1
|
Hultström M, Peng D, Becirovic Agic M, Cupples CG, Cupples WA, Mitrou N. Surgical trauma is associated with renal immune cell activation in rats: A microarray study. Physiol Rep 2021; 9:e15142. [PMID: 34889077 PMCID: PMC8661512 DOI: 10.14814/phy2.15142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a common perioperative complication that is associated with increased mortality. This study investigates the renal gene expression in male Long-Evans rats after prolonged anesthesia and surgery to detect molecular mechanisms that could predispose the kidneys to injury upon further insults. Healthy and streptozotocin diabetic rats that underwent autoregulatory investigation in an earlier study were compared to rats that were sacrificed quickly for mRNA quantification in the same study. Prolonged surgery caused massive changes in renal mRNA expression by microarray analysis, which was validated by quantitative real-time PCR with good correlation. Furthermore, bioinformatics analysis using gene ontology and pathway analysis identified biological processes involved in immune system activation, such as immune system processes (p = 1.3 × 10-80 ), immune response (p = 1.3 × 10-60 ), and regulation of cytokine production (p = 1.7 × 10-52 ). PCR analysis of specific cell type markers indicated that the gene activation in kidneys was most probably macrophages, while granulocytes and T cell appeared less activated. Immunohistochemistry was used to quantify immune cell infiltration and showed no difference between groups indicating that the genetic activation depends on the activation of resident cells, or infiltration of a relatively small number of highly activated cells. In follow-up experiments, surgery was performed on healthy rats under standard and sterile condition showing similar expression of immune cell markers, which suggests that the inflammation was indeed caused by the surgical trauma rather than by bacterial infection. In conclusion, surgical trauma is associated with rapid activation of immune cells, most likely macrophages in rat kidneys.
Collapse
Affiliation(s)
- Michael Hultström
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
- Department of Surgical SciencesAnesthesia and Intensive Care MedicineUppsala UniversityUppsalaSweden
| | - Di Peng
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
| | - Mediha Becirovic Agic
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
| | - Claire G. Cupples
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - William A. Cupples
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Nicholas Mitrou
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
- Department of SurgeryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
2
|
Zehra T, Cupples WA, Braam B. Tubuloglomerular Feedback Synchronization in Nephrovascular Networks. J Am Soc Nephrol 2021; 32:1293-1304. [PMID: 33833078 PMCID: PMC8259654 DOI: 10.1681/asn.2020040423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To perform their functions, the kidneys maintain stable blood perfusion in the face of fluctuations in systemic BP. This is done through autoregulation of blood flow by the generic myogenic response and the kidney-specific tubuloglomerular feedback (TGF) mechanism. The central theme of this paper is that, to achieve autoregulation, nephrons do not work as single units to manage their individual blood flows, but rather communicate electrically over long distances to other nephrons via the vascular tree. Accordingly, we define the nephrovascular unit (NVU) to be a structure consisting of the nephron, glomerulus, afferent arteriole, and efferent arteriole. We discuss features that require and enable distributed autoregulation mediated by TGF across the kidney. These features include the highly variable topology of the renal vasculature which creates variability in circulation and the potential for mismatch between tubular oxygen demand and delivery; the self-sustained oscillations in each NVU arising from the autoregulatory mechanisms; and the presence of extensive gap junctions formed by connexins and their properties that enable long-distance transmission of TGF signals. The existence of TGF synchronization across the renal microvascular network enables an understanding of how NVUs optimize oxygenation-perfusion matching while preventing transmission of high systemic pressure to the glomeruli, which could lead to progressive glomerular and vascular injury.
Collapse
Affiliation(s)
- Tayyaba Zehra
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - William A. Cupples
- Department of Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Branko Braam
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Thomson SC, Vallon V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am J Physiol Renal Physiol 2021; 320:F761-F771. [PMID: 33645318 PMCID: PMC8174804 DOI: 10.1152/ajprenal.00552.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/10/2023] Open
Abstract
Inhibitors of the main proximal tubular Na-glucose cotransporter (SGLT2) mitigate diabetic glomerular hyperfiltration and have been approved by the United States Food and Drug Administration for slowing the progression of diabetic kidney disease. It has been proposed that SGLT2 inhibitors improve hard renal outcomes by reducing glomerular capillary pressure (PGC) via a tubuloglomerular feedback (TGF) response to a decrease in proximal reabsorption (Jprox). However, the effect of SGLT2 inhibition on PGC has not been measured. Here, we studied the effects of acute SGLT2 blockade (ertugliflozin) on Jprox and glomerular hemodynamics in two-period micropuncture experiments using streptozotocin-induced diabetic rats fed high- or low-NaCl diets. PGC was measured by direct capillary puncture or computed from tubular stop-flow pressure (PSF). TGF is intact while measuring PGC directly but rendered inoperative when measuring PSF. Acute SGLT2 inhibitor reduced Jprox by ∼30%, reduced PGC by 5-8 mmHg, and reduced glomerular filtration rate (GFR) by ∼25% (all P < 0.0001) but had no effect on PSF. The decrease in PGC was larger with the low-NaCl diet (8 vs. 5 mmHg, P = 0.04) where PGC was higher to begin with (54 vs. 50 mmHg, P = 0.003). Greater decreases in PGC corresponded, unexpectedly, to lesser decreases in GFR (P = 0.04). In conclusion, these results confirm expectations that PGC would decline in response to acute SGLT2 inhibition and that a functioning TGF system is required for this. We infer a contribution of postglomerular vasorelaxation to the TGF responses where decreases in PGC were large and decreases in GFR were small.NEW & NOTEWORTHY It has been theorized that Na-glucose cotransporter (SGLT2) blockade slows progression of diabetic kidney disease by reducing physical strain on the glomerulus. This is the first direct measurement of intraglomerular pressure during SGLT2 blockade. Findings confirmed that SGLT2 blockade does reduce glomerular capillary pressure, that this is mediated through tubuloglomerular feedback, and that the tubuloglomerular feedback response to SGLT2 blockade involves preglomerular vasoconstriction and postglomerular vasorelaxation.
Collapse
Affiliation(s)
- Scott Culver Thomson
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, California; and Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Volker Vallon
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, California; and Veterans Affairs San Diego Healthcare System, La Jolla, California
| |
Collapse
|
4
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
5
|
Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F443-F454. [DOI: 10.1152/ajprenal.00280.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and strategies based on this blood sugar-reducing and appetite-suppressing hormone are used to treat obesity and type 2 diabetes. However, the GLP-1 receptor (GLP-1R) is also present in the kidney, where it influences renal function. The effect of GLP-1 on the kidney varies between humans and rodents. The effect of GLP-1 on kidney function also seems to vary depending on its concentration and the physiological or pathological state of the kidney. In studies with rodents or humans, acute infusion of pharmacological doses of GLP-1 stimulates natriuresis and diuresis. However, the effect on the renal vasculature is less clear. In rodents, GLP-1 infusion increases renal plasma flow and glomerular filtration rate, suggesting renal vasodilation. In humans, only a subset of the study participants exhibits increased renal plasma flow and glomerular filtration rate. Differential status of kidney function and changes in renal vascular resistance of the preglomerular arterioles may account for the different responses of the human study participants. Because renal function in patients with type 2 diabetes is already at risk or compromised, understanding the effects of GLP-1R activation on kidney function in these patients is particularly important. This review examines the distribution of GLP-1R in the kidney and the effects elicited by GLP-1 or GLP-1R agonists. By integrating results from acute and chronic studies in healthy individuals and patients with type 2 diabetes along with those from rodent studies, we provide insight into how GLP-1R activation affects renal function and autoregulation.
Collapse
Affiliation(s)
- Aleksander Vauvert R. Hviid
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Fierce debate has developed whether low-sodium intake, like high-sodium intake, could be associated with adverse outcome. The debate originates in earlier epidemiological studies associating high-sodium intake with high blood pressure and more recent studies demonstrating a higher cardiovascular event rate with both low- and high-sodium intake. This brings into question whether we entirely understand the consequences of high- and (very) low-sodium intake for the systemic hemodynamics, the kidney function, the vascular wall, the immune system, and the brain. Evolutionarily, sodium retention mechanisms in the context of low dietary sodium provided a survival advantage and are highly conserved, exemplified by the renin-angiotensin system. What is the potential for this sodium-retaining mechanism to cause harm? In this paper, we will consider current views on how a sodium load is handled, visiting aspects including the effect of sodium on the vessel wall, the sympathetic nervous system, the brain renin-angiotensin system, the skin as "third compartment" coupling to vascular endothelial growth factor C, and the kidneys. From these perspectives, several mechanisms can be envisioned whereby a low-sodium diet could potentially cause harm, including the renin-angiotensin system and the sympathetic nervous system. Altogether, the uncertainties preclude a unifying model or practical clinical guidance regarding the effects of a low-sodium diet for an individual. There is a very strong need for fundamental and translational studies to enhance the understanding of the potential adverse consequences of low-salt intake as an initial step to facilitate better clinical guidance.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Physiology, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine / Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| | - Xiaohua Huang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William A Cupples
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shereen M Hamza
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Mitrou N, Morrison S, Mousavi P, Braam B, Cupples WA. Transient impairment of dynamic renal autoregulation in early diabetes mellitus in rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R892-901. [DOI: 10.1152/ajpregu.00247.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023]
Abstract
Renal autoregulation is impaired in early (1 wk) diabetes mellitus (DM) induced by streptozotocin, but effective in established DM (4 wk). Furthermore nitric oxide synthesis (NOS) inhibition with NG-nitro-l-arginine methyl ester (l-NAME) significantly improved autoregulation in early DM but not in established DM. We hypothesized that autoregulation is transiently impaired in early DM because of increased NO availability in the kidney. Because of the conflicting evidence available for a role of NO in DM, we tested the hypothesis that DM reduces autoregulation effectiveness by reducing the spatial similarity of autoregulation. Male Long-Evans rats were divided into control (CON) and diabetic (DM; streptozotocin) groups and followed for either 1 wk (CON1, n = 6; DM1, n = 5) or 4 wk (CON4, n = 7; DM4, n = 7). At the end of the experiment, dynamic autoregulation was assessed in isoflurane-anesthetized rats by whole kidney RBF during baseline, NOS1 inhibition, and nonselective NOS inhibition. Kidney surface perfusion, monitored with laser speckle contrast imaging, was used to assess spatial heterogeneity of autoregulation. Autoregulation was significantly impaired in DM1 rats and not impaired in DM4 rats. l-NAME caused strong renal vasoconstriction in all rats, but did not significantly affect autoregulation dynamics. Autoregulation was more spatially heterogeneous in DM1, but not DM4. Therefore, our results, which are consistent with transient impairment of autoregulation in DM, argue against the hypothesis that this impairment is NO-dependent, and suggest that spatial properties of autoregulation may also contribute to reduced autoregulatory effectiveness in DM1.
Collapse
Affiliation(s)
- Nicholas Mitrou
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sidney Morrison
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paymon Mousavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Branko Braam
- Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - William A. Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
8
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Abstract
The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self-healing materials. We have shown that their ability to heal after damage arises from polymer mobility during hydration. Furthermore, we have shown film mobility dictates cell adhesion and spreading in a manner that is fundamentally different from previous work on mechanotransduction. In total, we hope that this Account presents a broad introduction to microgel research that intersects polymer chemistry, physics, and regenerative medicine. We expect that research intersection will continue to expand as we fill the knowledge gaps associated with soft materials in biological milieu.
Collapse
Affiliation(s)
- Shalini Saxena
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline E. Hansen
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - L. Andrew Lyon
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
11
|
Marañon RO, Juncos LA, Joo Turoni C, Karbiner S, Romero D, Peral de Bruno M. Tempol blunts afferent arteriolar remodeling in chronic nitric oxide-deficient hypertension without normalizing blood pressure. Clin Exp Hypertens 2013; 36:132-9. [DOI: 10.3109/10641963.2013.789047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Patinha D, Fasching A, Pinho D, Albino-Teixeira A, Morato M, Palm F. Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. Am J Physiol Renal Physiol 2013; 304:F614-22. [PMID: 23283998 DOI: 10.1152/ajprenal.00285.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na(+) handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT1 receptor antagonist candesartan, the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination. Compared with controls, the baseline blood pressure, RBF, and renal vascular resistance (RVR) were similar in diabetics, whereas the glomerular filtration rate (GFR) and filtration fraction (FF) were increased. Candesartan, DPCPX, or the combination increased RBF and decreased RVR similarly in all groups. In controls, the GFR was increased by DPCPX, but in diabetics, it was decreased by candesartan. The FF was decreased by candesartan and DPCPX, independently. DPCPX caused the most pronounced increase in fractional Na(+) excretion in both controls and diabetics, whereas candesartan or the combination only affected fractional Li(+) excretion in diabetics. These results suggest that RBF, via a unifying mechanism, and tubular function are under strict tonic control of both ANG II and adenosine in both control and diabetic kidneys. Furthermore, increased vascular AT1 receptor activity is a contribution to diabetes-induced hyperfiltration independent of any effect of adenosine A1 receptors.
Collapse
Affiliation(s)
- Daniela Patinha
- Uppsala Univ., Dept. of Medical Cell Biology, Biomedical Center, Box 571, 751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Sima CA, Koeners MP, Joles JA, Braam B, Magil AB, Cupples WA. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Diabetologia 2012; 55:2246-55. [PMID: 22562180 DOI: 10.1007/s00125-012-2569-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/02/2012] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS In early type 1 diabetes mellitus, renal salt handling is dysregulated, so that the glomerular filtration rate becomes inversely proportional to salt intake. The salt paradox occurs in both humans and rats and, with low salt intake, results in diabetic hyperfiltration. We tested whether increased salt intake could reduce the susceptibility to injury of non-clipped kidneys in diabetic rats with pre-existing Goldblatt hypertension. METHODS Male Long-Evans rats were made hypertensive and half were then made diabetic. Blood glucose was maintained at ~20-25 mmol/l by insulin implants. One half of each received only the salt in normal chow (1% by weight) and the other half received added salt in drinking water to equal 2.7% by weight of food intake. Weekly 24 h blood pressure records were acquired by telemetry during the 4-month experiment. RESULTS Systolic blood pressure was not affected by diabetes or increased salt intake, alone or together. Autoregulation was highly efficient in the non-clipped kidney of both intact and diabetic rats. Histological examination showed minor injury in the clipped kidney, which did not differ among groups. The non-clipped kidney showed extensive pressure-dependent glomerular and vascular injury in both intact and diabetic rats. CONCLUSIONS/INTERPRETATION The relationship between pressure and injury was shifted toward lower blood pressure in diabetic rats, indicating that diabetes increased the susceptibility of the kidney to injury despite preservation of autoregulation. The increased susceptibility was not affected by high salt intake in the diabetic rats, thus disproving the hypothesis.
Collapse
Affiliation(s)
- C A Sima
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Takenaka T, Inoue T, Ohno Y, Miyazaki T, Nishiyama A, Ishii N, Suzuki H. Elucidating mechanisms underlying altered renal autoregulation in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 303:R495-504. [PMID: 22739351 DOI: 10.1152/ajpregu.00217.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have reported that high-salt intake paradoxically activates tubuloglomerular feedback (TGF) in type 1 diabetes. Using Zucker lean (ZL) and diabetic fatty (ZDF) rats on normal and high-salt diets, renal hemodynamics and the renin-angiotensin system (RAS) were characterized. On normal salt diet, glomerular filtration rate (GFR) was higher in ZDF than ZL rats. Autoregulation of GFR was less efficient and lithium clearance was lower in ZDF rats than ZL rats. Salt load reduced GFR in ZDF rats with restoration of lithium clearance and partial improvement in autoregulatory index (AI). The administration of 8-cyclopentyl-1,3-dipropylxanthine, a selective adenosine-1 receptor antagonist to ZDF rats on a high-salt diet abolished the improvement of AI in GFR. However, this effect was seen by neither (Cx40)GAP27 nor (Cx37,43)GAP27, which inhibits connexin (Cx) 40 or Cx37. Renal ANG II was higher in ZDF than ZL rats on normal salt diet, but the difference was eliminated by a salt load. The present data provide the first demonstration for a salt paradox in type 2 diabetes and implicate that in addition to Cx alterations, an enhanced proximal reabsorption attenuates TGF, underlying glomerular hyperfiltration and RAS activation. These data suggest that a high-salt diet standardizes distal delivery in diabetes, suppressing the RAS, and improving GFR autoregulation and hyperfiltration through adenosine.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology and Community Health Science Center, Saitama Medical University, Iruma Saitama 350-0495 Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 2012; 74:351-75. [PMID: 22335797 DOI: 10.1146/annurev-physiol-020911-153333] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus affects the kidney in stages. At the onset of diabetes mellitus, in a subset of diabetic patients the kidneys grow large, and glomerular filtration rate (GFR) becomes supranormal, which are risk factors for developing diabetic nephropathy later in life. This review outlines a pathophysiological concept that focuses on the tubular system to explain these changes. The concept includes the tubular hypothesis of glomerular filtration, which states that early tubular growth and sodium-glucose cotransport enhance proximal tubule reabsorption and make the GFR supranormal through the physiology of tubuloglomerular feedback. The diabetic milieu triggers early tubular cell proliferation, but the induction of TGF-β and cyclin-dependent kinase inhibitors causes a cell cycle arrest and a switch to tubular hypertrophy and a senescence-like phenotype. Although this growth phenotype explains unusual responses like the salt paradox of the early diabetic kidney, the activated molecular pathways may set the stage for tubulointerstitial injury and diabetic nephropathy.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
16
|
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1009-22. [PMID: 21228342 PMCID: PMC3094037 DOI: 10.1152/ajpregu.00809.2010] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/10/2011] [Indexed: 01/16/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.
Collapse
Affiliation(s)
- Volker Vallon
- Depts. of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
17
|
Hendrickson G, Lyon L. Microgel Translocation through Pores under Confinement. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Affiliation(s)
- Grant R. Hendrickson
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - L. Andrew Lyon
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Diabetes mellitus is the primary cause of end-stage renal disease, yet the mechanisms underlying diabetic nephropathy remain ill-defined. The widely accepted opinion holds that events occurring early during the course of diabetes engender the eventual decline in renal function. This review will summarize recent advances (published January 2008 through June 2009) regarding the renal vascular and glomerular functional changes that occur during the early stage of diabetes. RECENT FINDINGS Reduced C-peptide levels and increased cyclooxygenase-2 activity both seem to promote diabetic hyperfiltration, presumably via effects on afferent arteriolar tone. In addition, exaggerated tonic influences of K+ channels on afferent arteriolar function likely act in concert with impaired Ca2+ influx responses to changes in membrane potential to promote vasodilation. Mechanisms underlying these changes remain largely speculative. Diabetes may also alter autoregulation of renal blood flow and glomerular filtration rate, as well as provoke afferent arteriolar dilation secondary to alterations in proximal tubular reabsorption; however, conflicting evidence continues to flood the literature concerning these events. SUMMARY New evidence has expanded our appreciation of the complexity of events that promote preglomerular vasodilation during the early stage of diabetes; however, it seems that the more we know, the less we understand.
Collapse
|