1
|
Xue JY, Ikegawa S, Guo L. SLC4A2, another gene involved in acid-base balancing machinery of osteoclasts, causes osteopetrosis. Bone 2023; 167:116603. [PMID: 36343920 DOI: 10.1016/j.bone.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
SLC4A2 belongs to the Na+-independent solute carrier family 4 (SLC4) of anion exchangers, which regulate electroneutral exchange of Cl- for HCO3- and mediate intra- and extra-cellular pH, chloride concentration and cell volume. Slc4a2 also participates in gastric acid secretion, spermatogenesis and osteoclastogenesis. During osteoclast differentiation, Slc4a2 is exclusively expressed at the contra-lacunar membrane and is up-regulated with osteoclast maturation. Bi-allelic Slc4a2 loss-of-function mutations have been known to cause osteopetrosis in mice and cattle, but not in human. Recently, we have identified bi-allelic pathogenic variants in SLC4A2 in a patient affected by osteopetrosis with severe renal insufficiency, suggesting SLC4A2 deficiency causes a new type of autosomal recessive osteopetrosis (osteopetrosis, Ikegawa type). In this article, we review the advances in exploring the multiple functions of SLC4A2 with emphasis on its roles in osteoclast. Our review would contribute to understanding of the phenotypic spectrum and the pathomechanism of SLC4A2-associated osteopetrosis.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Long Guo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Zhou C, Hu B, Tang Y, Chen X, Ma Z, Ding Q, Nie G. Genome-wide characterization of the Triplophysa dalaica slc4 gene family and expression profiles in response to salinity changes. BMC Genomics 2022; 23:824. [PMID: 36513970 PMCID: PMC9746111 DOI: 10.1186/s12864-022-09057-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The solute carrier 4 (SLC4) gene family is involved in a variety of physiological processes in organisms and is essential for maintaining acid-base balance in the body. The slc4 genes have been extensively studied in mammals, and they play important roles in intracellular and extracellular pH regulation and in the secretion and uptake of HCO3- and other ions (Na+ and Cl-) between transepithelial cells in different tissues. This study identified and characterized the entire slc4 gene family of Triplophysa dalaica. RESULTS Fifteen slc4 genes were identified in the whole genome of Triplophysa dalaica in this study, including five copies of Na+-independent Cl-/HCO3- transporters, eight members of Na+-dependent HCO3- transporters, and two genes coding Na+-coupled borate transporters. The chromosomal location information, isoelectric points, and molecular weights of the 15 slc4 genes were analyzed. The results for gene structure, domain analysis, and phylogenetic relationships of this gene family showed that the slc4 genes (except for slc4a9, which is missing in teleosts) are significantly expanded in teleosts compared to higher vertebrates. This phenomenon suggests that the slc4 gene family played an important role in the transition from aquatic to terrestrial animals. RT-PCR results showed that different slc4 genes showed diversified expression patterns in the tissues of T. dalaica. For osmotic pressure regulating organs, slc4a1b, slc4a4b, slc4a7, and slc4a11a were highly expressed in gills. In the kidney, slc4a1a, slc4a3, and slc4a10b were highly expressed, suggesting that the slc4 genes play a specific role in the salinity adaptation of T. dalaica. Our study has deciphered the biological roles of the slc4 genes in maintaining ionic and acid-base homeostasis in teleost fishes and provides a foundation for future exploration of the highly differentiated gene family in Triplophysa. CONCLUSIONS The results are relevant for the breeding of alkali-tolerant varieties in saline-alkali areas for aquaculture. Our findings have important implications for the adaptation process of freshwater species to saline-alkali water.
Collapse
Affiliation(s)
- Chuanjiang Zhou
- grid.462338.80000 0004 0605 6769College of Life Sciences, Henan Normal University, Xinxiang, 453007 People’s Republic of China
| | - Bo Hu
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| | - Yongtao Tang
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| | - Xin Chen
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| | - Zhigang Ma
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| | - Qiqi Ding
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| | - Guoxing Nie
- grid.462338.80000 0004 0605 6769College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan 453007 People’s Republic of China
| |
Collapse
|
3
|
Xue JY, Grigelioniene G, Wang Z, Nishimura G, Iida A, Matsumoto N, Tham E, Miyake N, Ikegawa S, Guo L. SLC4A2 Deficiency Causes a New Type of Osteopetrosis. J Bone Miner Res 2022; 37:226-235. [PMID: 34668226 DOI: 10.1002/jbmr.4462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl- with HCO3- . Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl- showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Medical Genetics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
4
|
Slc4 Gene Family in Spotted Sea Bass (Lateolabrax maculatus): Structure, Evolution, and Expression Profiling in Response to Alkalinity Stress and Salinity Changes. Genes (Basel) 2020; 11:genes11111271. [PMID: 33126655 PMCID: PMC7692064 DOI: 10.3390/genes11111271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
The solute carrier 4 (SLC4) family is a class of cell membranes transporters involved in base transport that plays crucial roles in diverse physiological processes. In our study, 15 slc4 genes were identified and annotated in spotted sea bass, including five members of Cl−/HCO3− exchangers, eight genes coding Na+-dependent HCO3− transporters, and two copies of Na+-coupled borate transporters. The gene sequence and structure, chromosomal and syntenic arrangement, phylogenetic and evolution profiles were analyzed. Results showed that the slc4 gene in teleosts obviously expanded compared with higher vertebrates, arising from teleost-specific whole genome duplication event. Most gene sites of slc4 in spotted sea bass were under strong purifying selection during evolution, while positive selection sites were only detected in slc4a1b, slc4a8, and slc4a10b. Additionally, qRT-PCR results showed that different slc4 genes exhibited distinct branchial expression patterns after alkalinity and salinity stresses, of which the strongly responsive members may play essential roles during these physiological processes. Our study provides the systemic overview of the slc4 gene family in spotted sea bass and enables a better understanding for the evolution of this family and further deciphering the biological roles in maintaining ion and acid–base homeostasis in teleosts.
Collapse
|
5
|
Qian F, Wang X, Yin Z, Xie G, Yuan H, Liu D, Chai R. The slc4a2b gene is required for hair cell development in zebrafish. Aging (Albany NY) 2020; 12:18804-18821. [PMID: 33044947 PMCID: PMC7732325 DOI: 10.18632/aging.103840] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Hair cells (HCs) function as important sensory receptors that can detect movement in their immediate environment. HCs in the inner ear can sense acoustic signals, while in aquatic vertebrates HCs can also detect movements, vibrations, and pressure gradients in the surrounding water. Many genes are responsible for the development of HCs, and developmental defects in HCs can lead to hearing loss and other sensory dysfunctions. Here, we found that the solute carrier family 4, member 2b (slc4a2b) gene, which is a member of the anion-exchange family, is expressed in the otic vesicles and lateral line neuromasts in developing zebrafish embryos. An in silico analysis showed that the slc4a2b is evolutionarily conserved, and we found that loss of function of slc4a2b resulted in a decreased number of HCs in zebrafish neuromasts due to increased HC apoptosis. Taken together, we conclude that slc4a2b plays a critical role in the development of HCs in zebrafish.
Collapse
Affiliation(s)
- Fuping Qian
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhenhua Yin
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226019, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Liu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China,School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Piazza CE, Mattos JJ, de Toledo-Silva G, Flores-Nunes F, Tadra-Sfeir MZ, Trevisan R, Bittencourt AC, Bícego MC, Taniguchi S, Marques MRF, Dafré AL, Bianchini A, Souza EMD, Bainy ACD. Transcriptional effects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109411. [PMID: 31299475 DOI: 10.1016/j.ecoenv.2019.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Arnaldo Cechinel Bittencourt
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafré
- Laboratory of Cellular Defenses, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Barat A, Sahoo PK, Kumar R, Pande V. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae). Comp Biochem Physiol B Biochem Mol Biol 2016; 200:54-61. [PMID: 27287540 DOI: 10.1016/j.cbpb.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species.
Collapse
Affiliation(s)
- Ashoktaru Barat
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136 Nainital, Uttarakhand, India.
| | - Prabhati Kumari Sahoo
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Rohit Kumar
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal campus, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| |
Collapse
|
8
|
Abstract
The kidney of the zebrafish shares many features with other vertebrate kidneys including the human kidney. Similar cell types and shared developmental and patterning mechanisms make the zebrafish pronephros a valuable model for kidney organogenesis. Here we review recent advances in studies of zebrafish pronephric development and provide experimental protocols to analyze kidney cell types and structures, measure nephron function, live image kidney cells in vivo, and probe mechanisms of kidney regeneration after injury.
Collapse
Affiliation(s)
- I A Drummond
- Massachusetts General Hospital, Charlestown, MA, United States
| | - A J Davidson
- The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Tomar R, Mudumana SP, Pathak N, Hukriede NA, Drummond IA. osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol 2014; 25:2539-45. [PMID: 24722440 DOI: 10.1681/asn.2013121327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.
Collapse
Affiliation(s)
- Ritu Tomar
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Sudha P Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger. Pflugers Arch 2014; 466:1605-18. [PMID: 24668450 DOI: 10.1007/s00424-014-1494-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
The zebrafish genome encodes two slc4a1 genes, one expressed in erythroid tissues and the other in the HR (H(+)-ATPase-rich) type of embryonic skin ionocytes, and two slc4a2 genes, one in proximal pronephric duct and the other in several extrarenal tissues of the embryo. We now report cDNA cloning and functional characterization of zebrafish slc4a3/ae3 gene products. The single ae3 gene on chromosome 9 generates at least two low-abundance ae3 transcripts differing only in their 5'-untranslated regions and encoding a single definitive Ae3 polypeptide of 1170 amino acids. The 7 kb upstream of the apparent initiator Met in ae3 exon 3 comprises multiple diverse, mobile repeat elements which disrupt and appear to truncate the Ae3 N-terminal amino acid sequence that would otherwise align with brain Ae3 of other species. Embryonic ae3 mRNA expression was detected by whole mount in situ hybridization only in fin buds at 24-72 hpf, but was detectable by RT-PCR across a range of embryonic and adult tissues. Epitope-tagged Ae3 polypeptide was expressed at or near the surface of Xenopus oocytes, and mediated low rates of DIDS-sensitive (36)Cl(-)/Cl(-) exchange in influx and efflux assays. As previously reported for Ae2 polypeptides, (36)Cl(-) transport by Ae3 was inhibited by both extracellular and intracellular acidic pH, and stimulated by alkaline pH. However, zebrafish Ae3 differed from Ae2 polypeptides in its insensitivity to NH4Cl and to hypertonicity. We conclude that multiple repeat elements have disrupted the 5'-end of the zebrafish ae3 gene, associated with N-terminal truncation of the protein and reduced anion transport activity.
Collapse
|
11
|
Chang YM, Tang R, Dou XJ, Tao R, Sun XW, Liang LQ. Transcriptome and expression profiling analysis of Leuciscus waleckii: an exploration of the alkali-adapted mechanisms of a freshwater teleost. MOLECULAR BIOSYSTEMS 2014; 10:491-504. [PMID: 24382597 DOI: 10.1039/c3mb70318e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategies by which freshwater teleosts maintain acid-base homeostasis under alkaline stress are attractive and have been explored for a long time. In this study, a cyprinid fish that tolerates extremely alkaline environments (pH 9.6), Leuciscus waleckii, was used as a model to explore the molecular mechanisms of acid-base regulation. Using a lab-controlled alkaline challenge test and 454 sequencing, the transcriptomes of their gills and kidney were profiled and compared. mRNA profiling produced 1 826 022 reads, generated 30 606 contigs with an average length of 1022 bp, of which 19 196 were annotated successfully. Comparative analysis of the expression profiles between alkaline and freshwater L. waleckii habitats revealed approximately 4647 and 7184 genes that were differentially expressed (p < 0.05) in gills and kidney, respectively, of which 2398 and 5127 had more than twofold changes in expression. Gene ontology analysis and KEGG enrichment analysis were conducted. Comprehensive analysis found that genes involved in ion transportation, ammonia transportation, and arachidonic acid metabolism pathways changed dramatically and played important roles in acid-base homeostasis in fish under alkaline stress. These results support the existing hypotheses about candidate genes involved in acid-base regulation under alkaline stress and prompt several new hypotheses. The large transcriptome dataset collected in this study is a useful resource for the exploration of homeostasis modulation in other fish species.
Collapse
Affiliation(s)
- Yu-Mei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China.
| | | | | | | | | | | |
Collapse
|
12
|
Lam PY, Kamei CN, Mangos S, Mudumana S, Liu Y, Drummond IA. odd-skipped related 2 is required for fin chondrogenesis in zebrafish. Dev Dyn 2013; 242:1284-92. [PMID: 23913342 DOI: 10.1002/dvdy.24026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/21/2013] [Accepted: 07/17/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND odd-skipped related 2 (osr2) encodes a vertebrate ortholog of the Drosophila odd-skipped zinc-finger transcription factor. Osr2 in mouse is required for proper palate, eyelid, and bone development. Zebrafish knock-down experiments have also suggested a role for osr2, along with its paralog osr1, in early pectoral fin specification and pronephric development. RESULTS We show here that osr2 has a specific function later in development, independent of osr1, in the regulation of sox9a expression and promoting fin chondrogenesis. mRNA in situ hybridization demonstrated osr2 expression in the developing floorplate and later during organogenesis in the pronephros and gut epithelium. In the pectoral fin buds, osr2 was specifically expressed in fin mesenchyme. osr2 knock down in zebrafish embryos disrupted both three and five zinc finger alternatively spliced osr2 isoforms and eliminated wild-type osr2 mRNA. osr2 morphants exhibited normal pectoral fin bud specification but exhibited defective fin chondrogenesis, with loss of differentiated chondrocytes. Defects in chondrogenesis were paralleled by loss of sox9a as well as subsequent col2a1 expression, linking osr2 function to essential regulators of chondrogenesis. CONCLUSIONS The zebrafish odd-skipped related 2 gene regulates sox9a and col2a1 expression in chondrocyte development and is specifically required for zebrafish fin morphogenesis.
Collapse
Affiliation(s)
- Pui-Ying Lam
- Massachusetts General Hospital, Department of Medicine, Nephrology Division, and Harvard Medical School Department of Genetics, Charlestown, Massachusetts
| | | | | | | | | | | |
Collapse
|
13
|
Hwang PP, Chou MY. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 2013; 465:1233-47. [PMID: 23568368 PMCID: PMC3745619 DOI: 10.1007/s00424-013-1269-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/27/2023]
Abstract
Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during embryonic stages) assume the role of the kidney in body fluid ionic homeostasis. Four types of ionocyte expressing distinct sets of transporters have been identified in these organs: H+-ATPase-rich, Na+-K+-ATPase-rich, Na+-Cl− cotransporter-expressing and K+-secreting cells; these ionocytes perform transepithelial H+ secretion/Na+ uptake/NH4+ excretion, Ca2+ uptake, Na+/Cl− uptake, and K+ secretion, respectively. Zebrafish ionocytes are analogous to various renal tubular cells, in terms of ion transporter expression and function. During embryonic development, ionocyte progenitors develop from epidermal stem cells and then differentiate into different types of ionocyte through a positive regulatory loop of Foxi3a/-3b and other transcription factors. Several hormones, including cortisol, vitamin D, stanniocalcin-1, calcitonin, and isotocin, were found to participate in the control pathways of ionic homeostasis by precisely studying the target ion transport pathways, ion transporters, or ionocytes of the hormonal actions. In conclusion, the zebrafish model not only enhances our understanding of body fluid ion homeostasis and hormonal control in fish but also informs studies on mammals and other animal species, thereby providing new insights into related fields.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | | |
Collapse
|
14
|
Mekuchi M, Watanabe S, Kaneko T. Bicarbonate secreted from the pancreas contributed to the formation of Ca precipitates in Japanese eel, Anguilla japonica. ACTA ACUST UNITED AC 2012. [PMID: 23184476 DOI: 10.1002/jez.1774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Marine teleosts produce Ca precipitates in the intestine as a product of osmoregulation. Ca precipitates are formed by a chemical reaction of Mg(2+) and Ca(2+) derived from ingested seawater with bicarbonate (HCO(3)(-)). It has been reported that HCO(3)(-) originates from the intestine; however, the pancreas is predicted to be another organ that may supply HCO(3)(-) to the intestinal tract. In the present study, the pancreas was surgically removed from Japanese eel to confirm its contribution to Ca precipitate formation. Pancreatectomized eel produced significantly less Ca precipitates than control eel in seawater, indicating that HCO(3)(-) from the pancreas contributes substantially to the formation of Ca precipitates. To further examine the molecular mechanisms of HCO(3)(-) secretion, we cloned cDNAs encoding HCO(3)(-) transporters and identified those transporters that elevated their mRNA expression in the intestine and pancreas following seawater transfer. In the intestine, mRNA expression of Slc26a6A was increased shortly after seawater transfer, whereas Slc26a1 mRNA expression increased gradually following seawater transfer. In the pancreas, Slc26a3 mRNA expression was high during the early stage of seawater acclimation, whereas Slc26a1 expression increased gradually after transfer to seawater. In the intestine and pancreas, therefore, both transient and progressively increasing types of HCO(3)(-) transporters are likely to be involved in HCO(3)(-) secretion into the intestinal lumen in a coordinated manner.
Collapse
Affiliation(s)
- Miyuki Mekuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | | | | |
Collapse
|
15
|
Misra S, Kwong RWM, Niyogi S. Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout. ACTA ACUST UNITED AC 2012; 215:1491-501. [PMID: 22496285 DOI: 10.1242/jeb.062307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transport of essential solutes across biological membranes is one of the fundamental characteristics of living cells. Although selenium is an essential micronutrient, little is known about the cellular mechanisms of chemical species-specific selenium transport in fish. We report here the kinetic and pharmacological transport characteristics of selenite and its thiol (glutathione and l-cysteine) derivatives in primary cultures of hepatocytes and isolated enterocytes of rainbow trout. Findings from the current study suggest an apparent low-affinity linear transport system for selenite in both cell types. However, we recorded high-affinity Hill kinetics (K(d)=3.61±0.28 μmol l(-1)) in enterocytes exposed to selenite in the presence of glutathione. The uptake of selenite in the presence of thiols was severalfold higher than uptake of selenite alone (at equimolar concentration) in both hepatocytes and enterocytes. Cellular accumulation of selenium was found to be energy independent. Interestingly, we observed a decrease in selenite transport with increasing pH, whereas selenite uptake increased with increasing pH in the presence glutathione in both cell types. The cellular uptake of selenite demonstrated a pronounced competitive interaction with a structurally similar compound, sulfite. The uptake of selenite as well as its thiol derivatives was found to be sensitive to the anion transport blocker DIDS, irrespective of the cell type. Inorganic mercury (Hg(2+)) elicited an inhibition of selenite transport in both cell types, but augmented the transport of reduced forms of selenite in hepatocytes. Based on the substrate choice and comparable pharmacological properties, we advocate that multiple anion transport systems are probably involved in the cellular transport of selenite in fish.
Collapse
Affiliation(s)
- Sougat Misra
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | | | | |
Collapse
|
16
|
Mackinder L, Wheeler G, Schroeder D, von Dassow P, Riebesell U, Brownlee C. Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environ Microbiol 2011; 13:3250-65. [PMID: 21902794 DOI: 10.1111/j.1462-2920.2011.02561.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented.
Collapse
Affiliation(s)
- Luke Mackinder
- The Laboratory, Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Lee YC, Yan JJ, Cruz SA, Horng JL, Hwang PP. Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 2010; 300:C295-307. [PMID: 21123736 DOI: 10.1152/ajpcell.00263.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Similar to mammalian proximal tubular cells, H(+)-ATPase rich (HR) cells in zebrafish skin and gills are also responsible for Na(+) uptake and acid secretion functions. However, the basolateral transport pathways in HR cells are still unclear. In the present study, we tested the hypothesis if there are specific slc4 members involved in basolateral ion transport pathways in HR cells. Fourteen isoforms were identified in the zebrafish(z) slc4 family, and the full-length cDNAs of two novel isoforms, zslc4a1b (anion exchanger, zAE1b) and zslc4a4b (Na(+)/HCO(3)(-) cotransporter, zNBCe1b), were sequenced. mRNA signals of zslc4a1b and zslc4a4b were mainly detected in certain groups of ionocytes in zebrafish skin/gills. Further double immunocytochemistry or in situ hybridization demonstrated that zAE1b, but not zNBCe1b, was localized to basolateral membranes of HR cells. Acclimation to low-Na(+) or acidic environments stimulated the mRNA expression of zslc4a1b in zebrafish gills, and loss-of-function of zslc4a1b with specific morpholinos caused significant decreases in both the whole body Na(+) content and the skin H(+) activity in the morphants. On the basis of these results, it was concluded that zAE1b, but not zNBCe1b, is involved in the basolateral transport pathways in Na(+) uptake/acid secretion mechanisms in zebrafish HR cells.
Collapse
Affiliation(s)
- Yi-Chun Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
The zebrafish pronephric kidney provides a useful and relevant model of kidney development and function. It is composed of cell types common to all vertebrate kidneys and pronephric organogenesis is regulated by transcription factors that have highly conserved functions in mammalian kidney development. Pronephric nephrons are a good model of tubule segmentation and differentiation of epithelial cell types. The pronephric glomerulus provides a simple model to assay gene function in regulating cell structure and cell interactions that form the blood filtration apparatus. The relative simplicity of the pronephric kidney combined with the ease of genetic manipulation in zebrafish makes it well suited for mutation analysis and gene discovery, in vivo imaging, functional screens of candidate genes from other species, and cell isolation by FACS . In addition, the larval and adult zebrafish kidneys have emerged as systems to study kidney regeneration after injury. This chapter provides a review of pronephric structure and development as well as current methods to study the pronephros.
Collapse
|
20
|
Piermarini PM, Grogan LF, Lau K, Wang L, Beyenbach KW. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion. Am J Physiol Regul Integr Comp Physiol 2009; 298:R642-60. [PMID: 20042685 DOI: 10.1152/ajpregu.00729.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
21
|
Bayaa M, Vulesevic B, Esbaugh A, Braun M, Ekker ME, Grosell M, Perry SF. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. ACTA ACUST UNITED AC 2009; 212:3283-95. [PMID: 19801433 DOI: 10.1242/jeb.033910] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After demonstrating phylogenetic relatedness to orthologous mammalian genes, tools were developed to investigate the roles of three members (A3, A4 and A6c) of the SLC26 anion exchange gene family in Cl- uptake and HCO3 excretion in embryos and larvae of zebrafish (Danio rerio). Whole-mount in situ hybridization revealed the presence of SLC26 mRNA in gill primordia, mesonephros and heart (slc26a3 and a4 only) at 5-9 days postfertilization (d.p.f.). SLC26A3 protein was highly expressed in lateral line neuromasts and within the gill, was localized to a sub-population of epithelial cells, which often (but not always) coexpressed Na+/K+-ATPase. SLC26 mRNA levels increased with developmental age, peaking at 5-10 d.p.f.; the largest increases in rates of Cl- uptake (JinCl-) preceded the mRNA spike, occurring at 2-5 d.p.f. Raising zebrafish in water with a low [Cl-] caused marked increases in JinCl- at 3-10 d.p.f. and was associated with increased levels of SLC26 mRNA. Raising fish in water of high [Cl-] was without effect on JinCl- or SLC26 transcript abundance. Selective gene knockdown using morpholino antisense oligonucleotides demonstrated a significant role for SLC26A3 in Cl- uptake in larval fish raised in control water and roles for A3, A4 and A6c in fish raised in water with low [Cl-]. Prolonged (7 days) or acute (24 h) exposure of fish to elevated (2 or 5 mmol l(-1)) ambient [HCO3-] caused marked increases in Cl- uptake when determined in water of normal [HCO3-] that were accompanied by elevated levels of SLC26 mRNA. The increases in JinCl- associated with high ambient [HCO3-] were not observed in the SLC26 morphants (significant only at 5 mmol l(-1) HCO3- for A4 and 2 mmol l(-1) HCO3- for A6c). Net base excretion was markedly inhibited in the slc26a3 and a6c morphants thereby implicating these genes in Cl-/HCO3- exchange. The results suggest that under normal conditions, Cl- uptake in zebrafish larvae is mediated by SLC26A3 Cl-/HCO3- exchangers but under conditions necessitating higher rates of high affinity Cl- uptake, SlC26A4 and SLC26A6c may assume a greater role.
Collapse
Affiliation(s)
- M Bayaa
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Grosell M, Mager EM, Williams C, Taylor JR. High rates of HCO3- secretion and Cl- absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? ACTA ACUST UNITED AC 2009; 212:1684-96. [PMID: 19448078 DOI: 10.1242/jeb.027730] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anion exchange contributes significantly to intestinal Cl(-) absorption in marine teleost fish and is thus vital for successful osmoregulation. This anion exchange process leads to high luminal HCO(3)(-) concentrations (up to approximately 100 mmol l(-1)) and high pH and results in the formation of CaCO(3) precipitates in the intestinal lumen. Recent advances in our understanding of the transport processes involved in intestinal anion exchange in marine teleost fish include the demonstration of a role for the H(+)-pump (V-ATPase) in apical H(+) extrusion and the presence of an electrogenic (nHCO(3)(-)/Cl(-)) exchange protein (SLC26a6). The H(+)-V-ATPase defends against cellular acidification, which might otherwise occur as a consequence of the high rates of base secretion. In addition, apical H(+) extrusion probably maintains lower HCO(3)(-) concentrations in the unstirred layer at the apical surface than in the bulk luminal fluids and thus facilitates continued anion exchange. Furthermore, H(+)-V-ATPase activity hyperpolarizes the apical membrane potential that provides the driving force for apical electrogenic nHCO(3)(-)/Cl(-) exchange, which appears to occur against both Cl(-) and HCO(3)(-) electrochemical gradients. We propose that a similar coupling between apical H(+) extrusion and nHCO(3)(-)/Cl(-) exchange accounts for Cl(-) uptake in freshwater fish and amphibians against very steep Cl(-) gradients.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | | | |
Collapse
|
23
|
Perry SF, Vulesevic B, Grosell M, Bayaa M. Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2009; 297:R988-97. [PMID: 19641131 DOI: 10.1152/ajpregu.00327.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Experiments were performed to test the hypothesis that three members of the SLC26 anion transporter gene family (SLC26a3, A4, and A6; hereafter termed za3, za4, and za6) mediate branchial Cl(-)/HCO(3)(-) exchange in adult zebrafish (Danio rerio). Real-time RT-PCR demonstrated that the gill expressed relatively high levels of za6 mRNA; za3 and za4 mRNA, while present, were less abundant. Also, za4 and za6 were expressed at relatively high levels in the kidney. The results of in situ hybridization or immunocytochemistry (za3 only) experiments performed on gill sections revealed that the SLC26 transporters were predominantly expressed on the filament epithelium (especially within the interlamellar regions) and to a lesser extent on the lamellar epithelium at the base of lamellae. This distribution pattern suggests that the SLC26 anion transporters are localized to mitochondrion-rich cells (ionocytes). Transferring fish to water containing low [Cl(-)] (0.02 mmol/l) resulted in significant increases in branchial SLC26 mRNA expression after 5-10 days of exposure relative to fish raised in normal water [Cl(-)] (0.4 mmol/l); transferring fish to Cl(-)-enriched water (2.0 mmol/l) was without effect on mRNA levels. Transferring fish to water containing elevated levels of NaHCO(3) (10-12.5 mmol/l) caused marked increases in branchial SLC26 mRNA expression between 3 and 10 days of transfer that was associated with a significant 40% increase in Cl(-) uptake (as measured upon return to normal water after 7 days). A decrease in whole body net acid excretion (equivalent to an increase in net base excretion) in fish previously maintained in high [NaHCO(3)] water, concurrent with increases in Cl(-) uptake and SLC26 mRNA levels, suggests a role for these anion transporters in Cl(-) uptake and acid-base regulation owing to their Cl(-)/HCO(3)(-) exchange activities.
Collapse
Affiliation(s)
- S F Perry
- 1Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
24
|
Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212:1672-83. [PMID: 19448077 PMCID: PMC2683012 DOI: 10.1242/jeb.029454] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Plasmalemmal Cl(-)/HCO(3)(-) exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl(-)] and cell volume. The Cl(-)/HCO(3)(-) exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid-base equivalents and Cl(-). This review focuses on Na(+)-independent electroneutral Cl(-)/HCO(3)(-) exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2(-/-) mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2(-/-) mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3(-/-) mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl(-)/anion exchange, but trout erythroid Ae1 also mediates Cl(-) conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl(-) conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO(4)(2-)/Cl(-) exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure-function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 2009; 7:e9. [PMID: 19127979 PMCID: PMC2613420 DOI: 10.1371/journal.pbio.1000009] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 11/21/2008] [Indexed: 12/12/2022] Open
Abstract
Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis. The kidney's job is to maintain blood ion and metabolite concentrations in a narrow range that supports the function of all other organs. Blood is filtered and essential solutes are recovered in a structure called the nephron. Human kidneys have one million nephrons, while simpler kidneys like the zebrafish larval kidney have only two. Nephrons are segmented epithelial tubules; each segment takes on a particular shape (such as convoluted, straight, or U-shaped) and plays a specific role in recovering filtered solutes. How the nephron is proportioned into segments and how some tubule segments become convoluted is not known. This work takes advantage of the simple zebrafish kidney to image living cells during nephron formation. Unexpectedly, we found that nephron cells are actively migrating “upstream” toward the filtering end of the nephron. The cells remain connected to each other and migrate as an intact tube. This is similar to a process called “collective cell migration.” We find that collective cell migration establishes the final position of nephron segment boundaries and drives convolution of the tubule. We also find that cell migration is dependent on fluid flow in the tubules, supporting the idea that organ function is important in defining its final form. Epithelial cell shape, tubule convolution, and segment boundary position along the kidney nephron unexpectedly involve the migration of fully differentiated epithelial cells against the flow of lumenal fluid.
Collapse
Affiliation(s)
- Aleksandr Vasilyev
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yan Liu
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Sudha Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Steve Mangos
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Pui-Ying Lam
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Arindam Majumdar
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Jinhua Zhao
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kar-Lai Poon
- Institute for Cell and Molecular Biology, Singapore, Singapore
| | - Igor Kondrychyn
- Institute for Cell and Molecular Biology, Singapore, Singapore
| | - Vladimir Korzh
- Institute for Cell and Molecular Biology, Singapore, Singapore
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA. odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 2008; 135:3355-67. [PMID: 18787069 DOI: 10.1242/dev.022830] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney and vasculature are intimately linked both functionally and during development, when nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms that underlie the differentiation of kidney versus blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc-finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, an enlarged cardinal vein and expansion of the posterior venous plexus. Altered kidney versus vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm; in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney towards vascular development.
Collapse
Affiliation(s)
- Sudha P Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
27
|
Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Höglund P, Chan HC, Shi QX. Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3- exchanger (SLC26A3) and CFTR. Biol Reprod 2008; 80:115-23. [PMID: 18784352 DOI: 10.1095/biolreprod.108.068528] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.
Collapse
Affiliation(s)
- Wen Ying Chen
- Unit of Reproductive Physiology, Institute of Reproductive Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shmukler BE, Clark JS, Hsu A, Vandorpe DH, Stewart AK, Kurschat CE, Choe SK, Zhou Y, Amigo J, Paw BH, Alper SL. Zebrafish ae2.2 encodes a second slc4a2 anion exchanger. Am J Physiol Regul Integr Comp Physiol 2007; 294:R1081-91. [PMID: 18046018 DOI: 10.1152/ajpregu.00690.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of zebrafish (Danio rerio) encodes two unlinked genes equally closely related to the SLC4A2/AE2 anion exchanger genes of mammals. One of these is the recently reported zebrafish ae2 gene (Shmukler BE, Kurschat CE, Ackermann GE, Jiang L, Zhou Y, Barut B, Stuart-Tilley AK, Zhao J, Zon LI, Drummond IA, Vandorpe DH, Paw BH, Alper SL. Am J Physiol Renal Physiol Renal Physiol 289: F835-F849, 2005), now called ae2.1. We now report the structural and functional characterization of Ae2.2, the product of the second zebrafish Ae2 gene, ae2.2. The ae2.2 gene of zebrafish linkage group 24 encodes a polypeptide of 1,232 aa in length, sharing 70% amino acid identity with zebrafish Ae2.1 and 67% identity with mouse AE2a. Zebrafish Ae2.2 expressed in Xenopus oocytes encodes a 135-kDa polypeptide that mediates bidirectional, DIDS-sensitive Cl(-)/Cl(-) exchange and Cl(-)/HCO3(-) exchange. Ae2.2-mediated Cl(-)/Cl(-) exchange is cation independent, voltage insensitive, and electroneutral. Acute regulation of anion exchange mediated by Ae2.2 includes activation by NH4+ and independent inhibition by acidic intracellular pH and by acidic extracellular pH. In situ hybridization reveals low-level expression of Ae2.2 mRNA in zebrafish embryo, most notably in posterior tectum, eye, pharynx, epidermal cells, and axial vascular structures, without notable expression in the Ae2.1-expressing pronephric duct. Knockdown of Ae2.2 mRNA, of Ae2.1 mRNA, or of both with nontoxic or minimally toxic levels of N-morpholino oligomers produced no grossly detectable morphological phenotype, and preserved normal structure of the head and the pronephric duct at 24 h postfertilization.
Collapse
Affiliation(s)
- Boris E Shmukler
- Molecular and Vascular Medicine and Renal Units, Beth Israel Deaconess Medical Center E/RW763, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ. The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 2007; 3:1922-38. [PMID: 17953490 PMCID: PMC2042002 DOI: 10.1371/journal.pgen.0030189] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/11/2007] [Indexed: 12/11/2022] Open
Abstract
Kidney function depends on the nephron, which comprises a blood filter, a tubule that is subdivided into functionally distinct segments, and a collecting duct. How these regions arise during development is poorly understood. The zebrafish pronephros consists of two linear nephrons that develop from the intermediate mesoderm along the length of the trunk. Here we show that, contrary to current dogma, these nephrons possess multiple proximal and distal tubule domains that resemble the organization of the mammalian nephron. We examined whether pronephric segmentation is mediated by retinoic acid (RA) and the caudal (cdx) transcription factors, which are known regulators of segmental identity during development. Inhibition of RA signaling resulted in a loss of the proximal segments and an expansion of the distal segments, while exogenous RA treatment induced proximal segment fates at the expense of distal fates. Loss of cdx function caused abrogation of distal segments, a posterior shift in the position of the pronephros, and alterations in the expression boundaries of raldh2 and cyp26a1, which encode enzymes that synthesize and degrade RA, respectively. These results suggest that the cdx genes act to localize the activity of RA along the axis, thereby determining where the pronephros forms. Consistent with this, the pronephric-positioning defect and the loss of distal tubule fate were rescued in embryos doubly-deficient for cdx and RA. These findings reveal a novel link between the RA and cdx pathways and provide a model for how pronephric nephrons are segmented and positioned along the embryonic axis.
Collapse
Affiliation(s)
- Rebecca A Wingert
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rori Selleck
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jing Yu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Huai-Dong Song
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, China
| | - Anhua Song
- Department of Medicine, Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yi Zhou
- Department of Medicine, Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Christine Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alan J Davidson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Ma M, Jiang YJ. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet 2007; 3:e18. [PMID: 17257056 PMCID: PMC1781496 DOI: 10.1371/journal.pgen.0030018] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022] Open
Abstract
Pronephros, a developmental model for adult mammalian kidneys (metanephros) and a functional kidney in early teleosts, consists of glomerulus, tubule, and duct. These structural and functional elements are responsible for different kidney functions, e.g., blood filtration, waste extraction, salt recovery, and water balance. During pronephros organogenesis, cell differentiation is a key step in generating different cell types in specific locations to accomplish designated functions. However, it is poorly understood what molecules regulate the differentiation of different cell types in different parts of the kidney. Two types of epithelial cells, multi-cilia cells and principal cells, are found in the epithelia of the zebrafish distal pronephric duct. While the former is characterized by at least 15 apically localized cilia and expresses centrin2 and rfx2, the latter is characterized by a single primary cilium and sodium pumps. Multi-cilia cells and principal cells differentiate from 17.5 hours post-fertilization onwards in a mosaic pattern. Jagged2a-Notch1a/Notch3-Her9 is responsible for specification and patterning of these two cell types through a lateral inhibition mechanism. Furthermore, multi-cilia cell hyperplasia was observed in mind bomb mutants and Mind bomb was shown to interact with Jagged2a and facilitate its internalization. Taken together, our findings add a new paradigm of Notch signaling in kidney development, namely, that Jagged2a-Notch signaling modulates cell fate choice in a nephric segment, the distal pronephric duct. The kidney is a complex organ that regulates blood homeostasis through the maintenance of fluid and ion balance and disposal of metabolic waste. We used zebrafish pronephros, a primordial vertebrate kidney, to address how a kidney tissue acquires its cell types and pattern. Two types of epithelial cells were found in the pronephric duct: multi-cilia cells and principal cells, which could be distinguished based on morphology and expression of different marker genes. In the pronephric duct, the multi-cilia cells and principal cells form a “salt and pepper,” or mosaic, pattern. Using existing zebrafish mutants and a knockdown technique, we demonstrated that the mosaic pattern and differentiation of these two cell types are controlled through a Notch-dependent lateral inhibition mechanism. Notch signaling has been shown to be essential for other aspects of kidney development, such as formation of the glomerulus and the tubule. Here, to our knowledge for the first time, we show that the same signaling pathway is required for the differentiation of two different epithelial cells in a kidney segment known as the distal pronephric duct. The same mechanism is very likely to be employed by other similar developmental processes in the same context to generate distinct cell types in a tissue.
Collapse
Affiliation(s)
- Ming Ma
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Yun-Jin Jiang
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Liu Y, Pathak N, Kramer-Zucker A, Drummond IA. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007; 134:1111-22. [PMID: 17287248 DOI: 10.1242/dev.02806] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epithelial tubules consist of multiple cell types that are specialized for specific aspects of organ function. In the zebrafish pronephros, multiciliated cells (MCCs) are specialized for fluid propulsion, whereas transporting epithelial cells recover filtered-blood solutes. These cell types are distributed in a ;salt-and-pepper' fashion in the pronephros, suggesting that a lateral inhibition mechanism may play a role in their differentiation. We find that the Notch ligand Jagged 2 is expressed in MCCs and that notch3 is expressed in pronephric epithelial cells. Morpholino knockdown of either jagged 2 or notch3, or mutation in mind bomb (in which Notch signaling is impaired), dramatically expands ciliogenic gene expression, whereas ion transporter expression is lost, indicating that pronephric cells are transfated to MCCs. Conversely, ectopic expression of the Notch1a intracellular domain represses MCC differentiation. Gamma-secretase inhibition using DAPT demonstrated a requirement for Notch signaling early in pronephric development, before the pattern of MCC differentiation is apparent. Strikingly, we find that jagged 2 knockdown generates extra cilia and is sufficient to rescue the kidney cilia mutant double bubble. Our results indicate that Jagged 2/Notch signaling modulates the number of multiciliated versus transporting epithelial cells in the pronephros by way of a genetic pathway involving repression of rfx2, a key transcriptional regulator of the ciliogenesis program.
Collapse
Affiliation(s)
- Yan Liu
- Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Plasmalemmal Cl- -HCO3- exchangers regulate intracellular pH and [Cl-] and cell volume. In polarized epithelial cells, they contribute also to transepithelial secretion and reabsorption of acid-base equivalents and of Cl-. Members of both the SLC4 and SLC26 mammalian gene families encode Na+-independent Cl- -HCO3- exchangers. Human SLC4A1/AE1 mutations cause either the erythroid disorders spherocytic haemolytic anaemia or ovalocytosis, or distal renal tubular acidosis. SLC4A2/AE2 knockout mice die at weaning. Human SLC4A3/AE3 polymorphisms have been associated with seizure disorder. Although mammalian SLC4/AE polypeptides mediate only electroneutral Cl- -anion exchange, trout erythroid AE1 also promotes osmolyte transport and increased anion conductance. Mouse AE1 is required for DIDS-sensitive erythroid Cl- conductance, but definitive evidence for mediation of Cl- conductance is lacking. However, a single missense mutation allows AE1 to mediate both electrogenic SO4(2-) -Cl- exchange or electroneutral, H+-independent SO4(2)- -SO4(2-) exchange. In the Xenopus oocyte, the AE1 C-terminal cytoplasmic tail residues reported to bind carbonic anhydrase II are dispensable for Cl- -Cl- exchange, but required for Cl- -HCO3- exchange. AE2 is acutely and independently inhibited by intracellular and extracellular H+, and this regulation requires integrity of the most highly conserved sequence of the AE2 N-terminal cytoplasmic domain. Individual missense mutations within this and adjacent regions identify additional residues which acid-shift pHo sensitivity. These regions together are modelled to form contiguous surface patches on the AE2 cytoplasmic domain. In contrast, the N-terminal variant AE2c polypeptide exhibits an alkaline-shifted pHo sensitivity, as do certain transmembrane domain His mutants. AE2-mediated anion exchange is also stimulated by ammonium and by hypertonicity by a mechanism sensitive to inhibition by chelation of intracellular Ca2+ and by calmidazolium. This growing body of structure-function data, together with increased structural information, will advance mechanistic understanding of SLC4 anion exchangers.
Collapse
MESH Headings
- Acidosis, Renal Tubular/genetics
- Acidosis, Renal Tubular/metabolism
- Amino Acid Sequence
- Animals
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/genetics
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Anion Transport Proteins/chemistry
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Antiporters/chemistry
- Antiporters/genetics
- Antiporters/metabolism
- Carbonic Anhydrases/metabolism
- Chloride-Bicarbonate Antiporters/chemistry
- Chloride-Bicarbonate Antiporters/genetics
- Chloride-Bicarbonate Antiporters/metabolism
- Elliptocytosis, Hereditary/genetics
- Elliptocytosis, Hereditary/metabolism
- Humans
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Multigene Family
- Mutation
- Polymorphism, Genetic
- Protein Conformation
- SLC4A Proteins
- Spherocytosis, Hereditary/genetics
- Spherocytosis, Hereditary/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Seth L Alper
- Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|