1
|
Kiersztan A, Gaanga K, Witecka A, Jagielski AK. DHEA-pretreatment attenuates oxidative stress in kidney-cortex and liver of diabetic rabbits and delays development of the disease. Biochimie 2021; 185:135-145. [PMID: 33771656 DOI: 10.1016/j.biochi.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
In view of reported discrepancies concerning antioxidant activity of dehydroepiandrosterone (DHEA), a widely used dietary supplement, the current investigation was undertaken to evaluate the antioxidant properties of DHEA in both kidney-cortex and liver of alloxan (ALX)-induced diabetic rabbits, as this diabetogenic compound exhibits the ROS-dependent action. ALX was injected to animals following 7 days of DHEA administration. Four groups of rabbits were used in the experiments: control, DHEA-treated control, diabetic and DHEA-treated diabetic. Our results show for the first time, that in kidney-cortex DHEA resulted in normalization of hydroxyl free radicals (HFR) levels and restoration of catalase (CAT) and glutathione peroxidase (GPx) activities to near the control values, while in liver DHEA prevented the malondialdehyde (MDA) accumulation and normalized glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH) activities. Moreover, in both kidney-cortex and liver DHEA supplementation prevented GSSG elevation accompanied by a decrease in GSH/GSSG ratio. Although DHEA attenuated oxidative stress in both kidney-cortex and liver of ALX-induced diabetic rabbits and significantly delayed the onset of diabetes in time, it did not protect against the final development of diabetes. In conclusion, the current investigation underscores the complexity of the antioxidant action of DHEA. The data are of clinical interest since DHEA supplementation could prevent the deleterious effects of ROS and delay, or even prevent the onset of many diseases. However, in view of the reported pro-oxidant effects of high DHEA doses, the potential use of this agent as a supplement needs a careful evaluation.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Kongorzul Gaanga
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
2
|
Dinc B, Yilmaz VT, Aycan İO, Kisaoglu A, Dandin O, Aydinli B, Hadimioglu N, Ertug Z. Effect of post-perfusion hyperoxemia on early graft function in renal transplant recipients: a retrospective observational cohort study. Ir J Med Sci 2021; 190:1539-1545. [PMID: 33398714 DOI: 10.1007/s11845-020-02499-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The effects of hyperoxemia on the transplanted grafts arouse interest nowadays, particularly intraoperative hyperoxemia, on transplant kidney function and survival in the 1-year post-operative period. AIMS We aimed to investigate the effect of post-perfusion (5 min after perfusion) hyperoxemia on early graft function and survival in renal transplant recipients. METHODS Two hundred forty-seven living donor kidney transplant recipients were included in the study. Patients were divided into the three groups according to their partial arterial oxygen pressure in post-perfusion blood gas samples: group 1: normoxia (n = 52, PaO2 pressure: < 120 mmHg, 103 ± 13); group 2: moderate hyperoxemia (n = 121, PaO2: 120-200 mmHg, 169 ± 21); group 3: severe hyperoxemia (n = 74, PaO2: > 200 mmHg, 233 ± 25). Graft functions (serum creatinine levels, estimated-glomerular filtration rate values, spot urine protein/creatinine ratio), survival rates, and groups' clinical outcomes were compared in the first year after transplantation. RESULTS Graft survival rates were similar in the groups and the rate of BK virus viremia was the lowest in the group 3 (groups 1, 2, and 3: 15.4% (n = 8), 6.6% (n = 8), 1.4% (n = 1), respectively, P: 0.009). Serum creatinine and proteinuria levels were lower, and estimated-glomerular filtration rate values were higher in group 3. A negative correlation between partial arterial oxygen pressure and serum creatinine levels and a positive correlation with estimated-glomerular filtration rate value were noted. These results were confirmed by univariate and multivariate analyses. CONCLUSIONS We demonstrated that the kidney transplant recipients with post-perfusion hyperoxemia have better early graft functions and lower BK virus viremia rates. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04420897.
Collapse
Affiliation(s)
- Bora Dinc
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Vural T Yilmaz
- Division of Nephrology, Department of Internal Medicine, Akdeniz University Medical School, Antalya, Turkey.
| | - İlker O Aycan
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Abdullah Kisaoglu
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Ozgur Dandin
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Bulent Aydinli
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Necmiye Hadimioglu
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Zeki Ertug
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| |
Collapse
|
3
|
Avila-Rojas SH, Tapia E, Briones-Herrera A, Aparicio-Trejo OE, León-Contreras JC, Hernández-Pando R, Pedraza-Chaverri J. Curcumin prevents potassium dichromate (K2Cr2O7)-induced renal hypoxia. Food Chem Toxicol 2018; 121:472-482. [DOI: 10.1016/j.fct.2018.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
|
4
|
Martins ICVS, Borges NA, Stenvinkel P, Lindholm B, Rogez H, Pinheiro MCN, Nascimento JLM, Mafra D. The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients. Int Urol Nephrol 2018; 50:2207-2220. [PMID: 29915880 DOI: 10.1007/s11255-018-1912-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Açai (Euterpe oleracea Mart.) fruit from the Amazon region in Brazil contains bioactive compounds such as α-tocopherol, anthocyanins (cyanidin 3-glycoside and cyanidin 3-rutinoside), and other flavonoids with antioxidant and anti-inflammatory properties. Moreover, the prebiotic activity of anthocyanins in modulating the composition of gut microbiota has emerged as an additional mechanism by which anthocyanins exert health-promoting effects. Açai consumption may be a nutritional therapeutic strategy for chronic kidney disease (CKD) patients since these patients present with oxidative stress, inflammation, and dysbiosis. However, the ability of açai to modulate these conditions has not been studied in CKD, and this review presents recent information about açai and its possible therapeutic effects in CKD.
Collapse
Affiliation(s)
- Isabelle C V S Martins
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil.
| | - Natália A Borges
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Hervé Rogez
- Centre for Agro-food Valorisation of Amazonian Bioactive Compound, UFPA, Belém, Brazil
| | | | - José L M Nascimento
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil
- Neuroscience Research, Ceuma University, São Luis, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Denise Mafra
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
- Medical Science Graduate Program, UFF, Niterói, Brazil
| |
Collapse
|
5
|
Kiersztan A, Trojan N, Tempes A, Nalepa P, Sitek J, Winiarska K, Usarek M. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria. J Steroid Biochem Mol Biol 2017; 174:17-26. [PMID: 28782595 DOI: 10.1016/j.jsbmb.2017.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023]
Abstract
Our recent study has shown that dehydroepiandrosterone (DHEA) administered to rabbits partially ameliorated several dexamethasone (dexP) effects on hepatic and renal gluconeogenesis, insulin resistance and plasma lipid disorders. In the current investigation, we present the data on DHEA protective action against dexP-induced oxidative stress and albuminuria in rabbits. Four groups of adult male rabbits were used in the in vivo experiment: (1) control, (2) dexP-treated, (3) DHEA-treated and (4) both dexP- and DHEA-treated. Administration of dexP resulted in accelerated generation of renal hydroxyl free radicals (HFR) and malondialdehyde (MDA), accompanied by diminished superoxide dismutase (SOD) and catalase activities and a dramatic rise in urinary albumin/creatinine ratio. Treatment with DHEA markedly reduced dexP-induced oxidative stress in kidney-cortex due to a decline in NADPH oxidase activity and enhancement of catalase activity. Moreover, DHEA effectively attenuated dexP-evoked albuminuria. Surprisingly, dexP-treated rabbits exhibited elevation of GSH/GSSG ratio, accompanied by a decrease in glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities as well as an increase in glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment with DHEA resulted in a decline in GSH/GSSG ratio and glutathione reductase (GR) activity, accompanied by an elevation of GPx activity. Interestingly, rabbits treated with both dexP and DHEA remained the control values of GSH/GSSG ratio. As the co-administration of DHEA with dexP resulted in (i) reduction of oxidative stress in kidney-cortex, (ii) attenuation of albuminuria and (iii) normalization of glutathione redox state, DHEA might limit several undesirable renal side effects during chronic GC treatment of patients suffering from allergies, asthma, rheumatoid arthritis and lupus. Moreover, its supplementation might be particularly beneficial for the therapy of patients with glucocorticoid-induced diabetes.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Nina Trojan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Aleksandra Tempes
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Paweł Nalepa
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Joanna Sitek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Michał Usarek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
6
|
Ergin B, Heger M, Kandil A, Demirci-Tansel C, Ince C. Mycophenolate mofetil improves renal haemodynamics, microvascular oxygenation, and inflammation in a rat model of supra-renal aortic clamping-mediated renal ischaemia reperfusion injury. Clin Exp Pharmacol Physiol 2017; 44:294-304. [PMID: 27778375 DOI: 10.1111/1440-1681.12687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022]
Abstract
Ischaemia/reperfusion (I/R) is one of the main causes of acute kidney injury (AKI), which is characterized by sterile inflammation and oxidative stress. Immune cell activation can provoke overproduction of inflammatory mediators and reactive oxygen species (ROS), leading to perturbation of the microcirculation and tissue oxygenation associated with local and remote tissue injury. This study investigated whether the clinically employed immunosuppressant mycophenolate mofetil (MMF) was able to reduce I/R-induced renal oxygenation defects and oxidative stress by preventing sterile inflammation. Rats were divided into three groups (n=6/group): (1) a sham-operated control group; (2) a group subjected to renal I/R alone (I/R); and (3) a group subjected to I/R and MMF treatment (20 mg/kg prior to I/R) (I/R+MMF). Ischaemia was induced by a vascular occluder placed on the abdominal aorta for 30 minutes, followed by 120 minutes of reperfusion. Renal I/R deteriorated renal oxygenation (P<.001) and oxygen delivery (P<.01), reduced creatinine clearance (P<.01) and tubular sodium reabsorption (P<.001), and increased iNOS, renal tissue injury markers (P<.001), and IL-6 (P<.001). Oral MMF administration prior to insult restored renal cortical oxygenation (P<.05) and iNOS, renal injury markers, and inflammation parameters (P<.001) to near-baseline levels without affecting renal function. MMF exerted a prophylactic effect on renal microvascular oxygenation and abrogated tissue inflammation and renal injury following lower body I/R-induced AKI. These findings may have clinical implications during major vascular or renal transplant surgery.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asli Kandil
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Cihan Demirci-Tansel
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Chen Y, Sullivan JC, Edwards A, Layton AT. Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. Am J Physiol Renal Physiol 2017; 313:F174-F183. [PMID: 28356289 DOI: 10.1152/ajprenal.00482.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
The goals of this study were to 1) develop a computational model of solute transport and oxygenation in the kidney of the female spontaneously hypertensive rat (SHR), and 2) apply that model to investigate sex differences in nitric oxide (NO) levels in SHR and their effects on medullary oxygenation and oxidative stress. To accomplish these goals, we first measured NO synthase (NOS) 1 and NOS3 protein expression levels in total renal microvessels of male and female SHR. We found that the expression of both NOS1 and NOS3 is higher in the renal vasculature of females compared with males. To predict the implications of that finding on medullary oxygenation and oxidative stress levels, we developed a detailed computational model of the female SHR kidney. The model was based on a published male kidney model and represents solute transport and the biochemical reactions among O2, NO, and superoxide ([Formula: see text]) in the renal medulla. Model simulations conducted using both male and female SHR kidney models predicted significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and [Formula: see text] concentration in the outer medulla and upper inner medulla. The models also predicted that increases in endothelial NO-generating capacity, even when limited to specific vascular segments, may substantially raise medullary NO and Po2 levels. Other potential sex differences in SHR, including [Formula: see text] production rate, are predicted to significantly impact oxidative stress levels, but effects on NO concentration and Po2 are limited.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, Duke University, Durham, North Carolina
| | | | - Aurélie Edwards
- Sorbonne Universités, UPMC University Paris 06, Université Paris Descartes, Sorbonne Paris, France.,INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina;
| |
Collapse
|
8
|
Winiarska K, Dzik JM, Labudda M, Focht D, Sierakowski B, Owczarek A, Komorowski L, Bielecki W. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res 2016; 60:109-17. [PMID: 26514550 DOI: 10.1111/jpi.12296] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Owczarek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Komorowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Exotic, Laboratory and Non-domesticated Animals Pathology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
9
|
VOKURKOVÁ M, RAUCHOVÁ H, ŘEZÁČOVÁ L, VANĚČKOVÁ I, ZICHA J. NADPH Oxidase Activity and Reactive Oxygen Species Production in Brain and Kidney of Adult Male Hypertensive Ren-2 Transgenic Rats. Physiol Res 2015; 64:849-56. [DOI: 10.33549/physiolres.933254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase-mediated superoxide (O2-) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren-2 renin gene (Ren-2 TGR) and their age-matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD). We found no difference in the activity of NADPH oxidase measured as a lucigenin-mediated O2- production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren-2 TGR compared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren-2 TGR+LOS) did not change NADPH oxidase-dependent O2- production in the kidney. We detected significantly elevated indirect markers of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) in Ren-2 TGR, while they were significantly decreased in Ren-2 TGR+LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions.
Collapse
Affiliation(s)
| | - H. RAUCHOVÁ
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | |
Collapse
|
10
|
Aamann MD, Nørregaard R, Kristensen MLV, Stevnsner T, Frøkiær J. Unilateral ureteral obstruction induces DNA repair by APE1. Am J Physiol Renal Physiol 2015; 310:F763-F776. [PMID: 26608791 DOI: 10.1152/ajprenal.00613.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Ureteral obstruction is associated with oxidative stress and the development of fibrosis of the kidney parenchyma. Apurinic/apyrimidinic endonuclease (APE1) is an essential DNA repair enzyme for repair of oxidative DNA lesions and regulates several transcription factors. The aim of the present study was to investigate whether APE1 is regulated by acute (24 h) and chronic (7 days) unilateral ureteral obstruction (UUO). APE1 was expressed in essentially all kidney cells with the strongest expression in proximal tubuli. After 24 h of UUO, APE1 mRNA was induced in the cortex, inner stripe of the outer medulla (ISOM), and inner medulla (IM). In contrast, the APE1 protein level was not regulated in the IM and ISOM and only slightly increased in the cortex. APE1 DNA repair activity was not significantly changed. A different pattern of regulation was observed after 7 days of UUO, with an increase of the APE1 mRNA level in the cortex but not in the ISOM and IM. The APE1 protein level in the cortex, ISOM, and IM increased significantly. Importantly, we observed a significant increase in APE1 DNA repair activity in the cortex and IM. To confirm our model, we investigated heme oxygenase-1, collagen type I, fibronectin I, and α-smooth muscle actin levels. In vitro, we found the transcriptional regulatory activity of APE1 to be involved in the upregulation of the profibrotic factor connective tissue growth factor. In summary, APE1 is regulated at different levels after acute and chronic UUO. Thus, our results suggest that DNA repair activity is regulated in response to progressive (7 days) obstruction and that APE1 potentially could play a role in the development of fibrosis in kidney disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; .,Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Fry BC, Edwards A, Layton AT. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Am J Physiol Renal Physiol 2015; 310:F237-47. [PMID: 26831340 DOI: 10.1152/ajprenal.00334.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023] Open
Abstract
The goal of this study was to investigate the effects of nitric oxide (NO)-mediated vasodilation in preventing medullary hypoxia, as well as the likely pathways by which superoxide (O2(-)) conversely enhances medullary hypoxia. To do so, we expanded a previously developed mathematical model of solute transport in the renal medulla that accounts for the reciprocal interactions among oxygen (O2), NO, and O2(-) to include the vasoactive effects of NO on medullary descending vasa recta. The model represents the radial organization of the vessels and tubules, centered around vascular bundles in the outer medulla and collecting ducts in the inner medulla. Model simulations suggest that NO helps to prevent medullary hypoxia both by inducing vasodilation of the descending vasa recta (thus increasing O2 supply) and by reducing the active sodium transport rate (thus reducing O2 consumption). That is, the vasodilative properties of NO significantly contribute to maintaining sufficient medullary oxygenation. The model further predicts that a reduction in tubular transport efficiency (i.e., the ratio of active sodium transport per O2 consumption) is the main factor by which increased O2(-) levels lead to hypoxia, whereas hyperfiltration is not a likely pathway to medullary hypoxia due to oxidative stress. Finally, our results suggest that further increasing the radial separation between vessels and tubules would reduce the diffusion of NO towards descending vasa recta in the inner medulla, thereby diminishing its vasoactive effects therein and reducing O2 delivery to the papillary tip.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, INSERM, Université Paris, Descartes, Sorbonne Paris Cité, UMRS 1138, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
12
|
Winiarska K, Jarzyna R, Dzik JM, Jagielski AK, Grabowski M, Nowosielska A, Focht D, Sierakowski B. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity. Free Radic Biol Med 2015; 81:13-21. [PMID: 25601753 DOI: 10.1016/j.freeradbiomed.2014.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Abstract
The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has delivered some new insights into the recently discussed issue of the usefulness of Nox inhibition as a potential antidiabetic strategy.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Robert Jarzyna
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Grabowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Nowosielska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
13
|
Fry BC, Edwards A, Layton AT. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. Am J Physiol Renal Physiol 2015; 308:F967-80. [PMID: 25651567 DOI: 10.1152/ajprenal.00600.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2 (-)) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2 (-) concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2 (-), the effects of NO and O2 (-) on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
14
|
Winiarska K, Focht D, Sierakowski B, Lewandowski K, Orlowska M, Usarek M. NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: A comparison with melatonin. Chem Biol Interact 2014; 218:12-9. [DOI: 10.1016/j.cbi.2014.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/27/2013] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
15
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
16
|
Golub AS, Song BK, Pittman RN. Muscle contraction increases interstitial nitric oxide as predicted by a new model of local blood flow regulation. J Physiol 2014; 592:1225-35. [PMID: 24445318 DOI: 10.1113/jphysiol.2013.267302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevailing metabolic theory of local blood flow regulation suggests the dilatation of arterioles in response to tissue hypoxia via the emission of multiple metabolic vasodilators by parenchymal cells. We have proposed a mechanism of regulation, built from well-known components, which assumes that arterioles are normally dilated in metabolically active tissues, due to the emission of NO by the endothelium of microvessels. Regulation of local blood flow aims at preventing an excessive supply of oxygen (O2) and glucose to the tissue and thus provides an adequate supply, in contrast to the metabolic regulation theory which requires permanent hypoxia to generate the metabolic vasodilators. The mediator of the restrictive signal is superoxide anion (O2(-)) released by membrane NAD(P)H oxidases into the interstitial space, where it neutralizes NO at a diffusion-limited rate. This model predicts that the onset of muscle contraction will lead to the cessation of O2(-) production, which will cause an elevation of interstitial NO concentration and an increase in fluorescence of the NO probe DAF-FM after its conversion to DAF-T. The time course of DAF-T fluorescence in contracting muscle is predicted by also considering the washout from the muscle of the interstitially loaded NO indicator. Experiments using pulse fluorimetry confirmed an increase in the interstitial concentration of NO available for reaction with DAF-FM during bouts of muscle contraction. The sharp increase in interstitial [NO] is consistent with the hypothesis that the termination of the neutralizing superoxide flow into the interstitium is associated with the activation of mitochondria and a reduction of the interstitial oxygen tension. The advantage of the new model is its ability to explain the interaction of metabolic activity and local blood flow through the adequate delivery of glucose and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 E. Marshall Street, PO Box 980551, Richmond, VA 23298-0551, USA.
| | | | | |
Collapse
|
17
|
Piccoli C, Agriesti F, Scrima R, Falzetti F, Di Ianni M, Capitanio N. To breathe or not to breathe: the haematopoietic stem/progenitor cells dilemma. Br J Pharmacol 2014; 169:1652-71. [PMID: 23714011 DOI: 10.1111/bph.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Adult haematopoietic stem/progenitor cells (HSPCs) constitute the lifespan reserve for the generation of all the cellular lineages in the blood. Although massive progress in identifying the cluster of master genes controlling self-renewal and multipotency has been achieved in the past decade, some aspects of the physiology of HSPCs still need to be clarified. In particular, there is growing interest in the metabolic profile of HSPCs in view of their emerging role as determinants of cell fate. Indeed, stem cells and progenitors have distinct metabolic profiles, and the transition from stem to progenitor cell corresponds to a critical metabolic change, from glycolysis to oxidative phosphorylation. In this review, we summarize evidence, reported in the literature and provided by our group, highlighting the peculiar ability of HSPCs to adapt their mitochondrial oxidative/bioenergetic metabolism to survive in the hypoxic microenvironment of the endoblastic niche and to exploit redox signalling in controlling the balance between quiescence versus active cycling and differentiation. Especial prominence is given to the interplay between hypoxia inducible factor-1, globins and NADPH oxidases in managing the mitochondrial dioxygen-related metabolism and biogenesis in HSPCs under different ambient conditions. A mechanistic model is proposed whereby 'mitochondrial differentiation' is a prerequisite in uncommitted stem cells, paving the way for growth/differentiation factor-dependent processes. Advancing the understanding of stem cell metabolism will, hopefully, help to (i) improve efforts to maintain, expand and manipulate HSPCs ex vivo and realize their potential therapeutic benefits in regenerative medicine; (ii) reprogramme somatic cells to generate stem cells; and (iii) eliminate, selectively, malignant stem cells. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- C Piccoli
- Department of Medical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
19
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
20
|
Randall LM, Ferrer-Sueta G, Denicola A. Peroxiredoxins as Preferential Targets in H2O2-Induced Signaling. Methods Enzymol 2013; 527:41-63. [DOI: 10.1016/b978-0-12-405882-8.00003-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wilcox CS, Palm F, Welch WJ. Renal oxygenation and function of the rat kidney: effects of inspired oxygen and preglomerular oxygen shunting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 765:329-334. [PMID: 22879052 DOI: 10.1007/978-1-4614-4989-8_46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
We investigated the hypothesis that a preglomerular diffusional shunt for O(2) stabilized renal PO(2) and that changes in intrarenal PO(2) determined nephron nitric oxide (NO) availability for blunting of the tubuloglomerular feedback (TGF) response. The inspired O(2) content of anesthetized rats was changed from normal (21%) to low (10%) or high (100%) for 30-45 min. Direct recordings of PO(2) in the lumens of proximal and distal tubules demonstrated significantly (P < 0.05) lower values at all sites in spontaneously hypertensive rats compared to normotensive Wistar Kyoto (WKY) rats. Low inspired O(2) did not change intratubular PO(2), but high inspired O(2) increased PO(2) modestly (25-50%; P < 0.01) in both strains and at both sites. Addition of 7-nitroindazole (7-NI; 10(-4) M) to artificial tubular fluid perfusing the loop of Henle of WKY nephrons to block neuronal (type 1) nitric oxide synthase in the macula densa increased TGF but this increase was less (P < 0.01) in nephrons of rats breathing high vs. normal inspired O(2) (1.8 ± 0.4 vs. 3.4 ± 0.3 mmHg; P < 0.01). In conclusion, the PO(2) in the renal tubules was effectively buffered from even extreme changes in arterial PO(2), consistent with a functionally important preglomerular O(2) diffusional shunt. However, high inspired PO(2) increased intratubular PO(2) sufficiently to blunt the effects of NO derived from the macula densa, likely reflecting bioinactivation of NO by reactive oxygen species generated at increased PO(2) levels. Thus, the preglomerular diffusional shunt appeared to stabilize intrarenal PO(2) during changes in arterial oxygen and to protect NO signaling within the kidney.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Kidney and Vascular Research Center, Georgetown University Hypertension, F 6003 PHC, Washington, DC, 20007, USA.
| | - Fredrik Palm
- Kidney and Vascular Research Center, Georgetown University Hypertension, F 6003 PHC, Washington, DC, 20007, USA
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - William J Welch
- Kidney and Vascular Research Center, Georgetown University Hypertension, F 6003 PHC, Washington, DC, 20007, USA
| |
Collapse
|
22
|
Edwards A, Layton AT. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. Am J Physiol Renal Physiol 2012; 303:F907-17. [PMID: 22791340 DOI: 10.1152/ajprenal.00055.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to elucidate the reciprocal interactions between oxygen (O(2)), nitric oxide (NO), and superoxide (O(2)(-)) and their effects on vascular and tubular function in the outer medulla. We expanded our region-based model of transport in the rat outer medulla (Edwards A, Layton AT. Am J Physiol Renal Physiol 301: F979-F996, 2011) to incorporate the effects of NO on descending vasa recta (DVR) diameter and blood flow. Our model predicts that the segregation of long DVR in the center of vascular bundles, away from tubular segments, gives rise to large radial NO concentration gradients that in turn result in differential regulation of vasoactivity in short and long DVR. The relative isolation of long DVR shields them from changes in the rate of NaCl reabsorption, and hence from changes in O(2) requirements, by medullary thick ascending limbs (mTALs), thereby preserving O(2) delivery to the inner medulla. The model also predicts that O(2)(-) can sufficiently decrease the bioavailability of NO in the interbundle region to affect the diameter of short DVR, suggesting that the experimentally observed effects of O(2)(-) on medullary blood flow may be at least partly mediated by NO. In addition, our results indicate that the tubulovascular cross talk of NO, that is, the diffusion of NO produced by mTAL epithelia toward adjacent DVR, helps to maintain blood flow and O(2) supply to the interbundle region even under basal conditions. NO also acts to preserve local O(2) availability by inhibiting the rate of active Na(+) transport, thereby reducing the O(2) requirements of mTALs. The dual regulation by NO of oxygen supply and demand is predicted to significantly attenuate the hypoxic effects of angiotensin II.
Collapse
Affiliation(s)
- Aurélie Edwards
- ERL 7226-UMRS 872 équipe 3, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 6, France.
| | | |
Collapse
|
23
|
Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol 2011; 38:474-80. [PMID: 21545630 DOI: 10.1111/j.1440-1681.2011.05532.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Intrarenal oxygen availability is the balance between supply, mainly dependent on renal blood flow, and demand, determined by the basal metabolic demand and the energy-requiring tubular electrolyte transport. Renal blood flow is maintained within close limits in order to sustain stable glomerular filtration, so increased intrarenal oxygen consumption is likely to cause tissue hypoxia. 2. The increased oxygen consumption is closely linked to increased oxidative stress, which increases mitochondrial oxygen usage and reduces tubular electrolyte transport efficiency, with both contributing to increased total oxygen consumption. 3. Tubulointerstitial hypoxia stimulates the production of collagen I and α-smooth muscle actin, indicators of increased fibrogenesis. Furthermore, the hypoxic environment induces epithelial-mesenchymal transdifferentiation and aggravates fibrosis, which results in reduced peritubular blood perfusion and oxygen delivery due to capillary rarefaction. 4. Increased oxygen consumption, capillary rarefaction and increased diffusion distance due to the increased fibrosis per se further aggravate the interstitial hypoxia. 5. Recently, it has been demonstrated that hypoxia simulates the infiltration and maturation of immune cells, which provides an explanation for the general inflammation commonly associated with the progression of chronic kidney disease. 6. Therapies targeting interstitial hypoxia could potentially reduce the progression of chronic renal failure in millions of patients who are otherwise likely to eventually present with fully developed end-stage renal disease.
Collapse
Affiliation(s)
- Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
24
|
Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERα/ERβ balance in female mice. PLoS One 2011; 6:e25335. [PMID: 21966501 PMCID: PMC3178641 DOI: 10.1371/journal.pone.0025335] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/01/2011] [Indexed: 12/03/2022] Open
Abstract
Aims Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM). Methods and Results Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O2-). Interestingly, E2 treatment decreased O2− production in young females, while increased O2− in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O2−. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5′flanking region of ERα gene.
Collapse
|
25
|
Edwards A, Layton AT. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide. Am J Physiol Renal Physiol 2011; 301:F979-96. [PMID: 21849492 DOI: 10.1152/ajprenal.00096.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O(2)(-)) and to examine the impact of NO-O(2)(-) interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O(2)) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O(2)(-). Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O(2), NO, and O(2)(-). Notwithstanding vasoactive effects, our model predicts that in the absence of O(2)(-)-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O(2)(-) modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O(2) as a substrate for NO. When O(2)(-) levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O(2) exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O(2)(-), and O(2) significantly impact the O(2) balance and NaCl reabsorption in the outer medulla.
Collapse
Affiliation(s)
- Aurélie Edwards
- Dept. of Chemical and Biological Engineering, Tufts Univ., 4 Colby St., Medford, MA 02155, USA.
| | | |
Collapse
|
26
|
Palm F, Nordquist L. Renal oxidative stress, oxygenation, and hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1229-41. [PMID: 21832206 DOI: 10.1152/ajpregu.00720.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.
Collapse
Affiliation(s)
- Fredrik Palm
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedical Center, Box 571, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
27
|
O'Connor PM, Cowley AW. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 2011; 12:86-92. [PMID: 20424940 DOI: 10.1007/s11906-010-0094-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The renal pressure-natriuresis mechanism is the dominant controller of body fluid balance and long-term arterial pressure. In recent years, it has become clear that the balance of reactive oxygen and nitrogen species within the renal medullary region is a key determinant of the set point of the renal pressure-natriuresis curve. The development of renal medullary oxidative stress causes dysfunction of the pressure-natriuresis mechanism and contributes to the development of hypertension in numerous disease models. The purpose of this review is to point out the known mechanisms within the renal medulla through which reactive oxygen and nitrogen species modulate the pressure-natriuresis response and to update the reader on recent advances in this field.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53202, USA.
| | | |
Collapse
|
28
|
Yoshioka I, Tsujihata M, Akanae W, Nonomura N, Okuyama A. Angiotensin Type-1 Receptor Blocker Candesartan Inhibits Calcium Oxalate Crystal Deposition in Ethylene Glycol-Treated Rat Kidneys. Urology 2011; 77:1007.e9-1007.e14. [DOI: 10.1016/j.urology.2010.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/28/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
|
29
|
Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin. Chem Biol Interact 2011; 189:119-26. [DOI: 10.1016/j.cbi.2010.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022]
|
30
|
O'Connor PM, Evans RG. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Regul Integr Comp Physiol 2010; 299:R723-7. [DOI: 10.1152/ajpregu.00364.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue oxygen levels are tightly regulated in all organs. This poses a challenge for the kidney, as its function requires blood flow, and thus, oxygen delivery to greatly exceed its metabolic requirements. Because superoxide production in the kidney is dependent on oxygen availability, tissue hyperoxia could drive oxidative stress. In the mammalian renal cortex, this problem may have been solved, in part, through a structural antioxidant defense mechanism. That is, arteries and veins are closely associated in a countercurrent arrangement, facilitating diffusional arterial-to-venous (AV) oxygen shunting. Because of this mechanism, a proportion of the oxygen delivered in the renal artery never reaches kidney tissue but instead diffuses to the closely associated renal veins, thus limiting oxygen transport to tissue. In the nonmammalian kidney, arteries and veins are not arranged in an intimate countercurrent fashion as in mammals; thus AV oxygen shunting is likely less important in regulation of kidney oxygenation in these species. Instead, the kidney's blood supply is predominately of venous origin. This likely has a similar impact on tissue oxygenation as AV oxygen shunting, of limiting delivery of oxygen to renal tissue. Thus, we hypothesize the evolution of structural antioxidant mechanisms that are anatomically divergent but functionally homologous in the mammalian and nonmammalian kidney.
Collapse
Affiliation(s)
- Paul M. O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. Am J Physiol Renal Physiol 2010; 299:F616-33. [PMID: 20534869 DOI: 10.1152/ajprenal.00680.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the impact of the complex radial organization of the rat outer medulla (OM) on the distribution of nitric oxide (NO), superoxide (O(2)(-)) and total peroxynitrite (ONOO), we developed a mathematical model that simulates the transport of those species in a cross section of the rat OM. To simulate the preferential interactions among tubules and vessels that arise from their relative radial positions in the OM, we adopted the region-based approach developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005). In that approach, the structural organization of the OM is represented by means of four concentric regions centered on a vascular bundle. The model predicts the concentrations of NO, O(2)(-), and ONOO in the tubular and vascular lumen, epithelial and endothelial cells, red blood cells (RBCs), and interstitial fluid. Model results suggest that the large gradients in Po(2) from the core of the vascular bundle toward its periphery, which stem from the segregation of O(2)-supplying descending vasa recta (DVR) within the vascular bundles, in turn generate steep radial NO and O(2)(-) concentration gradients, since the synthesis of both solutes is O(2) dependent. Without the rate-limiting effects of O(2), NO concentration would be lowest in the vascular bundle core, that is, the region with the highest density of RBCs, which act as a sink for NO. Our results also suggest that, under basal conditions, the difference in NO concentrations between DVR that reach into the inner medulla and those that turn within the OM should lead to differences in vasodilation and preferentially increase blood flow to the inner medulla.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
32
|
Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. Am J Physiol Renal Physiol 2010; 299:F634-47. [PMID: 20519375 DOI: 10.1152/ajprenal.00681.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a companion study (Edwards A and Layton AT. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00680.2009), we developed a mathematical model of nitric oxide (NO), superoxide (O(2)(-)), and total peroxynitrite (ONOO) transport in mid-outer stripe and mid-inner stripe cross sections of the rat outer medulla (OM). We examined how the three-dimensional architecture of the rat OM, together with low medullary oxygen tension (Po(2)), affects the distribution of NO, O(2)(-), and ONOO in the rat OM. In the current study, we sought to determine generation rate and permeability values that are compatible with measurements of medullary NO concentrations and to assess the importance of tubulovascular cross talk and NO-O(2)(-) interactions under physiological conditions. Our results suggest that the main determinants of NO concentrations in the rat OM are the rate of vascular and tubular NO synthesis under hypoxic conditions, and the red blood cell (RBC) permeability to NO (P(NO)(RBC)). The lower the P(NO)(RBC), the lower the amount of NO that is scavenged by hemoglobin species, and the higher the extra-erythrocyte NO concentrations. In addition, our results indicate that basal endothelial NO production acts to significantly limit NaCl reabsorption across medullary thick ascending limbs and to sustain medullary perfusion, whereas basal epithelial NO production has a smaller impact on NaCl transport and a negligible effect on vascular tone. Our model also predicts that O(2)(-) consumption by NO significantly reduces medullary O(2)(-) concentrations, but that O(2)(-) , when present at subnanomolar concentrations, has a small impact on medullary NO bioavailability.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
33
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Décordé K, Teissèdre PL, Sutra T, Ventura E, Cristol JP, Rouanet JM. Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res 2008; 53:659-66. [DOI: 10.1002/mnfr.200800165] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J. Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 2008; 91:261-70. [PMID: 18957317 DOI: 10.1016/j.biochi.2008.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/26/2008] [Indexed: 12/31/2022]
Abstract
The therapeutic potential of taurine was investigated under diabetic conditions. Alloxan diabetic rabbits were treated daily for three weeks with 1% taurine in drinking water. The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios and the activities of catalase, superoxide dismutase and the enzymes of glutathione metabolism; 5) renal NADPH oxidase activity; 6) the rates of renal and hepatic gluconeogenesis. Histological studies of kidneys were also performed. Taurine administration to diabetic rabbits resulted in 30% decrease in serum glucose level and the normalisation of diabetes-elevated rate of renal gluconeogenesis. It also decreased serum urea and creatinine concentrations, attenuated diabetes-evoked decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. Animals treated with taurine exhibited elevated activities of hepatic gamma-glutamylcysteine syntetase and renal glutathione reductase and catalase. Moreover, taurine treatment evoked the normalisation of diabetes-stimulated activity of renal NADPH oxidase and attenuated both albuminuria and glomerulopathy characteristic of diabetes. In view of these data, it is concluded that: 1) diminished rate of renal gluconeogenesis seems to contribute to hypoglycaemic effect of taurine; 2) taurine-induced increase in the activities of catalase and the enzymes of glutathione metabolism is of importance for antioxidative action of this amino acid and 3) taurine nephroprotective properties might result from diminished renal NADPH oxidase activity. Thus, taurine seems to be beneficial for the therapy of both diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, University of Warsaw, Poland.
| | | | | | | | | |
Collapse
|
36
|
O'Connor PM, Lu L, Schreck C, Cowley AW. Enhanced amiloride-sensitive superoxide production in renal medullary thick ascending limb of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2008; 295:F726-33. [PMID: 18579705 DOI: 10.1152/ajprenal.00137.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aims of the present study were to determine whether superoxide (O(2)(-)) production is enhanced in medullary thick ascending limb (mTAL) of Dahl salt-sensitive (SS) rats compared with a salt-resistant consomic control strain (SS.13(BN)) and to elucidate the cellular pathways responsible for augmented O(2)(-) production. Studies were carried out in 7- to 10-wk-old male SS and SS.13(BN) rats fed either a 0.4% NaCl diet or a 4.0% NaCl diet for 3 days before tissue harvest. Tissue strips containing mTAL were isolated from the left kidney, loaded with the O(2)(-)-sensitive fluorescent dye dihydroethidium, superfused with modified Hanks' solution, and imaged at x60 magnification on a heated microscope stage. O(2)(-) production was stimulated in mTAL by incrementing superfusate NaCl concentration from 154 to 254 to 500 mM. O(2)(-) production was enhanced in mTAL of SS rats compared with SS.13(BN) rats in response to incrementing bath NaCl. Addition of N-methyl-amiloride (100 muM) or inhibition of NAD(P)H oxidase reduced O(2)(-) production in SS mTAL to levels observed in SS.13(BN) rats. Both amiloride- and ouabain-sensitive pathways of O(2)(-) production were elevated following 3 days of high (4.0%) NaCl feeding in mTAL of SS and SS.13(BN) rats. We conclude that mTAL from SS rats exhibit enhanced amiloride-sensitive O(2)(-) production. The amiloride-sensitive O(2)(-) response in mTAL is independent of active Na(+) transport and appears to be mediated by NAD(P)H oxidase. Amiloride-sensitive O(2)(-) production is likely to contribute to augmented outer medullary O(2)(-) production observed in SS rats during both normal and high NaCl diets.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53202, USA.
| | | | | | | |
Collapse
|
37
|
Mechanisms underlying sex differences in progressive renal disease. ACTA ACUST UNITED AC 2008; 5:10-23. [PMID: 18420162 DOI: 10.1016/s1550-8579(08)80004-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2008] [Indexed: 11/21/2022]
Abstract
Men with nondiabetic renal disease exhibit a faster rate of decline in renal function compared with women. To investigate this sex difference in renal disease progression, our research group has been studying the renal wrap (RW) model of hypertension in rats. Compared with RW female rats, the glomerulosclerosis index, mean glomerular volume, and proteinuria were greater (3.1-, 1.7-, and 1.8-fold, respectively) in RW males under conditions in which no differences in the degree of hypertension were detected, suggesting that sex differences may exist in the mechanisms underlying renal injury, independent of blood pressure. Gonadal steroids contribute to these sex differences, because orchidectomy attenuated and ovariectomy exacerbated the severity of renal injury, whereas dihydrotestosterone and 17beta-estradiol (E(2)) replacement prevented these respective effects. Chronic renal disease is associated with impairment in nitric oxide (NO) signaling and elevated levels of superoxide. Sex differences were observed in RW-induced changes in renal nitric oxide synthesis (NOS) protein abundance. Whereas RW had no effect on NOS in the female kidney, endothelial NOS was elevated and neuronal NOS was decreased in the male kidney, suggesting that renal injury may cause dysfunction in NO metabolism in the male. Sex differences in superoxide signaling were also observed. Renal cortical nicotinamide adenine dinucleotide phosphate oxidase activity was 1.3-fold higher in RW males than in RW females, and ovariectomy increased enzyme activity 1.4-fold, whereas E(2) replacement prevented this effect. These changes in enzyme activity were mirrored by changes in protein abundance of the p22(phox) regulatory subunit. Our findings suggest that E(2) may protect the female kidney from hypertension-associated renal disease by attenuating injury-induced superoxide production.
Collapse
|
38
|
Evans RG, Gardiner BS, Smith DW, O'Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295:F1259-70. [PMID: 18550645 DOI: 10.1152/ajprenal.90230.2008] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney is faced with unique challenges for oxygen regulation, both because its function requires that perfusion greatly exceeds that required to meet metabolic demand and because vascular control in the kidney is dominated by mechanisms that regulate glomerular filtration and tubular reabsorption. Because tubular sodium reabsorption accounts for most oxygen consumption (Vo2) in the kidney, renal Vo2 varies with glomerular filtration rate. This provides an intrinsic mechanism to match changes in oxygen delivery due to changes in renal blood flow (RBF) with changes in oxygen demand. Renal Vo2 is low relative to supply of oxygen, but diffusional arterial-to-venous (AV) oxygen shunting provides a mechanism by which oxygen superfluous to metabolic demand can bypass the renal microcirculation. This mechanism prevents development of tissue hyperoxia and subsequent tissue oxidation that would otherwise result from the mismatch between renal Vo2 and RBF. Recent evidence suggests that RBF-dependent changes in AV oxygen shunting may also help maintain stable tissue oxygen tension when RBF changes within the physiological range. However, AV oxygen shunting also renders the kidney susceptible to hypoxia. Given that tissue hypoxia is a hallmark of both acute renal injury and chronic renal disease, understanding the causes of tissue hypoxia is of great clinical importance. The simplistic paradigm of oxygenation depending only on the balance between local perfusion and Vo2 is inadequate to achieve this goal. To fully understand the control of renal oxygenation, we must consider a triad of factors that regulate intrarenal oxygenation: local perfusion, local Vo2, and AV oxygen shunting.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
39
|
Cheah FC, Jobe AH, Moss TJ, Newnham JP, Kallapur SG. Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model. Pediatr Res 2008; 63:274-9. [PMID: 18091343 DOI: 10.1203/pdr.0b013e31815f653b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chorioamnionitis is a risk factor for the development of bronchopulmonary dysplasia. Endotoxin-induced oxidative stress to the fetus in the uniquely hypoxic intrauterine environment has not been reported. Using a model of chorioamnionitis, we measured markers of pulmonary and systemic oxidant exposures in fetal lambs at 124 d gestation (term = 150 d) exposed to 10 mg intra-amniotic endotoxin 2 d (n = 6) or 7 d (n = 6) before delivery, or saline as controls (n = 9). The 7 d endotoxin-exposed animals had 3-fold higher protein carbonyls (0.66 +/- 0.46 versus 0.23 +/- 0.14 nmol/mg protein) and 10-fold greater myeloperoxidase activity (2.38 +/- 1.87 versus 0.27 +/- 0.18 nM) in the bronchoalveolar lavage fluid (BALF), suggestive of neutrophil-derived oxidant activity. However, in the lung tissue, protein carbonyls, superoxide dismutase, and peroxiredoxin 1 were not different between groups. The expression of peroxiredoxin 1 was prominent, primarily in the peri-bronchiolar epithelium. Notably, evidence of oxidant exposure was minimal at 2 d when BALF inflammatory cells, lung IL-1beta, and IL-8 were highest. Intra-amniotic endotoxin induced systemic oxidative stress as plasma protein carbonyl was elevated at 7 d (0.14 +/- 0.04 nmol/mg protein; p = 0.005). Surfactant protein A and B mRNAs were highest at 2 d, suggesting that oxidative stress did not contribute to the lung maturation response. A modest lung oxidative stress in chorioamnionitis could contribute to bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Fook-Choe Cheah
- Department of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
40
|
Nowak G, Clifton GL, Bakajsova D. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther 2008; 324:1155-62. [PMID: 18055880 PMCID: PMC2553274 DOI: 10.1124/jpet.107.130872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported that mitochondrial function, intracellular ATP levels, and complex I activity are decreased in renal proximal tubular cells (RPTC) after oxidant (tert-butyl hydroperoxide; TBHP)-induced injury. This study examined the hypothesis that succinate supplementation decreases mitochondrial dysfunction, ameliorates energy deficits, and increases viability in TBHP-injured RPTC. Basal and uncoupled respirations in injured RPTC decreased 33 and 35%, respectively, but remained unchanged in injured RPTC supplemented with 10 mM succinate (electron donor to respiratory complex II). State 3 respiration supported by electron donors to complex I decreased 40% in injured RPTC but improved significantly by succinate supplements. The activity of mitochondrial complex I in TBHP-injured RPTC decreased 48%, whereas complex II activity remained unchanged. Succinate supplementation prevented decreases in complex I activity. ATP levels decreased 43% in injured RPTC but were maintained in injured cells supplemented with succinate. Lipid peroxidation increased 19-fold in injured RPTC but only 9-fold in injured cells supplemented with succinate. Exposure of primary cultures of RPTC to TBHP produced 24% cell injury and lysis but no apoptosis. In contrast, no cell lysis was found in RPTC supplemented with succinate. We conclude that mitochondrial dysfunction and energy deficits in oxidant-injured RPTC are ameliorated by succinate, and we propose that succinate supplementation may prove therapeutically valuable. Succinate 1) uses an alternate pathway of mitochondrial energy metabolism, 2) improves activity of complex I and oxidation of substrates through complex I, and 3) decreases oxidative stress and cell lysis in oxidant-injured RPTC.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., MS 522-3, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
41
|
Lipoic acid ameliorates oxidative stress and renal injury in alloxan diabetic rabbits. Biochimie 2008; 90:450-9. [DOI: 10.1016/j.biochi.2007.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/29/2007] [Indexed: 11/21/2022]
|
42
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
43
|
Ji H, Zheng W, Menini S, Pesce C, Kim J, Wu X, Mulroney SE, Sandberg K. Female protection in progressive renal disease is associated with estradiol attenuation of superoxide production. ACTA ACUST UNITED AC 2007; 4:56-71. [PMID: 17584628 DOI: 10.1016/s1550-8579(07)80009-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Several types of renal disease progress at a faster rate in men compared with women, but the reasons for this sex difference are not well understood. Chronic renal disease is associated with elevated levels of toxic reactive oxygen species (ROS). Superoxide, the major ROS in the kidney, is generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. OBJECTIVE To determine if female protection from renal disease progression is consistent with 17beta-estradiol (E2) attenuation of superoxide production, this study was conducted to assess superoxide production in the renal cortex of male and female control and renal wrap (RW) rats, as well as in ovariectomized rats treated with vehicle or E2. METHODS Sprague-Dawley rats were divided into 2 sham operation male (Sham-M) and female (Sham-F) control groups, and 4 RW hypertensive groups: RW-M; RW-F; RW ovariectomized females treated with vehicle (RW-OVX); and RW ovariectomized females treated with E2, supplied as a 0.24 mg/60-day release pellet (RW-OVX+E2). All groups were maintained on a high-sodium (4% NaCl) diet for 6 weeks. RESULTS Mean (SEM) markers of renal injury and oxidative stress, including urinary protein (mg/24 h: RW-M, 298 [31] vs RW-F, 169 [22]; P < 0.001), microalbuminuria (RW/Sham arbitrary units [AU]/24 h: M, 8.78 [0.58] vs F, 4.31 [1.0]; P < 0.005), and malondialdehyde (nmol/24 h: RW-M, 167 [23] vs RW-F, 117 [8.5]; P < 0.05) levels, as well as mean glomerular volume (microm3 x 10(6): RW-M, 2.25 [0.16] vs RW-F, 1.25 [0.04]; P < 0.001) and the glomerulosclerotic index (AU: RW-M, 2.64 [0.19] vs RW-F, 1.10 [0.09]; P < 0.001) were greater in both control and RW males compared with females in the same treatment groups. Though RW surgery increased mean arterial pressure in both male and female rats, no sex difference was observed. Under these conditions, mean (SEM) renal cortical NADPH oxidase activity was 1.3-fold higher in RW males compared with RW females (relative light units [RLU]/180 sec: RW-M, 4080 [240] vs RW-F, 3200 [260]; P < 0.05). Ovariectomy increased NADPH oxidase activity by 1.4-fold (RLU/180 sec: RW-OVX, 4520 [184]; P < 0.01) under conditions in which the mean glomerular volume and glomerulosclerotic index were both increased by 1.5-fold, whereas E2 replacement (RLU/180 sec: RW-OVX+E2, 2745 [440]) prevented these effects. Furthermore, the effects on NADPH oxidase activity were mirrored by changes in the protein abundance of NADPH oxidase subunit p22P(phox). CONCLUSION These results suggest that E2 protects the female kidney in part by attenuating injury-induced increases in renal superoxide production.
Collapse
Affiliation(s)
- Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Leong CL, Anderson WP, O'Connor PM, Evans RG. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation. Am J Physiol Renal Physiol 2007; 292:F1726-33. [PMID: 17327497 DOI: 10.1152/ajprenal.00436.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) can be reduced in rats and rabbits by up to 40% without significant changes in renal tissue Po2. We determined whether this occurs because renal oxygen consumption changes with RBF or due to some other mechanism. The relationships between RBF and renal cortical and medullary tissue Po2 and renal oxygen metabolism were determined in the denervated kidneys of anesthetized rabbits under hypoxic, normoxic, and hyperoxic conditions. During artificial ventilation with 21% oxygen (normoxia), RBF increased 32 ± 8% during renal arterial infusion of acetylcholine and reduced 31 ± 5% during ANG II infusion. Neither infusion significantly altered arterial pressure, tissue Po2 in the renal cortex or medulla, nor renal oxygen consumption. However, fractional oxygen extraction fell as RBF increased and the ratio of oxygen consumption to sodium reabsorption increased during ANG II infusion. Ventilation with 10% oxygen (hypoxia) significantly reduced both cortical and medullary Po2 (60–70%), whereas ventilation with 50% and 100% oxygen (hyperoxia) increased cortical and medullary Po2 (by 62–298 and 30–56%, respectively). However, responses to altered RBF under hypoxic and hyperoxic conditions were similar to those under normoxic conditions. Thus renal tissue Po2 was relatively independent of RBF within a physiological range (±30%). This was not due to RBF-dependent changes in renal oxygen consumption. The observation that fractional extraction of oxygen fell with increased RBF, yet renal parenchymal Po2 remained unchanged, supports the hypothesis that preglomerular diffusional shunting of oxygen from arteries to veins increases with increasing RBF, and so contributes to dynamic regulation of intrarenal oxygenation.
Collapse
Affiliation(s)
- Chai-Ling Leong
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Abstract
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.
Collapse
Affiliation(s)
- Thomas L Clanton
- Department of Internal Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, 473 W. 12th, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Tain YL, Freshour G, Dikalova A, Griendling K, Baylis C. Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. Am J Physiol Renal Physiol 2007; 292:F1404-10. [PMID: 17200156 DOI: 10.1152/ajprenal.00260.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease is accompanied by nitric oxide (NO) deficiency and oxidative stress, which contribute to progression. We investigated whether the antioxidant vitamin E could preserve renal function and NO bioavailability and reduce oxidative stress in the 5/6th nephrectomy (NX) rat model. We studied the following three groups of male Sprague-Dawley rats: sham (n = 6), 5/6 NX control (n = 6), and 5/6 NX treated with vitamin E (5,000 IU/kg chow; n = 5). The 5/6 NX group showed increased severity of glomerulosclerosis vs. sham, and this was ameliorated by vitamin E therapy. Both 5/6 NX groups showed similar elevations in plasma creatinine and proteinuria and decreased 24-h creatinine clearance compared with sham. There was increased NADPH-dependent superoxide production in 5/6 NX rats vs. sham that was prevented by vitamin E. Total NO production was similarly reduced in both 5/6 NX groups. There was unchanged abundance of endothelial nitric oxide synthesis (NOS) in renal cortex and medulla and neuronal (n) NOS in medulla. However, in kidney cortex, 5/6 NX rats had lower nNOS abundance than sham, which was restored by vitamin E. An increased plasma asymmetric dimethylarginine occurred with 5/6 NX associated with decreased renal dimethylarginine dimethylaminohydrolase activity and increased type 1 protein arginine methyltransferase expression.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The kidneys are second only to the heart in terms of O2 consumption; however, relative to other organs, the kidneys receive a very high blood flow and oxygen extraction in the healthy kidney is low. Despite low arterial-venous O2 extraction, the kidneys are particularly susceptible to hypoxic injury and much interest surrounds the role of renal hypoxia in the development and progression of both acute and chronic renal disease. Numerous regulatory mechanisms have been identified that act to maintain renal parenchymal oxygenation within homeostatic limits in the in vivo kidney. However, the processes by which many of these mechanisms act to modulate renal oxygenation and the factors that influence these processes remain poorly understood. A number of such mechanisms specific to the kidney are reviewed herein, including the relationship between renal blood flow and O2 consumption, pre- and post-glomerular arterial-venous O2 shunting, tubulovascular cross-talk, the differential control of regional kidney blood flow and the tubuloglomerular feedback mechanism. The roles of these mechanisms in the control of renal oxygenation, as well as how dysfunction of these mechanisms may lead to renal hypoxia, are discussed.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53202, USA.
| |
Collapse
|
48
|
Welch WJ, Chabrashvili T, Solis G, Chen Y, Gill PS, Aslam S, Wang X, Ji H, Sandberg K, Jose P, Wilcox CS. Role of Extracellular Superoxide Dismutase in the Mouse Angiotensin Slow Pressor Response. Hypertension 2006; 48:934-41. [PMID: 17015770 DOI: 10.1161/01.hyp.0000242928.57344.92] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low rates of angiotensin II (Ang II) infusion raise blood pressure, renal vascular resistance (RVR), NADPH oxidase activity, and superoxide. We tested the hypothesis that these effects are ameliorated by extracellular superoxide dismutase (EC-SOD). EC-SOD knockout (-/-) and wild type (+/+) mice were equipped with blood pressure telemeters and infused subcutaneously with Ang II (400 ng/kg per minute) or vehicle for 2 weeks. During vehicle infusion, EC-SOD -/- mice had significantly (P<0.05) higher MAP (+/+: 107+/-3 mm Hg versus -/-: 114+/-2 mm Hg; n=11 to 14), RVR, lipid peroxidation, renal cortical p22(phox) expression, and NADPH oxidase activity. Ang II infusion in EC-SOD +/+ mice significantly (P<0.05) increased MAP, RVR, p22(phox), NADPH oxidase activity, and lipid peroxidation. Ang II reduced SOD activity in plasma, aorta, and kidney accompanied by reduced renal EC-SOD expression. During Ang II infusion, both groups had similar values for MAP (+/+ Ang II: 125+/-3 versus -/- Ang II: 124+/-3 mmHg; P value not significant), RVR, NADPH oxidase activity, and lipid peroxidation. SOD activity in the kidneys of Ang II-infused mice was paradoxically higher in EC-SOD -/- mice (+/+: 8.8+/-1.2 U/mg protein(-1) versus -/-: 13.7+/-1.6 U/mg protein(-1); P<0.05) accompanied by a significant upregulation of mRNA and protein for Cu/Zn-SOD. In conclusion, EC-SOD protects normal mice against oxidative stress by attenuating renal p22(phox) expression, NADPH oxidase activation, and the accompanying renal vasoconstriction and hypertension. However, during an Ang II slow pressor response, renal EC-SOD expression is reduced and, in its absence, renal Cu/Zn-SOD is upregulated and may prevent excessive Ang II-induced renal oxidative stress, renal vasoconstriction, and hypertension.
Collapse
Affiliation(s)
- William J Welch
- Cardiovascular-Kidney Institute and Division of Nephrology and Hypertension, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The kidney has a unique environment that results in relatively low tissue oxygen tension (Po2). However, recent studies have shown that renal hypoxia is more severe during hypertension and may reflect changes in the way O2 is used. The present review summarizes studies that explore the relationship between renal oxygen tension (Po2), oxygen consumption and hypertension. More recent studies suggest that oxidative stress accompanying hypertension, rather than the elevated blood pressure per se reduces Po2. The Po2 in various sections of the kidney often reflects the level of oxygen consumption, which varies depending on the sites of Na+ reabsorption, a process that consumes nearly 90% of total renal oxygen. The efficient use of oxygen for the transport of Na+ in the kidney is reduced during hypertension, which may contribute to the resulting hypoxia. Conversely, the defect in renal oxygen usage due to oxidative stress may exacerbate hypertension in animal models. The goal of many of these studies is to determine the impact of renal hypoxia in the generation of hypertension.
Collapse
Affiliation(s)
- William J Welch
- Department of Medicine, Georgetown University, Washington DC 20057, USA.
| |
Collapse
|
50
|
Abstract
NADPH oxidases have a distinct cellular localization in the kidney. Reactive oxygen species (ROS) are produced in the kidney by fibroblasts, endothelial cells (EC), vascular smooth muscle cells (VSMC), mesangial cells (MCs), tubular cells, and podocyte cells. All components of the phagocytic NADPH oxidase, as well as the Nox-1 and -4, are expressed in the kidney, with a prominent expression in renal vessels, glomeruli, and podocytes, and cells of the thick ascending limb of the loop of Henle (TAL), macula densa, distal tubules, collecting ducts, and cortical interstitial fibroblasts. NADPH oxidase activity is upregulated by prolonged infusion of angiotensin II (Ang II) or a high salt diet. Since these are major factors underlying the development of hypertension, renal NADPH oxidase may have an important pathophysiological role. Indeed, recent studies with small interference RNAs (siRNAs) targeted to p22( phox ) implicate p22( phox ) in Ang II-induced activation of renal NADPH oxidase and the development of oxidative stress and hypertension, while studies with apocynin implicate activation of p47( phox ) in the development of nephropathy in a rat model of type 1 diabetes mellitus (DM). Experimental studies of the distribution, signaling, and function of NADPH oxidases in the kidney are described.
Collapse
Affiliation(s)
- Pritmohinder S Gill
- Angiogenesis Section, Lombardi Cancer Center, Cardiovascular-Kidney Institute and Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia 20007, USA
| | | |
Collapse
|