1
|
Centrone M, D’Agostino M, Ranieri M, Mola MG, Faviana P, Lippolis PV, Silvestris DA, Venneri M, Di Mise A, Valenti G, Tamma G. dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells. Front Cell Dev Biol 2022; 10:919438. [PMID: 35874817 PMCID: PMC9304624 DOI: 10.3389/fcell.2022.919438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D’Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | | | | | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Grazia Tamma,
| |
Collapse
|
2
|
Abraham S, Paknikar R, Bhumbra S, Luan D, Venkatareddy M, O'Connor C, Bitzer M, Fenton RA, Hurd T, Garg P, Patel SR. Epigenetic regulation of arginine vasopressin receptor 2 expression by PAX2 and Pax transcription interacting protein. Am J Physiol Renal Physiol 2021; 320:F404-F417. [PMID: 33522413 PMCID: PMC7988803 DOI: 10.1152/ajprenal.00371.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Renal arginine vasopressin receptor 2 (AVPR2) plays a crucial role in osmoregulation. Engagement of ligand with AVPR2 results in aquaporin 2 movement to the apical membrane and water reabsorption from the urinary filtrate. Despite this essential role, little is known about transcriptional regulation of Avpr2. Here, we identify novel roles for PAX2, a transcription factor crucial for kidney development, and its adaptor protein, Pax transcription interacting protein (PTIP), for epigenetic regulation of Avpr2 and thus body water balance. Chromatin immunoprecipitation (ChIP) from murine inner medulla cells (IMCD-3) identified the minimal DNA-binding region of PAX2 on the Avpr2 promoter. Regulation of Avpr2 by PAX2 was confirmed using a heterologous DNA expression system. PAX2 recruits the adaptor protein PTIP and its associated histone methyltransferase (HMT) complex to Avpr2 promoter, imposing epigenetic marks on this region and throughout the coding sequence that modulate Avpr2 gene transcription. Reduction of PAX2 or PTIP protein levels by siRNA prevented histone lysine methylation and expression of Avpr2. ChIP using mouse or human kidneys determined that PAX2 is highly enriched in the AVPR2 promoter alongside PTIP and HMT proteins, leading to high levels of histone H3 lysine trimethylation within the promoter and throughout the gene. In conclusion, PAX2 provides locus specificity for PTIP, allowing the HMT complex to impart epigenetic changes at the Avpr2 locus and regulate Avpr2 transcription. These finding have major implications for understanding regulation of body water balance.NEW & NOTEWORTHY The transcription factor PAX2 plays an indispensable role in kidney development. In the adult kidney, we identified the first described protein this protein regulates. PAX2 and its interacting partner Pax transcription interacting protein recruit a histone methyltransferase complex to the promoter and epigentically regulate the expression of arginine vasopressin receptor 2, a protein that plays a crucial role in osmoregulation in the distal tubule.
Collapse
Affiliation(s)
- Saji Abraham
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raghavendra Paknikar
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Samina Bhumbra
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Danny Luan
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Madhusudan Venkatareddy
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Christopher O'Connor
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Markus Bitzer
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Robert A Fenton
- Department of Biomedicine and Health, Aarhus University, Aarhus, Denmark
| | - Toby Hurd
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Puneet Garg
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Sanjeevkumar R Patel
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| |
Collapse
|
3
|
Wang F, Xu C, Luo R, Peng K, Ramkumar N, Xie S, Lu X, Zhao L, Zuo CJ, Kohan DE, Yang T. Site-1 protease-derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight 2019; 4:124174. [PMID: 30944256 PMCID: PMC6483716 DOI: 10.1172/jci.insight.124174] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease-derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule-specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhao
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-Jiang Zuo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Donald E. Kohan
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension and Renal Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Dingwell LS, Shikatani EA, Besla R, Levy AS, Dinh DD, Momen A, Zhang H, Afroze T, Chen MB, Chiu F, Simmons CA, Billia F, Gommerman JL, John R, Heximer S, Scholey JW, Bolz SS, Robbins CS, Husain M. B-Cell Deficiency Lowers Blood Pressure in Mice. Hypertension 2019; 73:561-570. [DOI: 10.1161/hypertensionaha.118.11828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luke S. Dingwell
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
| | - Eric A. Shikatani
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Rickvinder Besla
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Andrew S. Levy
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Danny D. Dinh
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Abdul Momen
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Hangjun Zhang
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Talat Afroze
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Michelle B. Chen
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Felix Chiu
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Filio Billia
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | | | - Rohan John
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Scott Heximer
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - James W. Scholey
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Clinton S. Robbins
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Immunology (J.L.G., C.S.R.), University of Toronto, Canada
| | - Mansoor Husain
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| |
Collapse
|
5
|
Lykke K, Assentoft M, Fenton RA, Rosenkilde MM, MacAulay N. Vasopressin receptors V1a and V2 are not osmosensors. Physiol Rep 2015; 3:3/8/e12519. [PMID: 26311834 PMCID: PMC4562598 DOI: 10.14814/phy2.12519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Herein, we investigated whether G protein-coupled signaling via the vasopressin receptors of the V1a and V2 subtypes (V1aR and V2R) could be obtained as a direct response to hyperosmolar challenges and/or whether hyperosmolar challenges could augment classical vasopressin-dependent V1aR signaling. The V1aR-dependent response was monitored indirectly via its effects on aquaporin 4 (AQP4) when heterologously expressed in Xenopus oocytes and V1aR and V2R function was directly monitored following heterologous expression in COS-7 cells. A tendency toward an osmotically induced, V1aR-mediated reduction in AQP4-dependent water permeability was observed, although osmotic challenges failed to mimic vasopressin-dependent V1aR-mediated internalization of AQP4. Direct monitoring of inositol phosphate (IP) production of V1aR-expressing COS-7 cells demonstrated an efficient vasopressin-dependent response that was, however, independent of hyperosmotic challenges. Similarly, the cAMP production by the V2R was unaffected by hyperosmotic challenges although, in contrast to the V1aR, the V2R displayed an ability to support alternative signaling (IP production) at higher concentration of vasopressin. V1aR and V2R respond directly to vasopressin exposure, but they do not have an ability to act as osmo- or volume sensors when exposed to an osmotic gradient in the absence or presence of vasopressin.
Collapse
Affiliation(s)
- Kasper Lykke
- Department of Cellular and Molecular Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- Department of Cellular and Molecular Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert A Fenton
- Department of Biomedicine and InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Mette M Rosenkilde
- Department of Neuroscience and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wasilewski MA, Myers VD, Recchia FA, Feldman AM, Tilley DG. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell Signal 2015; 28:224-233. [PMID: 26232615 DOI: 10.1016/j.cellsig.2015.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Melissa A Wasilewski
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Valerie D Myers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Hus-Citharel A, Bodineau L, Frugière A, Joubert F, Bouby N, Llorens-Cortes C. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology 2014; 155:4483-93. [PMID: 25157454 DOI: 10.1210/en.2014-1257] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apelin receptors (ApelinRs) are expressed along an increasing cortico-medullary gradient in collecting ducts (CDs). We showed here that iv injection of apelin 17 (K17F) in lactating rats characterized by increases in both synthesis and release of arginine vasopressin (AVP) increased diuresis concomitantly with a significant decrease in urine osmolality and no change in Na(+) and K(+) excretion. Under these conditions, we also observed a significant decrease in apical aquaporin-2 immunolabeling in CD, with a cortico-medullary gradient, suggesting that K17F-induced diuresis could be linked to a direct action of apelin on CD. We then examined the potential cross talk between V1a AVP receptor (V1a-R), V2 AVP receptor (V2-R) and ApelinR signaling pathways in outer medullary CD (OMCD) and inner medullary CD microdissected rat CD. In OMCD, expressing the 3 receptors, K17F inhibited cAMP production and Ca(2+) influx induced by 1-desamino-8-D-arginine vasopressin a V2-R agonist. Similar effects were observed in inner medullary CD expressing only V2-R and ApelinR. In contrast, in OMCD, K17F increased by 51% the Ca(2+) influx induced by the stimulation of V1a-R by AVP in the presence of the V2-R antagonist SR121463B, possibly enhancing the physiological antagonist effect of V1a-R on V2-R. Thus, the diuretic effect of apelin is not only due to a central effect by inhibiting AVP release in the blood circulation as previously shown but also to a direct action of apelin on CD, by counteracting the antidiuretic effect of AVP occurring via V2-R.
Collapse
Affiliation(s)
- Annette Hus-Citharel
- Centre Interdisciplinaire de Recherche en Biologie (CIRB) (A.H.-C., L.B., A.F., F.J., C.L.-C.), Collège de France, 75005 Paris, France; Inserm Unit 1050 (A.H.-C., L.B., A.F., F.J., C.L.-C.), 75005 Paris, France; Université Pierre et Marie Curie (A.H.-C., L.B., A.F., F.J., N.B., C.L.-C.), 75005 Paris, France; Unité Mixte de Recherche Scientifique (UMRS) 1138 (N.B.), Centre de Recherche des Cordeliers, 75005 Paris, France; and Université Paris Descartes (N.B.), 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Juul KV, Erichsen L, Robertson GL. Temporal delays and individual variation in antidiuretic response to desmopressin. Am J Physiol Renal Physiol 2013; 304:F268-78. [DOI: 10.1152/ajprenal.00502.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to estimate the relationship between pharmacokinetics and the antidiuretic effect of desmopressin. In the investigator-blind, randomized, parallel group study, 5 dose groups and 1 placebo group, each consisting of 12 healthy, overhydrated, nonsmoking male subjects 18–55 yr of age were infused intravenously over 2 h with placebo or 30, 60, 125, 250, and 500 ng desmopressin in 50 ml of normal saline. Plasma desmopressin and urine osmolality rose by variable amounts during the infusions of 60, 125, 250, and 500 ng desmopressin. Plotting mean urine osmolality against the concurrent mean plasma desmopressin yielded a temporal delay between pharmacokinetic (PK) and -dynamic (PD) responses in all dose groups. Using simulation from the indirect-response model, assuming a constant (4 ng/ml) desmopressin concentration, this delay between PK and PD was estimated at 4 h (10th-90th percentile: 1.8–8.1). Within each group, however, there were large individual variations (2- to 10-fold) in the magnitude and duration of the antidiuretic effect. The antidiuretic effect of intravenous desmopressin in water-loaded healthy adults varies considerably due largely to factors other than individual differences in pharmacokinetics. The antidiuretic effect is time as well as dose dependent and may be self-amplifying. The most likely explanation for these findings is that the time required for a given level of plasma desmopressin to exert its maximum antidiuretic effect varies markedly from person to person due to individual differences in the kinetics of one or more of the intracellular mechanisms that promote the reabsorption of solute-free water by principal cells in renal collecting tubules.
Collapse
Affiliation(s)
| | - Lars Erichsen
- Ferring International Pharmascience Center, Copenhagen, Denmark; and
| | - Gary L. Robertson
- Clinical Research Center at Northwestern Memorial Hospital, Feinberg Medical School of Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiol Rev 2012; 92:1813-64. [DOI: 10.1152/physrev.00035.2011] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) is essential for a wide range of physiological functions, including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. These and other actions of AVP are mediated by at least three distinct receptor subtypes: V1a, V1b, and V2. Although the antidiuretic action of AVP and V2 receptor in renal distal tubules and collecting ducts is relatively well understood, recent years have seen an increasing understanding of the physiological roles of V1a and V1b receptors. The V1a receptor is originally found in the vascular smooth muscle and the V1b receptor in the anterior pituitary. Deletion of V1a or V1b receptor genes in mice revealed that the contributions of these receptors extend far beyond cardiovascular or hormone-secreting functions. Together with extensively developed pharmacological tools, genetically altered rodent models have advanced the understanding of a variety of AVP systems. Our report reviews the findings in this important field by covering a wide range of research, from the molecular physiology of V1a and V1b receptors to studies on whole animals, including gene knockout/knockdown studies.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Nobuaki Egashira
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Masami Hiroyama
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Hiroshi Nonoguchi
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Akito Tanoue
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| |
Collapse
|
10
|
Sepsis-induced urinary concentration defect is related to nitric oxide–dependent inactivation of TonEBP/NFAT5, which downregulates renal medullary solute transport proteins and aquaporin-2*. Crit Care Med 2012; 40:1887-95. [DOI: 10.1097/ccm.0b013e31824e1186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Memetimin H, Izumi Y, Nakayama Y, Kohda Y, Inoue H, Nonoguchi H, Tomita K. Low pH stimulates vasopressin V2 receptor promoter activity and enhances downregulation induced by V1a receptor stimulation. Am J Physiol Renal Physiol 2009; 297:F620-8. [PMID: 19587140 DOI: 10.1152/ajprenal.90520.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arginine vasopressin (AVP) plays a key role in the urine concentration mechanism via the vasopressin V2 receptor (V2R) and aquaporin 2 (AQP2) in the kidney. It is well known that V2R is localized on the basolateral side and the V1a receptor (V1aR) is distributed on the luminal side of the collecting ducts. Previously, we reported an increase of V1aR mRNA and a decrease of V2R mRNA in the collecting ducts under chronic metabolic acidosis. However, the regulatory mechanism of V2R in acidic conditions has not yet been determined. In the present study, we investigated the effect of changes in pH on V2R promoter activity, using the LLC-PK(1) cell line stably expressing rat V1aR (LLC-PK(1)/rV1aR). The rV2R promoter activity was significantly increased at 12 h after the incubation in low-pH conditions, which was sustained for 24 h. mRNA and protein expressions of V2R were also increased in low-pH conditions. V1aR stimulation suppressed rV2R promoter activity in a pH-dependent manner. PKA and JNK inhibitors suppressed rV2R promoter activity in both neutral and low-pH conditions without FBS. However, a JNK inhibitor prevented the increase of V2R promoter activity only in low-pH conditions in the presence of FBS. In summary, V2R expression is increased at transcriptional, mRNA, and protein levels in LLC-PK(1)/rV1aR cells under low-pH conditions. Acidic condition-induced V2R enhancement was suppressed by V1aR stimulation, suggesting the crucial role of V1aR in water and electrolyte homeostasis in acidosis.
Collapse
Affiliation(s)
- Hasiyet Memetimin
- Dept. of Nephrology, Graduate School of Medical Sciences, Kumamoto Univ., 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|