1
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
2
|
Anti-N-methyl-d-aspartate Receptor Encephalitis Related Sinus Node Dysfunction and the Lock-Step Phenomenon. ACTA ACUST UNITED AC 2020; 8:503-507. [PMID: 33088906 PMCID: PMC7575203 DOI: 10.12691/ajmcr-8-12-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Described in 2007, anti-N-methyl-d-aspartate receptor encephalitis (ANMDARE) is a rare autoimmune limbic encephalitis affecting young adults (predominantly women of reproductive age) and is a paraneoplastic manifestation of ovarian teratoma in about half of the cases. ANMDARE is characterized by psychiatric changes, neurological changes, autonomic instability and cardiac dysrhythmias. In this report, we present a 36-year-old woman who was 16 weeks pregnant and brought to the hospital with confusion and subsequently had a seizure with Electroencephalography (EEG) demonstrated an extreme delta brush pattern consistent with ANMDARE. Patient developed sinus nodal dysfunction and was also found to have ovarian teratoma, a rather typical presentation for ANMDARE, that is considered a paraneoplastic syndrome for ovarian teratoma. In this report, we highlight the cardiac manifestation of ANMDARE, the pathophysiology associated with autonomic instability, and management strategies of this rare, and largely devastating illness.
Collapse
|
3
|
Raven PB, Young BE, Fadel PJ. Arterial Baroreflex Resetting During Exercise in Humans: Underlying Signaling Mechanisms. Exerc Sport Sci Rev 2020; 47:129-141. [PMID: 30921029 DOI: 10.1249/jes.0000000000000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The arterial baroreflex (ABR) resets during exercise in an intensity-dependent manner to operate around a higher blood pressure with maintained sensitivity. This review provides a historical perspective of ABR resetting and the involvement of other neural reflexes in mediating exercise resetting. Furthermore, we discuss potential underlying signaling mechanisms that may contribute to exercise ABR resetting in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Peter B Raven
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
4
|
Légat L, Smolders I, Dupont AG. AT1 Receptor Mediated Hypertensive Response to Ang II in the Nucleus Tractus Solitarii of Normotensive Rats Involves NO Dependent Local GABA Release. Front Pharmacol 2019; 10:460. [PMID: 31130861 PMCID: PMC6509664 DOI: 10.3389/fphar.2019.00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/11/2019] [Indexed: 11/30/2022] Open
Abstract
Aim It is well-established that angiotensin II exerts a dampening effect on the baroreflex within the nucleus tractus solitarii (NTS), the principal brainstem site for termination of baroreceptor afferents and which is densely populated with gamma-aminobutyric acid (GABA)ergic neurons and nerve terminals. The present study was designed to investigate whether local release of GABA is involved in the effects mediated by local angiotensin II within the NTS. Methods In vivo microdialysis was used for measurement of extracellular glutamate and GABA levels and for infusion of angiotensin II within the NTS of conscious normotensive Wistar rats. The mean arterial pressure (MAP) and heart rate response to local infusion of angiotensin II were subsequently monitored with a pressure transducer under anesthesia. The angiotensin II type 1 receptor (AT1R) antagonist, candesartan, was used to assess whether responses were AT1R dependent and the nitric oxide (NO) synthase inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), was used to assess the involvement of NO in the evoked responses by infusion of angiotensin II. The MAP and heart rate responses were monitored with a pressure transducer. Results Local infusion into the NTS of angiotensin II induced a significant to ninefold significantly increase in extracellular GABA levels; as well as MAP was increased by 15 mmHg. These responses were both abolished by co-infusion of either, the angiotensin II type 1 receptor antagonist, candesartan, or the NO synthase inhibitor, L-NAME, demonstrating that the effect is not only AT1R dependent but also NO dependent. The pressor response to angiotensin II was reversed by co-infusion with the GABAA receptor antagonist, bicuculline. Local blockade of NO synthase decreased both, GABA and glutamate concentrations. Conclusion Our results suggest that the AT1R mediated hypertensive response to angiotensin II within the NTS in normotensive rats is GABA and NO dependent. Nitric oxide produced within the NTS tonically potentiates local GABA and glutamate release.
Collapse
Affiliation(s)
- Laura Légat
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alain G Dupont
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Sung CS, Wen ZH, Feng CW, Chen CH, Huang SY, Chen NF, Chen WF, Wong CS. Potentiation of spinal glutamatergic response in the neuron-glia interactions underlies the intrathecal IL-1β-induced thermal hyperalgesia in rats. CNS Neurosci Ther 2017; 23:580-589. [PMID: 28544775 DOI: 10.1111/cns.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
AIMS We previously demonstrated that intrathecal IL-1β upregulated phosphorylation of p38 mitogen-activated protein kinase (P-p38 MAPK) and inducible nitric oxide synthase (iNOS) in microglia and astrocytes in spinal cord, increased nitric oxide (NO) release into cerebrospinal fluid, and induced thermal hyperalgesia in rats. This study investigated the role of spinal glutamatergic response in intrathecal IL-1β-induced nociception in rats. METHODS The pretreatment effects of MK-801 (5 μg), minocycline (20 μg), and SB203580 (5 μg) on intrathecal IL-1β (100 ng) in rats were measured by behavior, Western blotting, CSF analysis, and immunofluorescence studies. RESULTS IL-1β increased phosphorylation of NR-1 (p-NR1) subunit of N-methyl-D-aspartate receptors in neurons and microglia, reduced glutamate transporters (GTs; glutamate/aspartate transporter by 60.9%, glutamate transporter-1 by 55.0%, excitatory amino acid carrier-1 by 39.8%; P<.05 for all), and increased glutamate (29%-133% increase from 1.5 to 12 hours; P<.05) and NO (44%-101% increase from 4 to 12 hours; P<.05) levels in cerebrospinal fluid. MK-801 significantly inhibited all the IL-1β-induced responses; however, minocycline and SB203580 blocked the IL-1β-downregulated GTs and elevated glutamate but not the upregulated p-NR1. CONCLUSION The enhanced glutamatergic response and neuron-glia interaction potentiate the intrathecal IL-1β-activated P-p38/iNOS/NO signaling and thermal hyperalgesia.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Abstract
Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms.
Collapse
Affiliation(s)
- Marie A. McGee
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC
| | - Abdel A. Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
7
|
The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats. Nitric Oxide 2016; 52:56-65. [DOI: 10.1016/j.niox.2015.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
|
8
|
Byun JI, Lee ST, Moon J, Jung KH, Shin JW, Sunwoo JS, Lim JA, Shin YW, Kim TJ, Lee KJ, Park KI, Jung KY, Lee SK, Chu K. Cardiac sympathetic dysfunction in anti-NMDA receptor encephalitis. Auton Neurosci 2015; 193:142-6. [DOI: 10.1016/j.autneu.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
|
9
|
Cossenza M, Socodato R, Portugal CC, Domith ICL, Gladulich LFH, Encarnação TG, Calaza KC, Mendonça HR, Campello-Costa P, Paes-de-Carvalho R. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. VITAMINS AND HORMONES 2014; 96:79-125. [PMID: 25189385 DOI: 10.1016/b978-0-12-800254-4.00005-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a very reactive molecule, and its short half-life would make it virtually invisible until its discovery. NO activates soluble guanylyl cyclase (sGC), increasing 3',5'-cyclic guanosine monophosphate levels to activate PKGs. Although NO triggers several phosphorylation cascades due to its ability to react with Fe II in heme-containing proteins such as sGC, it also promotes a selective posttranslational modification in cysteine residues by S-nitrosylation, impacting on protein function, stability, and allocation. In the central nervous system (CNS), NO synthesis usually requires a functional coupling of nitric oxide synthase I (NOS I) and proteins such as NMDA receptors or carboxyl-terminal PDZ ligand of NOS (CAPON), which is critical for specificity and triggering of selected pathways. NO also modulates CREB (cAMP-responsive element-binding protein), ERK, AKT, and Src, with important implications for nerve cell survival and differentiation. Differences in the regulation of neuronal death or survival by NO may be explained by several mechanisms involving localization of NOS isoforms, amount of NO being produced or protein sets being modulated. A number of studies show that NO regulates neurotransmitter release and different aspects of synaptic dynamics, such as differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, and modulation of synaptic efficacy. NO has also been associated with synaptogenesis or synapse elimination, and it is required for long-term synaptic modifications taking place in axons or dendrites. In spite of tremendous advances in the knowledge of NO biological effects, a full description of its role in the CNS is far from being completely elucidated.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Renato Socodato
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camila C Portugal
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ivan C L Domith
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luis F H Gladulich
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thaísa G Encarnação
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Karin C Calaza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Henrique R Mendonça
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
10
|
Responses of Solitary Tract Nucleus Neurons to Nociceptive Stimuli of the Large Intestine in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9808-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nazif TM, Vázquez J, Honig LS, Dizon JM. Anti-N-methyl-D-aspartate receptor encephalitis: an emerging cause of centrally mediated sinus node dysfunction. Europace 2012; 14:1188-94. [PMID: 22345374 DOI: 10.1093/europace/eus014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) is a recently recognized form of autoimmune encephalitis that typically affects young women, often as a paraneoplastic syndrome related to ovarian teratoma. Clinical features include psychiatric and neurological disturbances, central hypoventilation, autonomic instability, and cardiac dysrhythmias. The prevalence, nature, and outcomes of cardiac dysrhythmias in patients with NMDARE have not been well described. METHODS AND RESULTS Records of 10 consecutive patients with NMDARE were reviewed to obtain clinical, laboratory, echocardiographic, electrocardiographic, and radiological data. Patients were all female with an average age of 23 ± 5.5 years. Echocardiograms revealed structurally normal hearts with the exception of mild left ventricular hypertrophy in two cases. Eight patients had inappropriate sinus tachycardia. Six patients developed significant sinus bradycardia, which included periods of sinus arrest in four cases. Five patients manifested both sinus bradycardia and tachycardia. Bradycardia was often triggered by identifiable vagal stimuli. Temporary pacing was instituted in three patients, but permanent pacing was not required in any of the patients. Magnetic resonance imaging (MRI) scans revealed mesial temporal abnormalities in nine patients. In all cases, the dysrhythmias resolved with treatment of the underlying immune disorder with immunotherapy and/or teratoma resection. There was no evidence of dysrhythmia recurrence in any patient at follow-up. CONCLUSION Anti-N-methyl-D-aspartate receptor encephalitis is a recently recognized cause of autoimmune encephalitis with a predilection to cause severe sinus node abnormalities. Temporary pacing is occasionally required, but permanent pacing appears to be unnecessary. An analysis of the clinical syndrome coupled with MRI and experimental data may offer insight into central mechanisms of heart rate regulation.
Collapse
Affiliation(s)
- Tamim M Nazif
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, Columbia University, 630 W 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
Shinohara K, Hirooka Y, Kishi T, Sunagawa K. Reduction of Nitric Oxide-Mediated γ-Amino Butyric Acid Release in Rostral Ventrolateral Medulla Is Involved in Superoxide-Induced Sympathoexcitation of Hypertensive Rats. Circ J 2012; 76:2814-21. [DOI: 10.1253/circj.cj-12-0399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keisuke Shinohara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
13
|
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 300:R818-26. [PMID: 21289238 DOI: 10.1152/ajpregu.00426.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
14
|
Nogueira MC, Haibara AS, Borges EL. Effect of l-NAME microinjected into the nucleus tractus solitarius on jejunal glucose and electrolyte absorption in anesthetized rats. Brain Res 2010; 1359:107-15. [DOI: 10.1016/j.brainres.2010.08.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 01/22/2023]
|
15
|
Chen JS, Wang HJ, Chang WC, Jao CC, Wu BT, Shyu WC, Lee SD. Altered nitroxidergic and NMDA receptor-mediated modulation of baroreflex-mediated heart rate in obese Zucker rats. Hypertens Res 2010; 33:932-6. [DOI: 10.1038/hr.2010.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Ito K, Hirooka Y, Kimura Y, Shimokawa H, Takeshita A. Effects of Hydroxyfasudil Administered to the Nucleus Tractus Solitarii on Blood Pressure and Heart Rate in Spontaneously Hypertensive Rats. Clin Exp Hypertens 2009. [DOI: 10.1081/ceh-48876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Granjeiro ÉM, Machado BH. NO in the caudal NTS modulates the increase in respiratory frequency in response to chemoreflex activation in awake rats. Respir Physiol Neurobiol 2009; 166:32-40. [DOI: 10.1016/j.resp.2009.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 12/16/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
18
|
Lin LH. Glutamatergic neurons say NO in the nucleus tractus solitarii. J Chem Neuroanat 2009; 38:154-65. [PMID: 19778681 DOI: 10.1016/j.jchemneu.2009.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 01/13/2023]
Abstract
Both glutamate and nitric oxide (NO) may play an important role in cardiovascular reflex and respiratory signal transmission in the nucleus tractus solitarii (NTS). Pharmacological and physiological data have shown that glutamate and NO may be linked in mediating cardiovascular regulation by the NTS. Through tract tracing, multiple-label immunofluorescent staining, confocal microscopic, and electronic microscopic methods, we and other investigators have provided anatomical evidence that supports a role for glutamate and NO as well as an interaction between glutamate and NO in cardiovascular regulation in the NTS. This review article focuses on summarizing and discussing these anatomical findings. We utilized antibodies to markers of glutamatergic neurons and to neuronal NO synthase (nNOS), the enzyme that synthesizes NO in NTS neurons, to study the anatomical relationship between glutamate and NO in rats. Not only were glutamatergic markers and nNOS both found in similar subregions of the NTS and in vagal afferents, they were also frequently colocalized in the same neurons and fibers in the NTS. In addition, glutamatergic markers and nNOS were often present in fibers that were in close apposition to each other. Furthermore, N-methyl-d-aspartate (NMDA) type glutamate receptors and nNOS were often found on the same NTS neurons. Similarly, alpha-amino-3-hydroxy-5-methylisoxozole-proprionic acid (AMPA) type glutamate receptors also frequently colocalized with nNOS in NTS neurons. These findings support the suggestion that the interaction between glutamate and NO may be mediated both through NMDA and AMPA receptors. Finally, by applying tracer to the cut aortic depressor nerve (ADN) to identify nodose ganglion (NG) neurons that transmit cardiovascular signals to the NTS, we observed colocalization of vesicular glutamate transporters (VGluT) and nNOS in the ADN neurons. Thus, taken together, these neuroanatomical data support the hypothesis that glutamate and NO may interact with each other to regulate cardiovascular and likely other visceral functions through the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Kleiber AC, Zheng H, Schultz HD, Peuler JD, Patel KP. Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1863-72. [PMID: 18385465 DOI: 10.1152/ajpregu.00757.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the mechanisms are not known. We hypothesized that ExT would normalize the augmented glutamatergic mechanisms mediated by N-methyl-d-aspartic acid (NMDA) receptors within the paraventricular nucleus (PVN) that occur with HF. Four groups of rats were used: 1) sham-operated (Sham) sedentary (Sed), 2) Sham ExT, 3) HF Sed, and 4) HF ExT. HF was induced by left coronary artery ligation, and ExT consisted of 3 wk of treadmill running. In alpha-chloralose-urethane-anesthetized rats, the increase in renal sympathetic nerve activity in response to the highest dose of NMDA (200 pmol) injected into the PVN in the HF Sed group was approximately twice that of the Sham Sed group. In the HF ExT group the response was not different from the Sham Sed and Sham ExT groups. Relative NMDA NR1 receptor subunit mRNA expression was 63% higher in the HF Sed group compared with the Sham Sed group but in the HF ExT group was not different from the Sham Sed and Sham ExT groups. NR1 receptor subunit protein expression was increased 87% in the HF Sed group compared with the Sham Sed group but in the HF ExT group was not significantly different from the Sham Sed and Sham ExT groups. Thus one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of glutamatergic mechanisms within the PVN.
Collapse
Affiliation(s)
- Allison C Kleiber
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | |
Collapse
|
20
|
Saransaari P, Oja SS. Nitric oxide is involved in taurine release in the mouse brain stem under normal and ischemic conditions. Amino Acids 2007; 34:429-36. [PMID: 17665274 DOI: 10.1007/s00726-007-0553-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/23/2007] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) has been shown to regulate neurotransmitter release in the brain; both inhibitory and excitatory effects have been seen. Taurine is essential for the development and survival of neural cells and protects them under cell-damaging conditions. In the brain stem, it regulates many vital functions such as cardiovascular control and arterial blood pressure. Now we studied the effects of the NO-generating compounds hydroxylamine (HA), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) on the release of preloaded [(3)H]taurine under normal and ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) to young adult (3-month-old) mice. In general, the effects of NO on the release were somewhat complex and difficult to explain, as expected from the multifunctional role of NO in the central nervous system. The basal initial release under normal conditions was enhanced by the NO donors 5 mM HA and 1.0 mM SNAP at both ages, but SNP was inhibitory in developing mice. The release was markedly enhanced by K(+) stimulation. The effects of HA, SNAP and SNP on the basal release were not antagonized by the NO synthase inhibitor N(G)-nitro-L-arginine (L-NNA, 1.0 mM), demonstrating that mechanisms other than NO synthesis are involved. Taurine release in developing mice in the presence of SNP was reduced by the inhibitor of soluble guanylate cyclase, 1H-(1,2,3)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), indicating the possible involvement of cGMP. In normoxia, N-methyl-D-aspartate (NMDA, 1.0 mM) enhanced the SNAP- and HA-evoked taurine release in developing mice and the HA-evoked release in adults. In ischemia, both K(+) stimulation and NMDA potentiated the NO-induced release, particularly in the immature mice, probably without the involvement of the NO synthase or cGMP. The substantial release of taurine in the developing brain stem evoked by NO donors together with NMDA might represent signs of important mechanisms against excitotoxicity which protect the brain stem under cell-damaging conditions.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Tampere, Finland.
| | | |
Collapse
|
21
|
Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, Sunagawa K. Inhibition of Rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart rate in stroke-prone spontaneously hypertensive rats. Hypertension 2007; 50:62-8. [PMID: 17515454 DOI: 10.1161/hypertensionaha.107.087981] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) in the brain are thought to contribute to the neuropathogenesis of hypertension by enhancing sympathetic nervous system activity. The nucleus tractus solitarius (NTS), which receives afferent input from baroreceptors, has an important role in cardiovascular regulation. reduced nicotinamide-adenine dinucleotide phosphate oxidase is thought to be a major source of ROS in the NTS. Rac1 is a small G protein and a key component of reduced nicotinamide-adenine dinucleotide phosphate oxidase. The role of Rac1-derived ROS in the NTS in cardiovascular regulation of hypertension is unknown. Therefore, we examined whether inhibition of Rac1 in the NTS decreases ROS generation, thereby reducing blood pressure in stroke-prone spontaneously hypertensive rats (SHRSPs). The basal Rac1 activity level in the NTS was greater in SHRSPs than in Wistar-Kyoto rats. Inhibition of Rac1, induced by transfecting adenovirus vectors encoding dominant-negative Rac1 into the NTS, decreased blood pressure, heart rate, and urinary norepinephrine excretion in SHRSPs but not in Wistar-Kyoto rats. Inhibition of Rac1 also reduced nicotinamide-adenine dinucleotide phosphate oxidase activity and ROS generation. In addition, Cu/Zn-superoxide dismutase activity in the NTS of SHRSPs was decreased compared with that of Wistar-Kyoto rats, despite the increased ROS generation. Overexpression of Cu/Zn-superoxide dismutase in the NTS decreased blood pressure and heart rate in SHRSPs. These results indicate that the activation of Rac1 in the NTS generates ROS via reduced nicotinamide-adenine dinucleotide phosphate oxidase in SHRSPs, and this mechanism might be important for the neuropathogenesis of hypertension in SHRSPs.
Collapse
Affiliation(s)
- Masatsugu Nozoe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang S, Paton JFR, Kasparov S. Differential sensitivity of excitatory and inhibitory synaptic transmission to modulation by nitric oxide in rat nucleus tractus solitarii. Exp Physiol 2007; 92:371-82. [PMID: 17138620 DOI: 10.1113/expphysiol.2006.036103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nucleus tractus solitarii (NTS) is a key central link in control of multiple homeostatic reflexes. A number of studies have demonstrated that exogenous and endogenous nitric oxide (NO) within NTS regulates visceral function, but further understanding of the role of NO in the NTS is hampered by the lack of information about its intracellular actions. We studied effects of NO in acute rat brainstem slices. Aqueous NO solution (NO(aq)) potentiated electrically evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different neuronal subpopulations and, in some neurones, caused a depolarization. Similar effects were observed using the NO donor diethylamine NONOate (DEA/NO). The threshold NO concentration as determined using an NO electrochemical sensor was estimated as approximately 0.4 nm (EC(50) approximately 0.9 nm) for potentiating glutamatergic EPSPs but approximately 3 nm for monosynaptic GABAergic IPSPs. Bath application of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) abolished NO(aq)- and DEA/NO-induced potentiation of evoked EPSPs, IPSPs and depolarization. All NO actions were mimicked by the non-NO-dependent guanylate cyclase activator Bay 41-2272. The effects of NO on EPSPs and IPSPs persisted in cells where postsynaptic sGC was blocked by ODQ and therefore were presynaptic, owing to a direct modulation of transmitter release combined with depolarization of presynaptic neurones. Therefore, while lower concentrations of NO may be important for fine tuning of glutamatergic transmission, higher concentrations are required to directly engage GABAergic inhibition. This differential sensitivity of excitatory and inhibitory connections to NO may be important for determining the specificity of the effects of this freely diffusible gaseous messenger.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Physiology, School of Medical Sciences, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
23
|
Zhao R, Chen H, Sharp BM. Nicotine-induced norepinephrine release in hypothalamic paraventricular nucleus and amygdala is mediated by N-methyl-D-aspartate receptors and nitric oxide in the nucleus tractus solitarius. J Pharmacol Exp Ther 2007; 320:837-44. [PMID: 17093131 DOI: 10.1124/jpet.106.112474] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The noradrenergic projections from brainstem nucleus tractus solitarius (NTS) to hypothalamic paraventricular nucleus (PVN) and amygdala (AMYG) are involved in nicotine-related stress responses and drug craving. Previous studies demonstrated that i.v. nicotine-induced norepinephrine (NE) release in the PVN and AMYG depends on nicotinic cholinergic receptors in the brainstem. However, the direct site and mechanism of nicotine's action in brainstem are unknown. The present study determined the roles of NTS ionotropic glutamate receptors and nitric oxide (NO) in the effects of both local and systemic nicotine on NE release in PVN and AMYG. In male rats, an intra-NTS microinjection of nicotine (1.2 microg free base) or i.v. nicotine infusion (0.065 or 0.09 mg/kg) significantly increased NE levels in PVN and AMYG microdialysates. Prior microinjection of the N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (0.75 or 1.5 microg), but not an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist, dose dependently nearly abolished both PVN and AMYG NE responses to nicotine administered into NTS or systemically. NO involvement was assessed with intra-NTS microinjections of the nonselective nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester hydrochloride (10-30 nmol), or the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (0.1-0.2 nmol); both agents dose dependently inhibited i.v. nicotine-induced NE release. These results indicate that nicotine-induced NE release in PVN and AMYG is mediated entirely through the local effects of nicotine on NTS glutamate afferents and NMDA receptors that, in part, stimulate NO production, resulting in activation of noradrenergic neurons. Therefore, nicotine acts indirectly on noradrenergic NTS neurons to elicit NE release in forebrain structures.
Collapse
Affiliation(s)
- Rongjie Zhao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis TN 38163, USA
| | | | | |
Collapse
|
24
|
Kamendi H, Dergacheva O, Wang X, Huang ZG, Bouairi E, Gorini C, Mendelowitz D. NO Differentially Regulates Neurotransmission to Premotor Cardiac Vagal Neurons in the Nucleus Ambiguus. Hypertension 2006; 48:1137-42. [PMID: 17015774 DOI: 10.1161/01.hyp.0000246493.00385.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NO is involved in the neural control of heart rate, and NO synthase expressing neurons and terminals have been localized in the nucleus ambiguus where parasympathetic cardiac vagal preganglionic neurons are located; however, little is known about the mechanisms by which NO alters the activity of premotor cardiac vagal neurons. This study examines whether the NO donor sodium nitroprusside ([SNP] 100 μmol/L) and precursor,
l
-arginine (10 mmol/L), modulate excitatory and inhibitory synaptic neurotransmission to cardiac vagal preganglionic neurons. Glutamatergic, GABAergic, and glycinergic activity to cardiac vagal neurons was examined using whole-cell patch-clamp recordings in an in vitro brain slice preparation in rats. Both SNP, as well as
l
-arginine, increased the frequency of GABAergic neurotransmission to cardiac vagal preganglionic neurons but decreased the amplitude of GABAergic inhibitory postsynaptic currents. In contrast, both
l
-arginine and SNP inhibited the frequency of glutamatergic and glycinergic synaptic events in cardiac vagal preganglionic neurons. SNP and
l
-arginine also decreased glycinergic inhibitory postsynaptic current amplitude, and this response persisted in the presence of tetrodotoxin. Inclusion of the NO synthase inhibitor 7-nitroindazole (100 μmol/L) prevented the
l
-arginine–evoked responses. These results demonstrate that NO differentially regulates excitatory and inhibitory neurotransmission, facilitating GABAergic and diminishing glutamatergic and glycinergic neurotransmission to cardiac vagal neurons.
Collapse
Affiliation(s)
- Harriet Kamendi
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye St, NW, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Waki H, Murphy D, Yao ST, Kasparov S, Paton JFR. Endothelial NO Synthase Activity in Nucleus Tractus Solitarii Contributes to Hypertension in Spontaneously Hypertensive Rats. Hypertension 2006; 48:644-50. [PMID: 16940227 DOI: 10.1161/01.hyp.0000238200.46085.c6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NO is implicated as a major modulator of central nervous circuits regulating cardiovascular activity. Based on previous data, we hypothesized that overactivity of endothelial NO synthase (eNOS) within the nucleus tractus solitarii (NTS) could contribute to the hypertension in the spontaneously hypertensive rat (SHR). Using real-time PCR, we found that endogenous eNOS mRNA was greater in the NTS of mature, but not juvenile prehypertensive SHRs compared with aged-matched Wistar Kyoto (WKY) rats. To test the functional significance of this, we chronically blocked eNOS activity in the NTS in the adult SHR by in vivo adenoviral-mediated gene transfer of a dominant-negative form of eNOS; data were compared with WKY rats. This resulted in a fall in arterial pressure in the SHR but not WKY rats. In both rat strains, cardiac baroreceptor reflex gain and the high-frequency spectral component of heart rate variability increased. Thus, endogenous eNOS activity in the NTS plays a major role in determining the set point of arterial pressure in the SHR and contributes to maintaining high arterial blood pressure in this animal model of human hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Hirooka Y. Localized gene transfer and its application for the study of central cardiovascular control. Auton Neurosci 2006; 126-127:120-9. [PMID: 16616703 DOI: 10.1016/j.autneu.2006.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 01/22/2023]
Abstract
The arterial baroreceptor reflex is the major feedback control system that acts to stabilize blood pressure. Abnormalities of this reflex are considered to be an underlying mechanism in the cardiovascular diseases such as hypertension and heart failure. There is accumulating evidence, however, that central nervous system mechanisms are involved in the enhanced sympathetic drive that occurs in these disease states. This article reviews studies performed in our laboratory in which a gene transfer technique, in combination with other methods, was used to determine the functional role of the central control of cardiovascular regulation. We developed a technique to transfer adenovirus vectors encoding specific genes into the nucleus tractus solitarii (NTS) or the rostral ventral medulla (RVLM) of rats in vivo. We applied this technique to hypertensive rats as well as in mice with heart failure to explore the pathophysiological significance of nitric oxide, reactive oxygen species, and Rho-kinase.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
28
|
Wang S, Teschemacher AG, Paton JFR, Kasparov S. Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB J 2006; 20:1537-9. [PMID: 16720728 DOI: 10.1096/fj.05-5547fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cellular mechanisms mediating nitric oxide (NO) modulation of the inhibitory transmission in the nucleus tractus solitarii (NTS) remain unclear, even though this could be extremely important for various physiological and pathological processes. Specifically, in the NTS NO-evoked glutamate and gamma-aminobutyric acid (GABA) release might contribute to pathological hypertension. In cultured rat brainstem slices, NTS GABAergic neurons were targeted using an adenoviral vector to express enhanced green fluorescent protein and studied with a combination of patch clamp and confocal microscopy. Low nanomolar concentrations of NO increased intracellular Ca2+ concentration ([Ca2+]i) in somata, dendrites, and putative axons of GABAergic neurons, with axons being the most sensitive compartment. This effect was cGMP mediated and not related to depolarization or indirect presynaptic effects on glutamatergic transmission. Blockade of the cyclic adenosine diphosphate ribose (cADPR)/ryanodine-sensitive stores but not the inositol triphosphate-sensitive stores, inhibited NO effect. Since cADPR/ryanodine-sensitive stores are implicated in the Ca2+-induced Ca2+ release, NO can be expected to potentiate GABA release. In support of this notion, a cADPR antagonist abolished the NO-induced potentiation of GABAergic inhibitory postsynaptic potentials in the NTS. Thus, the NO-cGMP-cADPR-Ca2+ pathway, previously described in sea urchin eggs, also operates in mammalian GABAergic neurons. Potentiation of GABA release by NO may have implications for numerous brain functions.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
29
|
Dias ACR, Colombari E. Central nitric oxide modulates hindquarter vasodilation elicited by AMPA receptor stimulation in the NTS of conscious rats. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1330-6. [PMID: 16384860 DOI: 10.1152/ajpregu.00150.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 +/- 40 to 92 +/- 32 beats/min but did not alter the hypertension induced by AMPA (35 +/- 5 mmHg before pretreatment, 43 +/- 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.
Collapse
|
30
|
Ito K, Hirooka Y, Hori N, Kimura Y, Sagara Y, Shimokawa H, Takeshita A, Sunagawa K. Inhibition of Rho-Kinase in the Nucleus Tractus Solitarius Enhances Glutamate Sensitivity in Rats. Hypertension 2005. [DOI: 10.1161/01.hyp.0000177119.23178.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Rho/Rho–kinase pathway in the central nervous system is involved in the maintenance of dendritic spines, which form the postsynaptic contact sites of excitatory synapses. Inhibition of the Rho–kinase pathway in neuron promotes dendritic spines or branches. In contrast, activation of the Rho/Rho–kinase pathway reduces dendritic spines or branches. Recent studies suggest that morphological changes of dendritic spines occur rapidly, and spine morphology is associated with glutamate sensitivity. The aim of the present study was to determine whether Rho-kinase activity affects glutamate sensitivity in the nucleus tractus solitarii (NTS) of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). We first examined the effects of unilateral glutamate injection in the NTS. There was a significantly smaller decrease in arterial pressure in SHR than in WKY. We then examined the depressor responses evoked by unilateral glutamate injection into the NTS after preinjection of Y-27632, a specific Rho-kinase inhibitor. Preinjection of Y-27632 enhanced the glutamate response in both strains. However, the magnitude of the augmentation was significantly greater in SHR than in WKY. Furthermore, we recorded single-unit activity of NTS neurons from medulla brain slice preparations.
N
-methyl-
d
-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was applied iontophoretically to the recorded neurons, and neuronal activity was recorded before and after Y-27632 perfusion. Y-27632 perfusion increased the response to NMDA and AMPA. These results suggest that inhibition of Rho-kinase activity in the NTS enhances glutamate sensitivity in WKY and SHR and might improve impaired glutamate sensitivity in SHR.
Collapse
Affiliation(s)
- Koji Ito
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuaki Hori
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikuni Kimura
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoji Sagara
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroaki Shimokawa
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Takeshita
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- From the Departments of Cardiovascular Medicine (K.I., Y.H., Y.K., Y.S., H.S., A.T., K.S.) and Pharmacology (N.H.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
31
|
Ishide T, Preuss CV, Maher TJ, Ally A. Neurochemistry within ventrolateral medulla and cardiovascular effects during static exercise following eNOS antagonism. Neurosci Res 2005; 52:21-30. [PMID: 15811549 DOI: 10.1016/j.neures.2005.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/24/2004] [Accepted: 01/07/2005] [Indexed: 11/29/2022]
Abstract
Nitric oxide synthase (NOS), necessary for the production of nitric oxide from l-arginine, exists in three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). We have previously demonstrated that blockade of nNOS within the rostral (RVLM) and caudal ventrolateral medulla (CVLM) differentially modulated cardiovascular responses to static exercise [Ishide, T., Nauli, S.M., Maher, T.J., Ally, A., 2003. Cardiovascular responses and neurotransmitter changes following blockade of nNOS within the ventrolateral medulla during static muscle contraction. Brain Res. 977, 80-89]. In this study, we have examined the effects of bilaterally microdialyzing a specific eNOS antagonist into the RVLM and CVLM on cardiovascular responses and glutamatergic/GABAergic neurotransmission during the exercise pressor reflex in anesthetized rats. Bilateral microdialysis of a selective eNOS antagonist, l-N(5)-(1-iminoethyl)ornithine (l-NIO; 10.0 microM) into the RVLM potentiated cardiovascular responses and increased extracellular fluid glutamate levels during a static muscle contraction. At the same time, levels of GABA within the RVLM were decreased. The cardiovascular responses and neurochemical changes to muscle contraction recovered after discontinuation of the drug. In contrast, bilateral application of the eNOS antagonist into the CVLM attenuated cardiovascular responses and glutamate concentrations during a static muscle contraction, but augmented levels of GABA. These results demonstrate that eNOS within the ventrolateral medulla plays an important role in modulating glutamate/GABAergic neurotransmission, that in turn regulates the exercise pressor reflex. The present study provides further evidence of simultaneous sympathoexcitatory and sympathoinhibitory effects of nitric oxide within the RVLM and CVLM involved in the neural control of circulation during static exercise.
Collapse
Affiliation(s)
- Takeshi Ishide
- Department of Cardiovascular Science and Medicine, Chiba University, School of Medicine, Chiba 260, Japan
| | | | | | | |
Collapse
|
32
|
Kaczyńska K, Szereda-Przestaszewska M. Carotid sinus nerve section abolishes NMDA evoked respiratory effects in anaesthetised rats. Respir Physiol Neurobiol 2005; 145:127-34. [PMID: 15705528 DOI: 10.1016/j.resp.2004.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/23/2022]
Abstract
Respiratory effects of NMDA injection into the right atrium were investigated in 11 urethane-chloralose anaesthetised and spontaneously breathing rats. The animals were initially vagotomised and six of them were subdued to the subsequent carotid sinus nerve section, and the other five were treated by NMDA antagonist. Bolus injection of NMDA (27 micromol/kg) induced the depression of ventilation in all rats, due to the decrease in tidal volume from a baseline of 2.98 +/- 0.4 to 2.63 +/- 0.3 ml (P < 0.01), and slowing down of the respiratory rate from a baseline of 56 +/- 2.6 to 27 +/- 2.0 breaths min(-1) (P < 0.0001). Section of the carotid sinus nerves (CSNs) precluded the respiratory depression. Prolongation of the expiratory time was reduced by this neurotomy from 5.07 +/- 2.6 to 1.04 +/- 0.03 (P < 0.05). In five rats the blockade of NMDA receptors with the selective antagonist (AP-7) was likewise efficient in eliminating the post-NMDA respiratory response. NMDA increased mean arterial blood pressure and this rise occurred beyond the afferentation from the carotid bodies and the blockade of NMDA receptors. Results of this study indicate that inhibition of the respiratory drive evoked by NMDA administered via the peripheral circulation requires intact carotid bodies and activation of NMDA receptors.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiratory Reflexes, Polish Academy of Sciences Medical Research Centre, 5 Pawińskiego St., 02-106 Warsaw, Poland.
| | | |
Collapse
|
33
|
Morhenn VB, Murakami M, O'Grady T, Nordberg J, Gallo RL. Characterization of the expression and function of N-methyl-D-aspartate receptor in keratinocytes. Exp Dermatol 2005; 13:505-11. [PMID: 15265015 DOI: 10.1111/j.0906-6705.2004.00186.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is expressed on neural tissue where it gates calcium ion entry upon stimulation. Using immunohistochemistry, it has been demonstrated in this study that the NMDAR1 receptor is also expressed on keratinocytes (KCs) in normal human skin and inflamed psoriatic skin in vivo. Furthermore, the NMDA receptor was functional as demonstrated by the ability of this receptor to trigger Ca++ influx in KCs. Incubation of cultured, human KCs with MK-801 decreases the cell growth and induces an increase in apoptosis. These findings demonstrate that the KC expression of NMDA receptor is a mechanism through which the influx of Ca++ into the cell can be regulated and suggest that the expression of this receptor may play a role in the regulation of KC growth and differentiation.
Collapse
Affiliation(s)
- V B Morhenn
- Division of Dermatology, University of California, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
34
|
Dias ACR, Vitela M, Colombari E, Mifflin SW. Nitric oxide modulation of glutamatergic, baroreflex, and cardiopulmonary transmission in the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 2005; 288:H256-62. [PMID: 15598868 DOI: 10.1152/ajpheart.01149.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of l-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of ( RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after l-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-d-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after l-NAME. To examine baroreceptor and cardiopulmonary reflex function, l-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 μg iv) before and after l-NAME. Five minutes after l-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 μg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after l-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.
Collapse
|
35
|
Kimura Y, Hirooka Y, Sagara Y, Ito K, Kishi T, Shimokawa H, Takeshita A, Sunagawa K. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res 2004; 96:252-60. [PMID: 15591232 DOI: 10.1161/01.res.0000152965.75127.9d] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study examined the role of inducible nitric oxide synthase (iNOS) in the rostral ventrolateral medulla (RVLM) of the brain stem, where the vasomotor center is located, in the control of blood pressure and sympathetic nerve activity. Adenovirus vectors encoding iNOS (AdiNOS) or beta-galactosidase (Adbetagal) were transfected into the RVLM in Wistar-Kyoto (WKY) rats. Blood pressure and heart rate were monitored using a radiotelemetry system. iNOS expression in the RVLM was confirmed by immunohistochemical staining or Western blot analysis. Mean arterial pressure significantly increased from day 6 to day 11 after AdiNOS transfection, but did not change after Adbetagal transfection. Urinary norepinephrine excretion was significantly higher in AdiNOS-transfected rats than in Adbetagal-transfected rats. Microinjection of aminoguanidine or S-methylisothiourea, iNOS inhibitors, or tempol, an antioxidant, significantly attenuated the pressor response evoked by iNOS gene transfer. The levels of thiobarbituric acid-reactive substances, a marker of oxidative stress, were significantly greater in AdiNOS-transfected rats than in Adbetagal-transfected rats. Dihydroethidium fluorescence in the RVLM was increased in AdiNOS-transfected rats. In addition, nitrotyrosine-positive cells were observed in the RVLM only in AdiNOS-transfected rats. Intracisternal infusion of tempol significantly attenuated the pressor response and the increase in the levels of thiobarbituric acid-reactive substances induced by AdiNOS transfection. These results suggest that overexpression of iNOS in the RVLM increases blood pressure via activation of the sympathetic nervous system, which is mediated by an increase in oxidative stress.
Collapse
Affiliation(s)
- Yoshikuni Kimura
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chianca DA, Lin LH, Dragon DN, Talman WT. NMDA receptors in nucleus tractus solitarii are linked to soluble guanylate cyclase. Am J Physiol Heart Circ Physiol 2004; 286:H1521-7. [PMID: 15020305 DOI: 10.1152/ajpheart.00236.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to test the hypothesis that cardiovascular responses to activation of ionotropic, but not metabotropic, glutamate receptors in the nucleus tractus solitarii (NTS) depend on soluble guanylate cyclase (sGC) and that inhibition of sGC would attenuate baroreflex responses to changes in arterial pressure. In adult male Sprague-Dawley rats anesthetized with chloralose, the ionotropic receptor agonists N-methyl-d-aspartate (NMDA) and dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and the metabotropic receptor agonist trans-dl-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were microinjected into the NTS before and after microinjection of sGC inhibitors at the same site. Inhibition of sGC produced significant dose-dependent attenuation of cardiovascular responses to NMDA but did not alter responses produced by injection of AMPA or ACPD. Bilateral inhibition of sGC did not alter arterial pressure, nor did it attenuate baroreflex responses to pharmacologically induced changes in arterial pressure. This study links sGC with NMDA, but not AMPA or metabotropic, receptors in cardiovascular signal transduction through NTS.
Collapse
|
37
|
Hirooka Y. Adenovirus-mediated gene transfer into the brain stem to examine cardiovascular function: role of nitric oxide and Rho-kinase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:233-49. [PMID: 14769438 DOI: 10.1016/j.pbiomolbio.2003.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system plays an important role in the regulation of blood pressure via the sympathetic nervous system. Abnormal regulation of the sympathetic nerve activity is involved in the pathophysiology of hypertension. In particular, the brain stem, including the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM), is a key site that controls and maintains blood pressure via the sympathetic nervous system. Nitric oxide (NO) is a unique molecule that influences sympathetic nerve activity. Rho-kinase is a downstream effector of the small GTPase, Rho, and is implicated in various cellular functions. We developed a technique to transfer adenovirus vectors encoding endothelial nitric oxide synthase and dominant-negative Rho-kinase into the NTS or the RVLM of rats in vivo. We applied this technique to hypertensive rats to explore the physiological significance of NO and Rho-kinase.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
38
|
Ishide T, Nauli SM, Maher TJ, Ally A. Cardiovascular responses and neurotransmitter changes following blockade of nNOS within the ventrolateral medulla during static muscle contraction. Brain Res 2003; 977:80-9. [PMID: 12788516 DOI: 10.1016/s0006-8993(03)02761-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine through the activity of the synthetic enzyme, NO synthase (NOS). Previous studies have demonstrated the roles of the three isoforms of NOS, namely endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS) in cardiovascular regulation. However, no investigation has been done to study their individual role in modulating cardiovascular responses during static skeletal muscle contraction. In this study, we determined the effects of microdialyzing a specific nNOS antagonist into the rostral (RVLM) and caudal ventrolateral medulla (CVLM) on cardiovascular responses and glutamatergic/GABAergic neurotransmission during the exercise pressor reflex using rats. We hypothesized that the NO modulation of the exercise pressor reflex was largely influenced by specific nNOS activity within the ventrolateral medulla. Bilateral microdialysis of a selective nNOS antagonist, 1-(2-trifluoromethylphenyl)-imidazole (1.0 microM), for 30 or 60 min into the RVLM potentiated cardiovascular responses and glutamate release during a static muscle contraction. Levels of GABA within the RVLM were decreased. The cardiovascular responses and neurochemical changes to muscle contraction recovered following discontinuation of the drug. In contrast, bilateral application of the nNOS antagonist into CVLM attenuated cardiovascular responses and glutamate release during a static muscle contraction, but augmented GABA release. These results demonstrate that nNOS in the ventrolateral medulla plays an important role in modulating glutamatergic/GABAergic neurotransmission that regulates the exercise pressor reflex, and contributes to the sympathoexcitatory and sympathoinhibitory actions of NO within the RVLM and CVLM, respectively.
Collapse
Affiliation(s)
- Takeshi Ishide
- Department of Cardiovascular Science and Medicine, Chiba University School of Medicine, Chiba 260, Japan
| | | | | | | |
Collapse
|
39
|
Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 2003; 26:325-31. [PMID: 12733701 DOI: 10.1291/hypres.26.325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previously, we demonstrated that endothelial nitric oxide synthase (eNOS) gene transfer into the nucleus tractus solitarii (NTS) decreased blood pressure, heart rate and sympathetic nerve activity in conscious normotensive Wistar-Kyoto rats (WKY). In order to determine whether overexpression of eNOS in the NTS causes different effects on blood pressure and heart rate between spontaneously hypertensive rats (SHR) and WKY, we transfected adenovirus vectors encoding either eNOS (AdeNOS) or beta-galactosidase (Ad beta gal) into the NTS of SHR and WKY in vivo. The local expression of eNOS in the NTS was confirmed by Western blot analysis for eNOS protein, and the magnitude of expression did not differ between SHR and WKY. Blood pressure and heart rate were monitored by the use of a radio-telemetry system in a conscious state before and 7 days after the gene transfer. Systolic blood pressure (SBP) and heart rate decreased on day 7 in both AdeNOS-transfected SHR and WKY. However, the magnitude of decreases in SBP of AdeNOS-transfected SHR was greater than that of AdeNOS-transfected WKY (-24.1 +/- 2.9 vs. -15.9 +/- 2.1 mmHg, p < 0.05). Transfection of Ad beta gal into the NTS did not alter SBP in either group. A depressor response evoked by microinjection of L-glutamate into the NTS did not differ between the two strains. These results suggest that overexpression of eNOS in the NTS causes a greater depressor response in SHR than in WKY in a conscious state. An abnormality of the L-arginine-NO pathway in the NTS may be related to the hypertensive mechanism(s) of SHR.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Using immunohistochemistry and Western blot, the expression of inducible nitric oxide synthase (iNOS) in the lateral wall and organ of Corti was examined in normal (unstimulated) and stimulated mice and guinea pigs. The stimuli were: (1). injection of bacterial lipopolysaccharide (LPS, 5 mg/ml) into the middle ear through the tympanic membrane and (2). exposure to a 110 dB SPL (A-weighted) broadband noise, 3 h/day, for three consecutive days. For the unstimulated condition, weak iNOS expression was found in the vascular endothelium, marginal cells, nerve fibers, stereocilia of hair cells and Hensen's cells of the organ of Corti. More intense iNOS fluorescence signals were observed in cochlear tissues (particularly in hair cells and stria vascularis marginal cells) in animals exposed to loud sound or treated with LPS. Although the precise roles of iNOS expression in normal cochlear function have yet to be determined, enhanced iNOS expression following noise exposure and LPS suggests its participation in cochlear pathophysiology, including noise- and inflammatory factor-induced hearing loss.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology, The General Hospital of the CPAPA, Beijing 100039, PR China
| | | | | |
Collapse
|
41
|
Dias ACR, Colombari E, Mifflin SW. Effect of nitric oxide on excitatory amino acid-evoked discharge of neurons in NTS. Am J Physiol Heart Circ Physiol 2003; 284:H234-40. [PMID: 12485819 DOI: 10.1152/ajpheart.00037.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-methyl-d-aspartate (NMDA) and non-NMDA excitatory amino acid (EAA) receptor subtypes are involved in the integration of visceral afferent inputs within the nucleus of the solitary tract (NTS). Microinjection studies indicate interactions between nitric oxide (NO) and EAA receptors within the NTS. To examine these interactions at the single cell level, this study characterized the effects of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO donor 3-[2-hydroxy-2-nitroso-1-propylhydrazino]-1-propanamine (PAPA-NONOate) on the excitatory responses of vagus nerve (VN)-evoked NTS neurons to the activation of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in rats. Iontophoresis of l-NAME did not alter spontaneous or VN-evoked discharges, but significantly decreased the number of action potentials (APs) evoked by iontophoretic application of AMPA. The effects of l-NAME on NMDA-evoked discharge were variable; for the population, l-NAME did not change the number of APs evoked by NMDA. PAPA-NONOate enhanced the spontaneous discharge and the number of APs elicited by AMPA but not NMDA. Iontophoresis of the inactive enantiomers N(G)-nitro-d-arginine methyl ester and hydroxydiazenesulfonic acid 1-oxide disodium salt had no effect on AMPA-evoked discharge. Our data suggest that NO facilitates AMPA-mediated neuronal transmission within the NTS.
Collapse
|
42
|
Affiliation(s)
- Harald M Stauss
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität zu Berlin (Charité), 10117 Berlin, Germany
| |
Collapse
|
43
|
Yamanashi K, Miyamae T, Sasaki Y, Maeda M, Hirano H, Misu Y, Goshima Y. Involvement of nitric oxide production via kynurenic acid-sensitive glutamate receptors in DOPA-induced depressor responses in the nucleus tractus solitarii of anesthetized rats. Neurosci Res 2002; 43:231-8. [PMID: 12103441 DOI: 10.1016/s0168-0102(02)00037-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have proposed the hypothesis that L-3,4-dihydroxyphenylalanine (DOPA) plays a role of neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS). In the present study, we tried to clarify whether glutamate receptors and/or nitric oxide (NO), important modulators for central cardiovascular regulation, are involved in the DOPA-induced cardiovascular responses in the nucleus. Male Wistar rats were anesthetized with urethane and artificially ventilated. Compounds or antisense oligos (17-mer) for neuronal NO synthase were microinjected into depressor sites of the unilateral nucleus. DOPA 30-300 pmol microinjected into the nucleus dose-dependently induced depressor and bradycardic responses. Prior injection of kynurenic acid (600 pmol) suppressed DOPA (300 pmol)-induced responses by approximately 80%. Prior injection of N(G)-monomethyl-L-arginine 100 nmol, a potent NO synthase inhibitor, reversibly attenuated by approximately 90% DOPA-induced responses, while the D-isomer 100 nmol produced no effect. Furthermore, prior injection of neuronal NO synthase antisense oligos (20 pmol) reversibly reduced by approximately 70% responses to DOPA. Sense or scrambled oligos produced no effect. A NO precursor L-arginine (30 nmol) induced depressor and bradycardic responses, but these responses were not affected by kynurenic acid. These results suggest important roles for glutamate receptors and NO in DOPA induced-depressor and bradycardic responses in the NTS.
Collapse
Affiliation(s)
- Kaori Yamanashi
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Shi X, Ren T, Nuttall AL. The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound. Hear Res 2002; 164:49-58. [PMID: 11950524 DOI: 10.1016/s0378-5955(01)00409-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A nitric oxide (NO)-selective sensor (tip diameter 30 microm) was inserted into the perilymph of the basal turn of the guinea pig cochlea. The basal level and stimulation-induced changes of NO were measured. The mean (+/-S.E.M.) basal level of NO was 273+/-42.9 nM. Following perilymphatic perfusion of the artificial perilymph containing NO synthase (NOS) substrate L-arginine (100 microM) combined with cofactor (6R)-5,6,7,8-tetrahydrobiopterin dihydrochloride (100 microM), a rapid and significant increase of NO to a mean concentration of 392+/-32.3 nM (P < 0.01, n = 10) was recorded. In contrast, a significant decrease of mean NO concentration to 180+/-32.7 nM (P < 0.01, n = 10) was observed following the perfusion of the NOS-inhibiting agent N(G)-nitro-L-arginine methyl ester (100 microM). No change in the NO concentration was found following the perfusion of either artificial perilymph or N(G)-monomethyl-D-arginine (100 microM) solution employed as controls. Broadband noise exposure (3 h/day at 120 dBA SPL) for three consecutive days produced an increase in NO concentration to 618+/-60.7 nM (P < 0.05, n = 10) in the perilymph. In addition, by using specific dyes for NO, 4,5-diaminofluoresceine diacetate and for the reactive oxygen species (ROS), dihydrorhodamine 1,2,3, the distribution of NO in the whole mounts of the organ of Corti and the production of ROS in vivo in the organ of Corti were investigated in both control (n = 5) and noise-exposed (n = 5) animals. The more intense NO and ROS fluorescence was observed in both the inner and outer hair cells in the noise-exposed groups. It is proposed that both the basal level and the increase in NO concentration following the addition of substrate (L-arginine) are produced by the constitutive NOS while the elevated NO and ROS following noise exposure indicate that NO may be involved in noise-induced hearing loss.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology, the General Hospital of the CPAPA, Beijing 100039, PR China
| | | | | |
Collapse
|
45
|
Kishi T, Hirooka Y, Sakai K, Shigematsu H, Shimokawa H, Takeshita A. Overexpression of eNOS in the RVLM Causes Hypotension and Bradycardia Via GABA Release. Hypertension 2001. [DOI: 10.1161/hyp.38.4.896] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we examine the role of NO located in the rostral ventrolateral medulla (RVLM) in the control of blood pressure and the activity of the sympathetic nervous system. To determine the effect of an increase in NO production in the RVLM on blood pressure in conscious rats, adenovirus vectors encoding either endothelial NO synthase (AdeNOS) or β-galactosidase (Adβgal) were transfected into the bilateral RVLM. The local expression of endothelial NO synthase (eNOS) protein in the RVLM was confirmed by immunohistochemical staining for the eNOS protein and by Western blot analysis. Mean arterial blood pressure (MAP) and heart rate, which were monitored using a radio-telemetry system, were significantly decreased in the AdeNOS-treated group from day 5 to day 10 after the gene transfer. Urinary norepinephrine excretion was decreased on day 7 after the gene transfer in the AdeNOS-treated group. Microinjection of either N
G
-monomethyl-
l
-arginine (L-NMMA) or bicuculine, a γ-amino butyric acid (GABA) receptor antagonist, into the RVLM at day 7 after the gene transfer increased MAP to significantly greater levels in the AdeNOS-treated group. However, microinjection of kynurenic acid into the RVLM on day 7 after the gene transfer did not alter MAP levels in either group. GABA and glutamate levels in the RVLM, when measured by in vivo microdialysis, were significantly increased in the AdeNOS-treated group. These results suggest that the increase in NO production caused by the overexpression of eNOS in the bilateral RVLM decreases blood pressure, heart rate, and sympathetic nerve activity in conscious rats. Furthermore, these responses may be mediated by an increased release of GABA in the RVLM.
Collapse
Affiliation(s)
- Takuya Kishi
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirooka
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Sakai
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Shigematsu
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Takeshita
- From the Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|