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
| | - Thomas E Milner
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
3
|
Rajapakse NW, Nanayakkara S, Kaye DM. Pathogenesis and treatment of the cardiorenal syndrome: Implications of L-arginine-nitric oxide pathway impairment. Pharmacol Ther 2015; 154:1-12. [PMID: 25989232 DOI: 10.1016/j.pharmthera.2015.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 01/11/2023]
Abstract
A highly complex interplay exists between the heart and kidney in the setting of both normal and abnormal physiology. In the context of heart failure, a pathophysiological condition termed the cardiorenal syndrome (CRS) exists whereby dysfunction in the heart or kidney can accelerate pathology in the other organ. The mechanisms that underpin CRS are complex, and include neuro-hormonal activation, oxidative stress and endothelial dysfunction. The endothelium plays a central role in the regulation of both cardiac and renal function, and as such impairments in endothelial function can lead to dysfunction of both these organs. In particular, reduced bioavailability of nitric oxide (NO) is a key pathophysiologic component of endothelial dysfunction. The synthesis of NO by the endothelium is critically dependent on the plasmalemmal transport of its substrate, L-arginine, via the cationic amino acid transporter-1 (CAT1). Impaired L-arginine-NO pathway activity has been demonstrated individually in heart and renal failure. Recent findings suggest abnormalities of the L-arginine-NO pathway also play a role in the pathogenesis of CRS and thus this pathway may represent a potential new target for the treatment of heart and renal failure.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Physiology, Monash University, Melbourne, Australia.
| | | | - David M Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne Australia; Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
4
|
Homoarginine in the renal and cardiovascular systems. Amino Acids 2015; 47:1703-13. [DOI: 10.1007/s00726-015-1993-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
5
|
Zeinoddini A, Ahadi M, Farokhnia M, Rezaei F, Tabrizi M, Akhondzadeh S. L-lysine as an adjunct to risperidone in patients with chronic schizophrenia: a double-blind, placebo-controlled, randomized trial. J Psychiatr Res 2014; 59:125-131. [PMID: 25227564 DOI: 10.1016/j.jpsychires.2014.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Increasing evidence suggest that the nitric oxide signaling system of the brain may contribute to the pathophysiology of schizophrenia, making this system a target for development of novel therapeutics. The objective of this study was to investigate the efficacy and safety of L-lysine as an adjunctive to risperidone in the treatment of patients with chronic schizophrenia during an 8-week trial. Seventy-two chronic schizophrenia inpatients with a Positive and Negative Syndrome Scale (PANSS) total score of ≥ 60 participated in a randomized, double-blind, placebo-controlled trial in the active phase of their disease and underwent 8 weeks of treatment with either L-lysine (6 g/day) or placebo as an adjunctive to risperidone. Patients were evaluated using PANSS and its subscales at baseline and weeks 2, 4, 6 and 8. The primary outcome measure was to evaluate the efficacy of L-lysine in improving schizophrenia symptoms. Repeated measures analysis demonstrated significant effect for time × treatment interaction on the PANSS total (P < 0.001), negative (P < 0.001) and general psychopathology (P < 0.001) subscale scores but not the PANSS positive subscale scores (P = 0.61). The frequency of adverse events (AEs) did not differ significantly between the two treatment groups and no serious AE was observed. The present study demonstrated that l-lysine can be a tolerable and efficacious adjunctive therapy for improving negative and general psychopathology symptoms in chronic schizophrenia. However, the safety and efficacy of higher doses of l-lysine and longer treatment periods still remain unknown. TRIAL REGISTRATION Iranian registry of clinical trials (www.irct.ir): IRCT201202201556N33.
Collapse
Affiliation(s)
- Atefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Ahadi
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhnia
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Rezaei
- Department of Psychiatry, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Das S, Mattson DL. Exogenous L-arginine attenuates the effects of angiotensin II on renal hemodynamics and the pressure natriuresis-diuresis relationship. Clin Exp Pharmacol Physiol 2014; 41:270-8. [PMID: 24472006 DOI: 10.1111/1440-1681.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 02/05/2023]
Abstract
Administration of exogenous L-arginine (L-Arg) attenuates angiotensin-II (AngII)-mediated hypertension and kidney disease in rats. The present study assessed renal hemodynamics and pressure diuresis-natriuresis in anaesthetized rats infused with vehicle, AngII (20 ng/kg per min i.v.) or AngII + L-Arg (300 μg/kg per min i.v.). Experiments in isolated aortic rings were carried out to assess L-Arg effects on the vasculature. Increasing renal perfusion pressure (RPP) from ~100 to 140 mmHg resulted in a nine- to tenfold increase in urine flow and sodium excretion rate in control animals. In comparison, AngII infusion significantly reduced renal blood flow (RBF) and glomerular filtration rate (GFR) by 40-42%, and blunted the pressure-dependent increase in urine flow and sodium excretion rate by 54-58% at elevated RPP. Supplementation of L-Arg reversed the vasoconstrictor effects of AngII and restored pressure-dependent diuresis to levels not significantly different from control rats. Dose-dependent contraction to AngII (10(-10) mol/L to 10(-7) mol/L) was observed with a maximal force equal to 27 ± 3% of the response to 10(-5) mol/L phenylephrine. Contraction to 10(-7) mol/L AngII was blunted by 75 ± 3% with 10(-4) mol/L L-Arg. The influence of L-Arg to blunt AngII-mediated contraction was eliminated by endothelial denudation or incubation with nitric oxide synthase inhibitors. Furthermore, the addition of 10(-3) mol/L cationic or neutral amino acids, which compete with L-Arg for cellular uptake, blocked the effect of L-Arg. Anionic amino acids did not influence the effects of L-Arg on AngII-mediated contraction. These studies show that L-Arg blunts AngII-mediated vascular contraction by an endothelial- and nitric oxide synthase-dependent mechanism involving cellular uptake of L-Arg.
Collapse
Affiliation(s)
- Satarupa Das
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
7
|
Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol 2014; 28:257-68. [PMID: 25216787 DOI: 10.1007/s40620-014-0136-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/26/2014] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) is a gas with biological and regulatory properties, produced from arginine by the way of nitric oxide synthases (NOS), and with a very short half-life (few seconds). A "coupled" NOS activity leads to NO generation, whereas its uncoupling produces the reactive oxygen species peroxynitrite (ONOO(-)). Uncoupling is usually due to inflammation, oxidative stress, decreased cofactor availability, or excessive NO production. Competitive inhibitors of NO production are post-translationally methylated arginine residues in proteins, which are constantly released into the circulation. NO availability is altered in many clinical conditions associated with vascular dysfunction, such as diabetes mellitus. The kidney plays an important role in body NO homeostasis. This article provides an overview of current literature, on NO production/availability, with a focus on diabetic nephropathy. In diabetes, NO availability is usually decreased (with exception of the early, hyper filtration phase of nephropathy in Type 1 diabetes), and it could constitute a factor of the generalized vasculopathy present in diabetic nephropathy. NO generation in Type 2 diabetes with nephropathy is inversely associated with the dimethyl-arginine concentrations, which are therefore important modulators of NO synthesis independently from the classic stimulatory pathways (such as the insulin effect). A disturbed NO metabolism is present in diabetes associated with nephropathy. Although modulation of NO production is not yet a common therapeutical strategy, a number of yet experimental compounds need to be tested as potential interventions to treat the vascular dysfunction and nephropathy in diabetes, as well as in other diseased states. Finally, in diabetic nephropathy NO deficiency may be associated to that of hydrogen sulfide, another interesting gaseous mediator which is increasingly investigated.
Collapse
Affiliation(s)
- Paolo Tessari
- Metabolism Division, Department of Medicine, University of Padova, via Giustiniani 2, 35128, Padua, Italy,
| |
Collapse
|
8
|
Pinto V, Pinho MJ, Soares-da-Silva P. Renal amino acid transport systems and essential hypertension. FASEB J 2013; 27:2927-38. [PMID: 23616567 DOI: 10.1096/fj.12-224998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.
Collapse
Affiliation(s)
- Vanda Pinto
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
9
|
Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). J Mol Cell Cardiol 2012; 53:392-400. [DOI: 10.1016/j.yjmcc.2012.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
|
10
|
Rajapakse NW, Kuruppu S, Hanchapola I, Venardos K, Mattson DL, Smith AI, Kaye DM, Evans RG. Evidence that renal arginine transport is impaired in spontaneously hypertensive rats. Am J Physiol Renal Physiol 2012; 302:F1554-62. [DOI: 10.1152/ajprenal.00084.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low renal nitric oxide (NO) bioavailability contributes to the development and maintenance of chronic hypertension. We investigated whether impaired l-arginine transport contributes to low renal NO bioavailability in hypertension. Responses of renal medullary perfusion and NO concentration to renal arterial infusions of the l-arginine transport inhibitor l-lysine (10 μmol·kg−1·min−1; 30 min) and subsequent superimposition of l-arginine (100 μmol·kg−1·min−1; 30 min), the NO synthase inhibitor NG-nitro-l-arginine (2.4 mg/kg; iv bolus), and the NO donor sodium nitroprusside (0.24 μg·kg−1·min−1) were examined in Sprague-Dawley rats (SD) and spontaneously hypertensive rats (SHR). Renal medullary perfusion and NO concentration were measured by laser-Doppler flowmetry and polarographically, respectively, 5.5 mm below the kidney surface. Renal medullary NO concentration was less in SHR (53 ± 3 nM) compared with SD rats (108 ± 12 nM; P = 0.004). l-Lysine tended to reduce medullary perfusion (−15 ± 7%; P = 0.07) and reduced medullary NO concentration (−9 ± 3%; P = 0.03) while subsequent superimposition of l-arginine reversed these effects of l-lysine in SD rats. In SHR, l-lysine and subsequent superimposition of l-arginine did not significantly alter medullary perfusion or NO concentration. Collectively, these data suggest that renal l-arginine transport is impaired in SHR. Renal l-[3H]arginine transport was less in SHR compared with SD rats ( P = 0.01). Accordingly, we conclude that impaired arginine transport contributes to low renal NO bioavailability observed in the SHR kidney.
Collapse
Affiliation(s)
- N. W. Rajapakse
- Department of Physiology, Monash University,
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - S. Kuruppu
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - I. Hanchapola
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - K. Venardos
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - D. L. Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. I. Smith
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - D. M. Kaye
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - R. G. Evans
- Department of Physiology, Monash University,
| |
Collapse
|
11
|
Abstract
The preparation of defined culture media for embryo development has progressed from simple chemically defined media based on Krebs-Ringer bicarbonate, supplemented with glucose, bovine plasma albumin, antibiotics and utilizing a CO(2)-bicarbonate buffering system to more complete systems based around studies on the physiology and metabolism of the mammalian embryo. Although the concentration of substrates used in media can vary, there are many components that are quintessentially important for embryo development such as energy sources, that play a vital role in regulation of metabolism and hence viability. Here we describe the role of energy substrates within culture media and outline assays which can be utilized to measure embryo metabolism as a mechanism for determining embryo physiology and viability.
Collapse
Affiliation(s)
- Deirdre Zander-Fox
- Department of Obstetrics and Gynaecology, School of Pediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
12
|
Tomi M, Kitade N, Hirose S, Yokota N, Akanuma SI, Tachikawa M, Hosoya KI. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier. J Neurochem 2009; 111:716-25. [PMID: 19712052 DOI: 10.1111/j.1471-4159.2009.06367.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to identify the transporter mediating l-arginine transport at the inner blood-retinal barrier (BRB). The apparent uptake clearance of [(3)H]L-arginine into the rat retina was found to be 118 microL/(min.g retina), supporting a carrier-mediated influx transport of L-arginine at the BRB. [(3)H]L-arginine uptake by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells), used as an in vitro model of the inner BRB, was primarily an Na(+)-independent and saturable process with Michaelis-Menten constants of 11.2 microM and 530 microM. This process was inhibited by rat cationic amino acid transporter (CAT) 1-specific small interfering RNA as well as substrates of CATs, L-arginine, L-lysine, and L-ornithine. The expression of cationic amino acid transporter (CAT) 1 mRNA was 25.9- and 796-fold greater than that of CAT3 in TR-iBRB2 and magnetically isolated rat retinal vascular endothelial cells, respectively. The expression of CAT1 protein was detected in TR-iBRB2 cells and immunostaining of CAT1 was observed along the rat retinal capillaries. In conclusion, CAT1 is localized in retinal capillary endothelial cells and at least in part mediates L-arginine transport at the inner BRB. This process seems to be closely involved in visual functions by supplying precursors of biologically important molecules like nitric oxide in the neural retina.
Collapse
Affiliation(s)
- Masatoshi Tomi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rajapakse NW, Mattson DL. Role of L-arginine in nitric oxide production in health and hypertension. Clin Exp Pharmacol Physiol 2008; 36:249-55. [PMID: 19076168 DOI: 10.1111/j.1440-1681.2008.05123.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1. l-Arginine is the substrate for vascular nitric oxide (NO) formation. Under normal physiological conditions, intracellular l-arginine levels far exceed the K(m) of NO synthase for l-arginine. However, endogenous NO formation is dependent on extracellular l-arginine concentrations, giving rise to the concept of the 'l-arginine paradox'. 2. Nitric oxide production in epithelial and endothelial cells is closely coupled to cellular l-arginine uptake, indicating that l-arginine transport mechanisms play a major role in the regulation of NO-dependent function. 3. Consistent with the data in endothelial and epithelial cells are functional data indicating that exogenous l-arginine can increase renal vascular and tubular NO bioavailability and thereby influence kidney perfusion, function and arterial pressure. The integrated effect of increased cellular l-arginine transport is to lower arterial pressure. Therefore, the use of l-arginine in the treatment of hypertension warrants investigation. 4. Low NO bioavailability is central to the development and maintenance of hypertension and to related endothelial dysfunction and target organ damage. We propose that l-arginine can interrupt the vicious cycle that initiates and maintains low NO in hypertension by increasing the formation of NO.
Collapse
|
15
|
Salceda R, Hernández-Espinosa C, Sánchez-Chávez G. l-Arginine Uptake in Normal and Diabetic Rat Retina and Retinal Pigment Epithelium. Neurochem Res 2008; 33:1541-5. [DOI: 10.1007/s11064-008-9641-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/21/2008] [Indexed: 02/02/2023]
|
16
|
|
17
|
Ashman N, Brunini TM, Mann GE, Mendes Ribeiro AC, Yaqoob MM. Increased L-arginine transport via system b0,+ in human proximal tubular cells exposed to albumin. Clin Sci (Lond) 2006; 111:389-99. [PMID: 16928190 DOI: 10.1042/cs20060158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Albumin has complex effects on PTECs (proximal tubular epithelial cells) and is able to stimulate growth or injury depending on its bound moieties. Albumin itself is a mitogen, inducing proliferation through a number of pathways. In PTEC exposed to purified albumin, polyamines are required for entry into the cell cycle and are critical for proliferation. Polyamines are synthesized from L-ornithine (itself derived by the action of arginase on L-arginine), and the transport and availability of L-arginine may thus be important for subsequent polyamine-dependent proliferation. In the present study we investigated radiolabelled cationic amino-acid transport in cultured PTEC exposed to 20 mg/ml ultrapure recombinant human albumin, describing the specific kinetic characteristics of transport and the expression of transporters. L-[3H]Arginine transport capacity in human PTEC is increased after exposure for 24 h to human albumin, mediated by the broad-scope high-affinity system b0,+ and, to a lesser extent, system y+L (but not system y+) transport. Increased transport is associated with increased b0,+-associated transporter expression. Inhibition of phosphoinositide 3-kinase, a key regulator of albumin endocytosis and signalling, inhibited proliferation, but had no effect on the observed increase in transport. PTEC proliferated in response to albumin. L-Lysine, a competitive inhibitor of L-arginine transport, had no effect on albumin-induced proliferation; however, arginine deprivation effectively reversed the albumin-induced proliferation observed. In conclusion, in PTEC exposed to albumin, increased L-arginine transport is mediated by increased transcription and activity of the apical b0,+ transport system. This may make L-arginine available as a substrate for the downstream synthesis of polyamines, but is not critical for cell proliferation.
Collapse
Affiliation(s)
- Neil Ashman
- Department of Experimental Medicine, Critical Care and Nephrology, William Harvey Research Institute, Queen Mary College, University of London, London, UK.
| | | | | | | | | |
Collapse
|
18
|
Kakoki M, Kim HS, Edgell CJS, Maeda N, Smithies O, Mattson DL. Amino acids as modulators of endothelium-derived nitric oxide. Am J Physiol Renal Physiol 2006; 291:F297-304. [PMID: 16571593 DOI: 10.1152/ajprenal.00417.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the mechanisms whereby amino acids modulate nitric oxide (NO) production and blood flow in the renal vasculature, chemiluminescence techniques were used to quantify NO in the renal venous effluent of the isolated, perfused rat kidney as different amino acids were added to the perfusate. The addition of 10−4or 10−3M cationic amino acids (l-ornithine, l-lysine, or l-homoarginine) or neutral amino acids (l-glutamine, l-leucine, or l-serine) to the perfusate decreased NO and increased renal vascular resistance. Perfusion with anionic amino acids (l-glutamate or l-aspartate) had no effect on either parameter. The effects of the cationic and neutral amino acids were reversed with 10−3M l-arginine and prevented by deendothelialization or NO synthase inhibition. The effects of the neutral amino acids but not the cationic amino acids were dependent on extracellular sodium. Cationic and neutral amino acids also decreased calcimycin-induced NO, as assessed by DAF-FM-T fluorescence, in cultured EA.hy926 endothelial cells. Inhibition of system y+or y+L by siRNA for the cationic amino acid transporter 1 or the CD98/4F2 heavy chain diminished the NO-depleting effects of these amino acids. Finally, transport studies in cultured cells demonstrated that cationic or neutral amino acids in the extracellular space stimulate efflux of l-arginine out of the cell. Thus the present experiments demonstrate that cationic and neutral amino acids can modulate NO production in endothelial cells by altering cellular l-arginine transport through y+and y+L transport mechanisms.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rode F, Broløs T, Blackburn-Munro G, Bjerrum OJ. Venlafaxine compromises the antinociceptive actions of gabapentin in rat models of neuropathic and persistent pain. Psychopharmacology (Berl) 2006; 187:364-75. [PMID: 16783541 DOI: 10.1007/s00213-006-0430-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 05/02/2006] [Indexed: 01/25/2023]
Abstract
RATIONALE Neuropathic pain is associated with a number of disease states of diverse aetiology that can share common pathophysiological mechanisms. Antiepileptic drugs modulate ion channel function and antidepressants increase extracellular monoamine levels, and both drug classes variously attenuate signs and symptoms of neuropathic pain. Thus, coadministration of the antiepileptic gabapentin and the antidepressant venlafaxine may provide superior pain relief to administration of either drug alone. OBJECTIVES To systematically establish the pain relieving efficacies of venlafaxine and gabapentin alone and in combination. MATERIALS AND METHODS Gabapentin (50 and 100 mg/kg, s.c.) and venlafaxine (10, 25, 50 mg/kg, s.c.) were tested alone or in combination in the rat spared nerve injury (SNI) model of neuropathic pain and the rat formalin test of persistent pain. Diuresis was measured in a separate experiment after administration of venlafaxine. RESULTS Hindpaw mechanical allodynia was dose-dependently reversed by gabapentin (50 and 100 mg/kg, s.c.), whereas venlafaxine was ineffective (10 and 50 mg/kg, s.c.). Both gabapentin and venlafaxine also attenuated hindpaw mechanical hyperalgesia. Surprisingly, coadministration of venlafaxine (50 mg/kg) significantly lowered the antiallodynic effect of both doses of gabapentin by up to 60% in spared-nerve-injury rats and a negative antinociceptive interaction between gabapentin and venlafaxine was also observed in the rat formalin test. We demonstrated that venlafaxine administration was associated with a dose-dependent increase in urine output over the time course of the nociceptive experiments. CONCLUSION Venlafaxine compromises the antiallodynic effects of coadministered gabapentin most probably as consequence-increased diuresis.
Collapse
Affiliation(s)
- Frederik Rode
- Department of Pharmacology, Danish University of Pharmaceutical Sciences, Jagtvej 120, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
20
|
Kakoki M, Kim HS, Arendshorst WJ, Mattson DL. l-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1478-85. [PMID: 15319219 DOI: 10.1152/ajpregu.00386.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments were performed to determine whether l-arginine transport regulates nitric oxide (NO) production and hemodynamics in the renal medulla. The effects of renal medullary interstitial infusion of cationic amino acids, which compete with l-arginine for cellular uptake, on NO levels and blood flow in the medulla were examined in anesthetized rats. NO concentration in the renal inner medulla, measured with a microdialysis-oxyhemoglobin trapping technique, was significantly decreased by 26–44% and renal medullary blood flow, measured by laser Doppler flowmetry, was significantly reduced by 20–24% during the acute renal medullary interstitial infusion of l-ornithine, l-lysine, and l-homoarginine (1 μmol·kg−1·min−1each; n = 6–8/group). In contrast, intramedullary infusion of l-arginine increased NO concentration and medullary blood flow. Flow cytometry experiments with 4-amino-5-methylamino-2′,7′-difluorescein diacetate, a fluorophore reactive to intracellular NO, demonstrated that l-ornithine, l-lysine, and l-homoarginine decreased NO by 54–57% of control, whereas l-arginine increased NO by 21% in freshly isolated inner medullary cells (1 mmol/l each, n > 1,000 cells/experiment). The mRNA for the cationic amino acid transporter-1 was predominantly expressed in the inner medulla, and cationic amino acid transporter-1 protein was localized by immunohistochemistry to the collecting ducts and vasa recta in the inner medulla. These results suggest that l-arginine transport by cationic amino acid transport mechanisms is important in the production of NO and maintenance of blood flow in the renal medulla.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
21
|
Zewde T, Wu F, Mattson DL. Influence of dietary NaCl on L-arginine transport in the renal medulla. Am J Physiol Regul Integr Comp Physiol 2004; 286:R89-93. [PMID: 14512271 DOI: 10.1152/ajpregu.00309.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work demonstrated that l-arginine, the substrate for nitric oxide (NO) synthase, is carried into inner medullary collecting duct (IMCD) cells via system y+, that the major system y+ gene product in IMCD is the cationic amino acid transporter 1 (CAT1), and that blockade of l-arginine uptake in the renal medulla decreases NO and leads to systemic hypertension. The present study determined the influence of dietary sodium intake on l-arginine uptake in IMCD, on CAT1 immunoreactive protein in the renal medulla, and on the hypertensive response to blockade of l-arginine uptake in the renal medulla. Transport studies in bulk-isolated IMCD demonstrated that l-arginine uptake by IMCD was significantly greater (663 ± 100 pmol·mg-1· min-1, n = 6) in rats exposed to a low-sodium diet (0.4% NaCl) compared with rats on a normal (1% NaCl, 519 ± 78 pmol·mg-1·min-1, n = 6) or high-sodium diet (4.0% NaCl, 302 ± 27 pmol·mg-1·min-1, n = 6). Immunoblotting experiments demonstrated that CAT1 immunoreactive protein was significantly decreased by ∼30% in rats maintained on a high-NaCl diet ( n = 5) compared with rats on a low-NaCl diet ( n = 5). In contrast to the l-arginine transport and immunoblotting data, in vivo blockade of l-arginine uptake led to hypertension of equal magnitude in rats maintained on a low- or high-NaCl diet. These results indicate that sodium loading leads to a decrease in immunoreactive CAT1 protein in the rat renal medulla, resulting in decreased l-arginine uptake capacity. The decrease in l-arginine uptake capacity, however, does not alter the blood pressure response to l-arginine uptake inhibition in the renal medulla.
Collapse
Affiliation(s)
- Tewabech Zewde
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
22
|
Cowley AW, Mori T, Mattson D, Zou AP. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1355-69. [PMID: 12736168 DOI: 10.1152/ajpregu.00701.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The unique role of nitric oxide (NO) in the regulation of renal medullary function is supported by the evidence summarized in this review. The impact of reduced production of NO within the renal medulla on the delivery of blood to the medulla and on the long-term regulation of sodium excretion and blood pressure is described. It is evident that medullary NO production serves as an important counterregulatory factor to buffer vasoconstrictor hormone-induced reduction of medullary blood flow and tissue oxygen levels. When NO synthase (NOS) activity is reduced within the renal medulla, either pharmacologically or genetically [Dahl salt-sensitive (S) rats], a super sensitivity to vasoconstrictors develops with ensuing hypertension. Reduced NO production may also result from reduced cellular uptake of l-arginine in the medullary tissue, resulting in hypertension. It is concluded that NO production in the renal medulla plays a very important role in sodium and water homeostasis and the long-term control of arterial pressure.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
23
|
Schwartz D, Schwartz IF, Gnessin E, Wollman Y, Chernichovsky T, Blum M, Iaina A. Differential regulation of glomerular arginine transporters (CAT-1 and CAT-2) in lipopolysaccharide-treated rats. Am J Physiol Renal Physiol 2003; 284:F788-95. [PMID: 12475743 DOI: 10.1152/ajprenal.00221.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The decrease in glomerular filtration rate (GFR) that is characteristic of sepsis has been shown to result from inhibition of glomerular endothelial nitric oxide synthase (eNOS) by nitric oxide (NO) generated from the inducible isoform of NOS (iNOS). Although l-arginine is the sole precursor for NO biosynthesis, its intracellular availability in glomeruli from septic animals has never been investigated. Arginine uptake was measured in freshly harvested glomeruli from the following experimental groups: 1) untreated rats; 2) rats pretreated with LPS (4 mg/kg body wt, 4 h before experiments); 3) rats treated with LPS as above with either l-N(6)-(1-iminoethyl)lysine hydrochloride (l-NIL), a selective iNOS antagonist, or 7-nitroindazole, a selective neuronal NOS antagonist; and 4) rats treated with l-NIL only. Both glomeular and mesangial arginine transport characteristics were found compatible with a y(+) system. Arginine uptake was augmented in glomeruli from LPS-treated rats. Treatment with l-NIL completely abolished this effect whereas l-NIL alone had no effect. Similar results were obtained when primary cultures of rat mesangial cells were preincubated with LPS (10 microg/ml for 24 h) with or without l-NIL. Using RT-PCR, we found that in vivo administration of LPS resulted in a significant increase in glomerular cationic amino acid transporter-2 (CAT-2) mRNA expression whereas CAT-1 mRNA was undetected. Northern blotting further confirmed a significant increase in glomerular CAT-2 by LPS. In mesangial cells, the expression of both CAT-1 and CAT-2 mRNA was augmented after incubation with LPS. In conclusion, in vivo administration of LPS augments glomerular arginine transport through upregulation of steady-state CAT-2 mRNA while downregulating CAT-1 mRNA. These results may correspond to the changes in glomerular iNOS and eNOS activity in sepsis.
Collapse
Affiliation(s)
- Doron Schwartz
- Nephrology Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 2003; 284:F253-66. [PMID: 12529271 DOI: 10.1152/ajprenal.00304.2002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl(-) conductance that secondarily gates voltage-activated Ca(2+) entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K(+) constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca(2+) is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca(2+) signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | |
Collapse
|
25
|
Bence AK, Worthen DR, Adams VR, Crooks PA. The antiproliferative and immunotoxic effects of L-canavanine and L-canaline. Anticancer Drugs 2002; 13:313-20. [PMID: 11984075 DOI: 10.1097/00001813-200203000-00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L-Canavanine and its arginase-catalyzed metabolite, L-canaline, are two novel anticancer agents in development. Since the immunotoxic evaluation of agents in development is a critical component of the drug development process, the antiproliferative effects of L-canavanine and L-canaline were evaluated in vitro. Both L-canavanine and L-canaline were cytotoxic to peripheral blood mononucleocytes (PBMCs) in culture. Additionally, the mononucleocytes were concurrently exposed to either L-canavanine or L-canaline and each one of a series of compounds that may act as metabolic inhibitors of the action of L-canavanine and L-canaline (L-arginine, L-ornithine, D-arginine, L-lysine, L-homoarginine, putrescine, L-omega-nitro arginine methyl ester and L-citrulline). The capacity of these compounds to overcome the cytotoxic effects of L-canavanine or L-canaline was assessed in order to provide insight into the biochemical mechanisms that may underlie the toxicity of these two novel anticancer agents. The results of these studies suggest that the mechanism of L-canavanine toxicity is mediated through L-arginine-utilizing mechanisms and that the L-canavanine metabolite, L-canaline, is toxic to human PBMCs by disrupting polyamine biosynthesis. The elucidation of the biochemical mechanisms associated with the effects of L-canavanine and L-canaline on lymphoproliferation may be useful for maximizing the therapeutic effectiveness and minimizing the toxicity of these novel anticancer agents.
Collapse
Affiliation(s)
- Aimee K Bence
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
26
|
Closs EI. Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hypertens 2002; 11:99-107. [PMID: 11753094 DOI: 10.1097/00041552-200201000-00015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Different carrier proteins exhibiting distinct transport properties participate in cationic amino acid transport. There are sodium-independent systems, such as b+, y+, y+L and b0,+, and a sodium-dependent system B0,+, most of which have now been identified at the molecular level. In most non-epithelial cells, members of the cationic amino acid transporter (CAT) family mediating system y+ activity seem to be the major entry pathway for cationic amino acids. CAT proteins underlie complex regulation at the transcriptional, post-transcriptional and activity levels. Recent evidence indicates that individual CAT isoforms are necessary for providing the substrate for nitric oxide synthesis, for example CAT-1 for Ca2+-independent nitric oxide production in endothelial cells and CAT-2B for sustained nitric oxide production in macrophages.
Collapse
Affiliation(s)
- Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
27
|
Pallone TL, Mattson DL. Role of nitric oxide in regulation of the renal medulla in normal and hypertensive kidneys. Curr Opin Nephrol Hypertens 2002; 11:93-8. [PMID: 11753093 DOI: 10.1097/00041552-200201000-00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence favors the notion that perfusion of the medulla of the kidney is regulated through the effects of nitric oxide. Reduction of nitric oxide production in the medulla by local tissue infusion of nitric oxide synthase blockers leads to reduction of medullary blood flow, salt retention and hypertension. Conversely, infusion of L-arginine to increase nitric oxide abrogates hypertension and enhances medullary blood flow in animal models. Nitric oxide levels can also be controlled through its consumption by reactive oxygen species. Thus, medullary oxidative stress might influence blood pressure and sodium balance through changes in nitric oxide. Nitric oxide inhibits sodium chloride reabsorption by the thick ascending limb and collecting duct. The likelihood that some forms of hypertension result directly from pathological alteration of transporters, channels, regulatory elements or enzymes that affect medullary nitric oxide seems high.
Collapse
Affiliation(s)
- Thomas L Pallone
- Department of Medicine, Nephrology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
28
|
Abstract
Although the kidney strives to maintain its perfusion within tight boundaries, considerable blood flow fluctuations do occur. The reasons for this are the rather slow acting compensatory mechanisms of renal blood flow autoregulation, the effects of renal nerves, hormonal influences, etc. It seems that variations in renal perfusion can exert a major influence on renal excretory functions, on renin release and on blood pressure. The clinical importance of renal blood flow variability is not fully understood. In many situations, the absence of normal cardiovascular oscillations seems to be a risk factor. Large fluctuations in perfusion pressure to the kidney, however, in the long run, may induce target organ damage.
Collapse
Affiliation(s)
- Pontus B Persson
- Johannes Müller Institute of Physiology, Humboldt University (Charité), Berlin, Germany.
| |
Collapse
|