1
|
Essigke D, Kalo MZ, Janessa A, Bohnert BN, Li X, Birkenfeld AL, Artunc F. Impact of aldosterone deficiency on the development of diuretic resistance in mice. Pflugers Arch 2025:10.1007/s00424-025-03082-8. [PMID: 40220064 DOI: 10.1007/s00424-025-03082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
The effect of diuretics can be limited by stimulation of counter-regulatory mechanisms, eventually leading to diuretic resistance. It is thought that the mineralocorticoid aldosterone might contribute to the development of diuretic resistance. To test this, we challenged genetically modified mice with or without a deletion of the gene coding for the aldosterone synthase (AS) with furosemide, hydrochlorothiazide (HCT) and triamterene. Urinary excretion was studied in metabolic cages; kidneys were studied for expression of sodium transporters. In both genotypes, a 4-day treatment with HCT via drinking water (400 mg/l) induced a similar natriuresis and modest loss of body weight < 10%. In contrast, furosemide (125 mg/l) and triamterene (200 mg/l) via drinking water stimulated a significantly higher natriuresis and body weight loss in AS-/- mice and in addition, triamterene caused massive hyperkalemia > 9 mM and acidosis (pH < 7.0). In AS+/+ mice, plasma aldosterone concentration tended to increase under furosemide and HCT administration, while triamterene induced a robust ~ sixfold increase. In the kidney, apical targeting and proteolytic activation of the epithelial sodium channel ENaC were stimulated in AS+/+ mice under triamterene treatment, an effect that was diminished in AS-/- mice. In conclusion, aldosterone is essentially involved in the development of diuretic resistance to ENaC blockade by triamterene and to a lesser extent to furosemide. In contrast, resistance to HCT was independent of aldosterone.
Collapse
Affiliation(s)
- Daniel Essigke
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - M Zaher Kalo
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - Xiaqing Li
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Karagiannidis AG, Theodorakopoulou MP, Iatridi F, Ortiz A, Sarafidis P. A salty symphony: unraveling the tale of uromodulin and sodium sensitivity. J Hum Hypertens 2025:10.1038/s41371-025-01013-9. [PMID: 40164702 DOI: 10.1038/s41371-025-01013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Uromodulin is a kidney-specific glycoprotein which is uniquely synthesized by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. Among multiple roles in complex physiological and pathological processes, uromodulin mediates renal sodium handling through modulating tubular sodium transporters that reabsorb sodium and therefore is putatively linked to hypertension through generating sodium sensitivity of blood pressure. This review aims to present an updated overview of the role of uromodulin in sodium renal handling and summarize the existing evidence originating from preclinical, genetic, and clinical studies that support a relationship between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Arthur G, Wasson AR, Straughan RE, Drummond HA, Stec DE. The Role of Renal Medullary Bilirubin and Biliverdin Reductase in Angiotensin II-Dependent Hypertension. Am J Hypertens 2025; 38:240-247. [PMID: 39656666 PMCID: PMC11911318 DOI: 10.1093/ajh/hpae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Increased circulating bilirubin attenuates angiotensin (Ang) II-induced hypertension and improves renal hemodynamics. However, the intrarenal mechanisms that mediate these effects are not known. The goal of the present study was to test the hypothesis that bilirubin generation in the renal medulla plays a protective role against Ang II-induced hypertension. METHODS Twenty-week-old male C57Bl/6J mice were implanted with intrarenal medullary interstitial (IRMI) catheters following unilateral nephrectomy. After this time, biliverdin IXα was specifically infused into the kidney (3.6 mg/day) for 3 days before implantation with an osmotic minipump delivering Ang II (1,000 ng/kg/min). BP was recorded for 3 days, 1 week after minipump infusion, in conscious mice. To further explore the antihypertensive role of renal medullary bilirubin generation, mice with specific deletion of biliverdin reductase-A (Blvra) in the thick ascending loop of Henle were generated. At 20 weeks, BlvraTALHKO and control mice (Blvrafl/fl) were infused with Ang II for 2 weeks. RESULTS IRMI infusion of biliverdin significantly decreased blood pressure compared with mice infused with vehicle (118 ± 4 vs. 158 ± 2 mmHg, p < 0.05). Angiotensin-II infusion resulted in significantly higher blood pressure measured in conscious mice 7 days after implantation in BlvraTALHKO as compared to Blvrafl/fl mice (152 ± 2 vs. 140 ± 3 mmHg, P < 0.05). CONCLUSIONS Altogether, these findings show that medullary bilirubin and biliverdin reductase can improve hypertension and that mechanisms that increase bilirubin and biliverdin reductase in the renal medulla could be an effective approach to treat hypertension.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wasson
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ross E Straughan
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
4
|
Kok M, Singh I, Aizenman E, Brodsky JL. Inefficient maturation of disease-linked mutant forms of the KCC2 potassium-chloride cotransporter correlates with predicted pathogenicity. J Biol Chem 2025; 301:108399. [PMID: 40074080 PMCID: PMC12001125 DOI: 10.1016/j.jbc.2025.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The potassium-chloride cotransporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293 cell model. While most of the examined disease-associated mutants matured efficiently, the L403P mutant was unable to traffic to the Golgi. Two other mutants, A191V and R857L, exhibited more subtle defects in maturation. Cell surface biotinylation assays showed that these mutants were also depleted from the cell surface. Another disease-associated variant, R952H, acquired Golgi-associated glycans yet was significantly depleted from the plasma membrane, consistent with loss of a plasma membrane-stabilizing phosphorylation site. To determine whether the ability of KCC2 to mature to the Golgi could be predicted, we employed a computational pathogenicity program, Rhapsody, which was shown in past work to predict endoplasmic reticulum-associated degradation-targeting of an unrelated ion channel. We discovered that the Rhapsody pathogenicity score correlated with relative defects in KCC2 maturation, and the algorithm outperformed two other commonly used programs. These data demonstrate the efficacy of a bioinformatic tool to predict the efficiency of KCC2 biogenesis. We also propose that Rhapsody can be used to develop hypotheses on defects associated with other disease-associated SLC12A5 alleles as they are identified.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ishika Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Porter AW, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. Am J Physiol Renal Physiol 2025; 328:F173-F189. [PMID: 39556479 DOI: 10.1152/ajprenal.00192.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an acute kidney injury (AKI)-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.NEW & NOTEWORTHY Loss of the endoplasmic reticulum chaperone, GRP170, results in widespread kidney injury and induction of the unfolded protein response (UPR). We now show that sodium supplementation is able to at least partially restore electrolyte imbalance and reduce kidney injury markers in a sex-dependent manner.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah E Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
6
|
Horng JL, Lee KY, Lin LY. Sublethal effects of acidified water on sensorimotor responses and the transcriptome of zebrafish embryos. CHEMOSPHERE 2025; 370:143984. [PMID: 39710284 DOI: 10.1016/j.chemosphere.2024.143984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Acidification of freshwater due to human activities is a widespread environmental problem. Its effects on the sensorimotor responses of fish, particularly during embryonic stages, may affect population fitness. To address this, zebrafish embryos were exposed to water at pH 7, 5 and 4.5 (adjusted with HCl) for 120 h. Acidic water did not increase mortality or cause obvious morphological abnormalities but reduced the size of the inner ear organs (otic vesicle and otolith) and the eye lens. It also suppressed ion uptake (Na+, Ca2+, K+) and induced embryonic acidosis. Behavioral tests at 4 or 5 days post fertilization revealed significant sensorimotor impairments: reduced touch-evoked escape responses (TEER), decreased acoustic startle responses (ASR) and decreased cadaverine avoidance responses (CAR). There were no effects on speed, acceleration and optomotor responses (OMR). Transcriptomic analyses identified 114 differentially expressed genes (DEGs) associated with ion transport, sensorimotor functions and other physiological processes. Overall, the jeopardizing effect of freshwater acidification threatens survival, highlighting the ecological risks and its potential impacts on fish populations.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
7
|
Soleman SI, Maya J, Levesque P, Mohammad A, Christopher L, Schumacher J, Nanduri A, Sivakumar P, Kozinn M, Costet P, Wang C, Richter J, Hawthorne D, Bui A, Rao VS, Dickerson D, Testani J, Ramírez-Valle F, Baribaud F, Murthy B, Merali S. First-in-Human Study to Assess the Safety, Pharmacokinetics, and Pharmacodynamics of BMS-986308: A Renal Outer Medullary Potassium Channel Inhibitor. Clin Pharmacol Ther 2024; 116:1627-1634. [PMID: 39219444 DOI: 10.1002/cpt.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
In patients with heart failure (HF) who respond inadequately to loop diuretic therapy, BMS-986308, an oral, selective, reversible renal outer medullary potassium channel (ROMK) inhibitor may represent an effective diuretic with a novel mechanism of action. We present data from the first-in-human study aimed to assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) following single ascending doses of BMS-986308 in healthy adult participants. Forty healthy participants, aged from 20 to 55 years, and body mass index (BMI) from 19.8 to 31.6 kg/m2 were assigned to 1 of 5 dose cohorts (1, 3, 10, 30, and 100 mg) and randomized (6:2) to receive BMS-986308 oral solution or matching placebo. Following administration, BMS-986308 was rapidly absorbed with a median time to maximum concentration (Tmax) of 1.00 to 1.75 h and exhibiting a mean terminal half-life (t1/2) of approximately 13 h. Dose proportionality was evident in BMS-986308 area under the concentration-time curve (AUC), while maximum concentration (Cmax) was slightly greater than dose-proportional. We observed that urine output (or diuresis; mL) and urinary sodium excretion (or natriuresis; mmol) increased in a dose-dependent manner, starting at a minimum pharmacologically active dose of 30 mg. The largest mean changes from baseline in diuresis and natriuresis occurred in both the 6- and -24 h post-dose period following administration of 100 mg (1683.0 mL and 2055.3 mL, and 231.7 mmol and 213.7 mmol, respectively; ***P < 0.001). Overall, single-dose BMS-986308 was found to be safe, well-tolerated, with an excellent PK profile, and substantial diuretic and natriuretic activity.
Collapse
Affiliation(s)
- Sharif I Soleman
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Juan Maya
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Paul Levesque
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Atif Mohammad
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Lisa Christopher
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Justin Schumacher
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Aparna Nanduri
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | | | - Marc Kozinn
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Philippe Costet
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Chang Wang
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Jeremy Richter
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Dara Hawthorne
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Anh Bui
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Veena S Rao
- Department of Cardiovascular Medicine, Yale Medical Center, New Haven, Connecticut, USA
| | | | - Jeffrey Testani
- Department of Cardiovascular Medicine, Yale Medical Center, New Haven, Connecticut, USA
| | | | - Frédéric Baribaud
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Bindu Murthy
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| | - Samira Merali
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey, USA
| |
Collapse
|
8
|
Harvey BJ, Alvarez de la Rosa D. Sex Differences in Kidney Health and Disease. Nephron Clin Pract 2024; 149:77-103. [PMID: 39406203 DOI: 10.1159/000541352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Sex differences exist in kidney physiology and disease which are underpinned by the biological actions of the sex hormones estrogen, progesterone and testosterone. In this review, we present an up-to-date discussion of the hormonal and molecular signalling pathways implicated in sex differences in kidney health and disease. SUMMARY Estrogen and progesterone have protective effects on renal blood flow, glomerular filtration rate and nephron ion and water reabsorptive processes, whereas testosterone tends to compromise these functions. The biological effects of estrogen appear to be the most important in reinforcing kidney function and protecting against kidney diseases in females. The actions of estrogen are myriad but all tend to bolster kidney physiology to maintain a steady-state and adaptable extracellular fluid volume (ECFV) and blood pressure. Estrogen safeguards ECFV homeostasis by stimulating renal epithelial sodium channel (ENaC) and water channel (AQP2) expression and transport function. Renal maintenance of ECFV within narrow physiological limits is a first-line of defense against hypertension and lowers the risk of cardiovascular disease in women. The estrogenic and XX chromosome basis for a female advantage are evident in a wide range of kidney diseases including acute kidney injury, chronic kidney disease, end-stage kidney disease, diabetic kidney disease, and polycystic kidney disease. The molecular mechanisms involve estrogen regulation of nephron ion and water transport, genetic immunogenic responses, activation of the protective arm of the renin angiotensin-aldosterone system and XX chromosome reinforcement of immune responses. Kidney disease can also predispose patients to cancer and women are protected in renal cancer with lower incidence, morbidity, and mortality than age-matched men with the disease. KEY MESSAGES This review underscores the importance of incorporating sex-specific considerations into clinical practice and basic research to bridge the gap in understanding and addressing biological sex disparities in kidney disease and renal cancer.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centro de Estudios Científicos, Valdivia, Chile
| | - Diego Alvarez de la Rosa
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
9
|
Busselman BW, Ratnayake I, Terasaki MR, Thakkar VP, Ilyas A, Otterpohl KL, Zimmerman JL, Chandrasekar I. Actin cytoskeleton and associated myosin motors within the renal epithelium. Am J Physiol Renal Physiol 2024; 327:F553-F565. [PMID: 39052845 PMCID: PMC11483076 DOI: 10.1152/ajprenal.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney. With recent advances in technologies to visualize the actin cytoskeleton and associated proteins within intact kidneys, it has become increasingly imperative to reimagine the functional roles of these proteins in situ to provide a rationale for their unique, cell type-specific functions that are necessary to establish and maintain complex physiological processes.
Collapse
Affiliation(s)
- Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | | | - Mark R Terasaki
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Vedant P Thakkar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Arooba Ilyas
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | - Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Jenna L Zimmerman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| |
Collapse
|
10
|
Lasaad S, Nickerson AJ, Crambert G, Satlin LM, Kleyman TR. Going with the flow: New insights regarding flow induced K + secretion in the distal nephron. Physiol Rep 2024; 12:e70087. [PMID: 39428258 PMCID: PMC11491169 DOI: 10.14814/phy2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
K+ secretion in the distal nephron has a critical role in K+ homeostasis and is the primary route by which K+ is lost from the body. Renal K+ secretion is enhanced by increases in dietary K+ intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K+ secretion (FIKS). While basal K+ secretion in the distal nephron is mediated by renal outer medullary K+ (ROMK) channels in principal cells (PCs), FIKS is mediated by large conductance, Ca2+/stretch activated K+ (BK) channels in intercalated cells (ICs), a distinct cell type. BK channel activation requires an increase in intracellular Ca2+ concentration ([Ca2+]i), and both PCs and ICs exhibit increases in [Ca2+]i in response to increases in tubular fluid flow rate, associated with an increase in tubular diameter. PIEZO1, a mechanosensitive, nonselective cation channel, is expressed in the basolateral membranes of PCs and ICs, where it functions as a mechanosensor. The loss of flow-induced [Ca2+]i transients in ICs and BK channel-mediated FIKS in microperfused collecting ducts isolated from mice with IC-specific deletion of Piezo1 in the CCD underscores the importance of PIEZO1 in the renal regulation of K+ transport.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Gilles Crambert
- Centre de Recherche Des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM)Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et TubulopathiesParisFrance
- Unité Métabolisme et Physiologie RénaleCentre National de la Recherche Scientifique (CNRS) EMR 8228ParisFrance
| | - Lisa M. Satlin
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell Biology and Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
12
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Richter JM, Gunaga P, Yadav N, Bora RO, Bhide R, Rajugowda N, Govindrajulu K, Godesi S, Akuthota N, Rao P, Sivaraman A, Panda M, Kaspady M, Gupta A, Mathur A, Levesque PC, Gulia J, Dokania M, Ramarao M, Kole P, Chacko S, Lentz KA, Sivaprasad Lvj S, Thatipamula RP, Sridhar S, Kamble S, Govindrajan A, Soleman SI, Gordon DA, Wexler RR, Priestley ES. Discovery of BMS-986308: A Renal Outer Medullary Potassium Channel Inhibitor for the Treatment of Heart Failure. J Med Chem 2024; 67:9731-9744. [PMID: 38807539 DOI: 10.1021/acs.jmedchem.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.
Collapse
Affiliation(s)
- Jeremy M Richter
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Prashantha Gunaga
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Navnath Yadav
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Rajesh Onkardas Bora
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Rajeev Bhide
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Nagendra Rajugowda
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Kavitha Govindrajulu
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Sreenivasulu Godesi
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Nagarjuna Akuthota
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Prasanna Rao
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Aneesh Sivaraman
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manoranjan Panda
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Mahammed Kaspady
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Anuradha Gupta
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Paul C Levesque
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Jyoti Gulia
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manoj Dokania
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manjunath Ramarao
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Prashant Kole
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Silvi Chacko
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Kimberley A Lentz
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Sankara Sivaprasad Lvj
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | | | - Srikanth Sridhar
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Shyam Kamble
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Arun Govindrajan
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Sharif I Soleman
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - David A Gordon
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Ruth R Wexler
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - E Scott Priestley
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| |
Collapse
|
14
|
Krajewska M, Możajew M, Filipek S, Koprowski P. Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159443. [PMID: 38056763 DOI: 10.1016/j.bbalip.2023.159443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Mariusz Możajew
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
15
|
Edwards A, Ralph DL, Mercado A, McDonough AA. Angiotensin II hypertension along the female rat tubule: predicted impact on coupled transport of Na + and K . Am J Physiol Renal Physiol 2023; 325:F733-F749. [PMID: 37823196 PMCID: PMC10878725 DOI: 10.1152/ajprenal.00232.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic infusion of subpressor level of angiotensin II (ANG II) increases the abundance of Na+ transporters along the distal nephron, balanced by suppression of Na+ transporters along the proximal tubule and medullary thick ascending limb (defined as "proximal nephron"), which impacts K+ handling along the entire renal tubule. The objective of this study was to quantitatively assess the impact of chronic ANG II on the renal handling of Na+ and K+ in female rats, using a computational model of the female rat renal tubule. Our results indicate that the downregulation of proximal nephron Na+ reabsorption (TNa), which occurs in response to ANG II-triggered hypertension, involves changes in both transporter abundance and trafficking. Our model suggests that substantial (∼30%) downregulation of active NHE3 in proximal tubule (PT) microvilli is needed to reestablish the Na+ balance at 2 wk of ANG II infusion. The 35% decrease in SGLT2, a known NHE3 regulator, may contribute to this downregulation. Both depression of proximal nephron TNa and stimulation of distal ENaC raise urinary K+ excretion in ANG II-treated females, while K+ loss is slightly mitigated by cortical NKCC2 and NCC upregulation. Our model predicts that K+ excretion may be more significantly limited during ANG II infusion by ROMK inhibition in the distal nephron and/or KCC3 upregulation in the PT, which remain open questions for experimental validation. In summary, our analysis indicates that ANG II hypertension triggers a series of events from distal TNa stimulation followed by compensatory reduction in proximal nephron TNa and accompanying adjustments to limit excessive K+ secretion.NEW & NOTEWORTHY We used a computational model of the renal tubule to assess the impact of 2-wk angiotensin II (ANG II) infusion on the handling of Na+ and K+ in female rats. ANG II strongly stimulates distal Na+ reabsorption and K+ secretion. Simulations indicate that substantial downregulation of proximal tubule NHE3 is needed to reestablish Na+ balance at 2 wk. Proximal adaptations challenge K+ homeostasis, and regulation of distal NCC and specific K+ channels likely limit urinary K+ losses.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
16
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Hernández NEG, Pérez LIE, Aguilera D, Camargo-Muñiz MD, Espinosa CFC, Jaramillo MDLCR, Salvador C, González ZL, Hureaux M, Vargas-Poussou R. Clinical Findings and Genetic Analysis of Nine Mexican Families with Bartter Syndrome. Arch Med Res 2023; 54:102859. [PMID: 37516009 DOI: 10.1016/j.arcmed.2023.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Bartter's syndrome (BS) is a group of salt-wasting tubulopathies characterized by hypokalemia, metabolic alkalosis, hypercalciuria, secondary hyperaldosteronism, and low or normal blood pressure. Loss-of-function variants in genes encoding for five proteins expressed in the thick ascending limb of Henle in the nephron, produced different genetic types of BS. AIM Clinical and genetic analysis of families with Antenatal Bartter syndrome (ABS) and with Classic Bartter syndrome (CBS). METHODS Nine patients from unrelated non-consanguineous Mexican families were studied. Massive parallel sequencing of a gene panel or whole-exome sequencing was used to identify the causative gene. RESULTS Proband 1 was homozygous for the pathogenic variant p.Arg302Gln in the SLC12A1 gene encoding for the sodium-potassium-chloride NKCC2 cotransporter. Proband 3 was homozygous for the nonsense variant p.Cys308* in the KCNJ1 gene encoding for the ROMK potassium channel. Probands 7, 8, and 9 showed variants in the CLCKNB gene encoding the chloride channel ClC-Kb: proband 7 was compound heterozygous for the deletion of the entire gene and the missense change p.Arg438Cys; proband 8 presented a homozygous deletion of the whole gene and proband 9 was homozygous for the nonsense mutation p.Arg595*. A heterozygous variant of unknown significance was detected in the SLC12A1 gene in proband 2, and no variants were found in SLC12A1, KCNJ1, BSND, CLCNKA, CLCNKB, and MAGED2 genes in probands 4, 5, and 6. CONCLUSIONS Genetic analysis identified loss-of-function variants in the SLC12A1, KCNJ1, and CLCNKB genes in four patients with ABS and in the CLCNKB gene in two patients with CBS.
Collapse
Affiliation(s)
- Norma E Guerra Hernández
- Pediatric Nephrology Service, General Hospital of the National Medical Center, La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura I Escobar Pérez
- Department of Physiology of the School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Dora Aguilera
- Pediatric Nephrology Service, General Hospital of the National Medical Center, La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María Dolores Camargo-Muñiz
- Department of Pediatrics, Northeast National Medical Center, High Specialty Medical Unit No. 25, Instituto Mexicano del Seguro Social, Monterrey, N.L., Mexico
| | | | | | - Carolina Salvador
- Department of Physiology of the School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zinaeli López González
- Department of Physiology of the School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW We recently localized a new K-Cl cotransporters-3 (KCC3) transporter to the apical membrane of type-B intercalated cells. This gives us an opportunity to revisit the roles of the KCC3 in kidney and integrate the new findings to our current knowledge of the biology of the bicarbonate secreting cells. RECENT FINDINGS Here, we review the basic properties of the K-Cl cotransporter with a particular attention to the responsiveness of the transporter to cell swelling. We summarize what is already known about KCC3b and discuss new information gained from our localizing of KCC3a in type-B intercalated cells. We integrate the physiology of KCC3a with the main function of the type-B cell, that is, bicarbonate secretion through the well characterized apical Cl-/HCO3- exchanger and the basolateral Na-HCO3 cotransporter. SUMMARY Both KCC3b and KCC3a seem to be needed for maintaining cell volume during enhanced inward cotransport of Na-glucose in proximal tubule and Na-HCO3 in intercalated cells. In addition, apical KCC3a might couple to pendrin function to recycle Cl-, particularly in conditions of low salt diet and therefore low Cl- delivery to the distal tubule. This function is critical in alkalemia, and KCC3a function in the pendrin-expressing cells may contribute to the K+ loss which is observed in alkalemia.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
19
|
Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A. K ir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2023; 325:F177-F187. [PMID: 37318990 PMCID: PMC10393338 DOI: 10.1152/ajprenal.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
20
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
21
|
El-Meanawy SK, Dooge H, Wexler AC, Kosmach AC, Serban L, Santos EA, Alvarado FJ, Hacker TA, Ramratnam M. Overexpression of a Short Sulfonylurea Splice Variant Increases Cardiac Glucose Uptake and Uncouples Mitochondria by Regulating ROMK Activity. Life (Basel) 2023; 13:1015. [PMID: 37109544 PMCID: PMC10146620 DOI: 10.3390/life13041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial splice variant of the sulfonylurea receptor (SUR2A-55) is associated with protection from myocardial ischemia-reperfusion (IR) injury, increased mitochondrial ATP sensitive K+ channel activity (mitoKATP) and altered glucose metabolism. While mitoKATP channels composed of CCDC51 and ABCB8 exist, the mitochondrial K+ pore regulated by SUR2A-55 is unknown. We explored whether SUR2A-55 regulates ROMK to form an alternate mitoKATP. We assessed glucose uptake in mice overexpressing SUR2A-55 (TGSUR2A-55) compared with WT mice during IR injury. We then examined the expression level of ROMK and the effect of ROMK modulation on mitochondrial membrane potential (Δψm) in WT and TGSUR2A-55 mice. TGSUR2A-55 had increased glucose uptake compared to WT mice during IR injury. The expression of ROMK was similar in WT compared to TGSUR2A-55 mice. ROMK inhibition hyperpolarized resting cardiomyocyte Δψm from TGSUR2A-55 mice but not from WT mice. In addition, TGSUR2A-55 and ROMK inhibitor treated WT isolated cardiomyocytes had enhanced mitochondrial uncoupling. ROMK inhibition blocked diazoxide induced Δψm depolarization and prevented preservation of Δψm from FCCP perfusion in WT and to a lesser degree TGSUR2A-55 mice. In conclusion, cardio-protection from SUR2A-55 is associated with ROMK regulation, enhanced mitochondrial uncoupling and increased glucose uptake.
Collapse
Affiliation(s)
- Sarah K. El-Meanawy
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Holly Dooge
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Allison C. Wexler
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anna C. Kosmach
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Lara Serban
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Elizabeth A. Santos
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Francisco J. Alvarado
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy A. Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
22
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
23
|
Krajewska M, Szewczyk A, Kulawiak B, Koprowski P. Pharmacological Characterization of a Recombinant Mitochondrial ROMK2 Potassium Channel Expressed in Bacteria and Reconstituted in Planar Lipid Bilayers. MEMBRANES 2023; 13:360. [PMID: 36984747 PMCID: PMC10052516 DOI: 10.3390/membranes13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
In the inner mitochondrial membrane, several potassium channels that play a role in cell life and death have been identified. One of these channels is the ATP-regulated potassium channel (mitoKATP). The ROMK2 potassium channel is a potential molecular component of the mitoKATP channel. The current study aimed to investigate the pharmacological modulation of the activity of the ROMK2 potassium channel expressed in Escherichia coli bacteria. ROMK2 was solubilized in polymer nanodiscs and incorporated in planar lipid bilayers. The impact of known mitoKATP channel modulators on the activity of the ROMK2 was characterized. We found that the ROMK2 channel was activated by the mitoKATP channel opener diazoxide and blocked by mitoKATP inhibitors such as ATP/Mg2+, 5-hydroxydecanoic acid, and antidiabetic sulfonylurea glibenclamide. These results indicate that the ROMK2 potassium protein may be a pore-forming subunit of mitoKATP and that the impact of channel modulators is not related to the presence of accessory proteins.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
24
|
Guo W, Ji P, Xie Y. Genetic diagnosis and treatment of hereditary renal tubular disease with hypokalemia and alkalosis. J Nephrol 2023; 36:575-591. [PMID: 35994232 DOI: 10.1007/s40620-022-01428-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Renal tubules play an important role in maintaining water, electrolyte, and acid-base balance. Renal tubule dysfunction can cause electrolyte disorders and acid-base imbalance. Clinically, hypokalemic renal tubular disease is the most common tubule disorder. With the development of molecular genetics and gene sequencing technology, hereditary renal tubular diseases have attracted attention, and an increasing number of pathogenic genes related to renal tubular diseases have been discovered and reported. Inherited renal tubular diseases mainly occur due to mutations in genes encoding various specific transporters or ion channels expressed on the tubular epithelial membrane, leading to dysfunctional renal tubular reabsorption, secretion, and excretion. An in-depth understanding of the molecular genetic basis of hereditary renal tubular disease will help to understand the physiological function of renal tubules, the mechanism by which the kidney maintains water, electrolyte, and acid-base balance, and the relationship between the kidney and other systems in the body. Meanwhile, understanding these diseases also improves our understanding of the pathogenesis of hypokalemia, alkalosis and other related diseases and ultimately promotes accurate diagnostics and effective disease treatment. The present review summarizes the most common hereditary renal tubular diseases (Bartter syndrome, Gitelman syndrome, EAST syndrome and Liddle syndrome) characterized by hypokalemia and alkalosis. Further detailed explanations are provided for pathogenic genes and functional proteins, clinical manifestations, intrinsic relationship between genotype and clinical phenotype, diagnostic clues, differential diagnosis, and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Wenkai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Yuansheng Xie
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
25
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
26
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
27
|
Palmer LG. Directing two-way traffic in the kidney: A tale of two ions. J Gen Physiol 2022; 154:213433. [PMID: 36048011 PMCID: PMC9437110 DOI: 10.1085/jgp.202213179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kidneys regulate levels of Na+ and K+ in the body by varying urinary excretion of the electrolytes. Since transport of each of the two ions can affect the other, controlling both at the same time is a complex task. The kidneys meet this challenge in two ways. Some tubular segments change the coupling between Na+ and K+ transport. In addition, transport of Na+ can shift between segments where it is coupled to K+ reabsorption and segments where it is coupled to K+ secretion. This permits the kidney to maintain electrolyte balance with large variations in dietary intake.
Collapse
Affiliation(s)
- Lawrence G. Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY,Correspondence to Lawrence G. Palmer:
| |
Collapse
|
28
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
29
|
Wu A, Wolley MJ, Matthews A, Cowley D, Welling PA, Fenton RA, Stowasser M. In Primary Aldosteronism Acute Potassium Chloride Supplementation Suppresses Abundance and Phosphorylation of the Sodium-Chloride Cotransporter. KIDNEY360 2022; 3:1909-1923. [PMID: 36514401 PMCID: PMC9717638 DOI: 10.34067/kid.0003632022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Background Elevated abundance of sodium-chloride cotransporter (NCC) and phosphorylated NCC (pNCC) are potential markers of primary aldosteronism (PA), but these effects may be driven by hypokalemia. Methods We measured plasma potassium in patients with PA. If potassium was <4.0 mmol/L, patients were given sufficient oral potassium chloride (KCl) over 24 hours to achieve as close to 4.0 mmol/L as possible. Clinical chemistries were assessed, and urinary extracellular vesicles (uEVs) were examined to investigate effects on NCC. Results Among 21 patients with PA who received a median total dose of 6.0 g (2.4-16.8 g) of KCl, increases were observed in plasma potassium (from 3.4 to 4.0 mmol/L; P<0.001), aldosterone (from 305 to 558 pmol/L; P=0.01), and renin (from 1.2 to 2.5 mIU/L; P<0.001), whereas decreases were detected in uEV levels of NCC (median fold change(post/basal) [FC]=0.71 [0.09-1.99]; P=0.02), pT60-NCC (FC=0.84 [0.06-1.66]; P=0.05), and pT55/60-NCC (FC=0.67 [0.08-2.42]; P=0.02). By contrast, in 10 patients with PA who did not receive KCl, there were no apparent changes in plasma potassium, NCC abundance, and phosphorylation status, but increases were observed in plasma aldosterone (from 178 to 418 pmol/L; P=0.006) and renin (from 2.0 to 3.0 mU/L; P=0.009). Plasma potassium correlated inversely with uEV levels of NCC (R 2=0.11; P=0.01), pT60-NCC (R 2=0.11; P=0.01), and pT55/60-NCC (R 2=0.11; P=0.01). Conclusions Acute oral KCl loading replenished plasma potassium in patients with PA and suppressed NCC abundance and phosphorylation, despite a significant rise in plasma aldosterone. This supports the view that potassium supplementation in humans with PA overrides the aldosterone stimulatory effect on NCC. The increased plasma aldosterone in patients with PA without KCl supplementation may be due to aldosterone response to posture challenge.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia,Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Alexandra Matthews
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Diane Cowley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Paul A. Welling
- Department of Medicine and Physiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
30
|
Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022; 11:cells11091571. [PMID: 35563876 PMCID: PMC9105797 DOI: 10.3390/cells11091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.
Collapse
|
31
|
Tian M, Peng H, Bi X, Wang YQ, Zhang YZ, Wu Y, Zhang BR. Late-Onset Bartter Syndrome Type II Due to a Novel Compound Heterozygous Mutation in KCNJ1 Gene: A Case Report and Literature Review. Front Med (Lausanne) 2022; 9:862514. [PMID: 35463019 PMCID: PMC9021870 DOI: 10.3389/fmed.2022.862514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bartter syndrome (BS) type II is a rare autosomal recessive renal tubular disorder caused by mutations in the KCNJ1 gene, which encodes the apical renal outer medullary potassium (ROMK) channel in the thick ascending limb (TAL) of Henle’s loop. BS type II is typically considered as a disorder of infancy and seldom seen in adults. Case Presentation A 34-year-old woman was admitted with generalized body numbness and hand convulsions, without growth retardation. Laboratory tests revealed hypokalemic metabolic alkalosis, hyperreninemic hyperaldosteronism, and nephrocalcinosis. She was misdiagnosed during the initial diagnosis process and was finally diagnosed with late-onset BS type II via genetic testing through next-generation sequencing combined with Sanger sequencing. A novel compound heterozygous p.Leu207Ile/p. Cys308Arg variant in exon 5 of the KCNJ1 gene from her parents was identified and speculated to be a potential pathogenic gene variation. Conclusion We report a case of late-onset BS type II with a novel compound heterozygous mutation in KCNJ1. Both variants are novel and have never been reported. Our report will have a significant impact on the diagnosis of BS in other patients without typical clinical presentations and emphasizes the importance of genetic investigation.
Collapse
Affiliation(s)
- Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Peng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Bi
- Guangzhou KingMed Center for Clinical Laboratory Co, Ltd., Guangzhou, China
| | - Yan-Qiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Zhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei-Ru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bei-Ru Zhang,
| |
Collapse
|
32
|
Goia-Nishide K, Coregliano-Ring L, Rangel ÉB. Hyperkalemia in Diabetes Mellitus Setting. Diseases 2022; 10:20. [PMID: 35466190 PMCID: PMC9036284 DOI: 10.3390/diseases10020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a global health problem that affects 9.3% of the worldwide population and is associated with a series of comorbidities such as heart failure (HF) and chronic kidney disease (CKD). Diabetic patients, especially those with associated CKD, are more susceptible to present potassium disorders, in particular hyperkalemia due to kidney disease progression or use of renin-angiotensin-aldosterone blockers. Hyperkalemia is a potentially life-threatening condition that increases the risk of cardiac arrhythmia episodes and sudden death, making the management of potassium levels a challenge to reduce the mortality rate in this population. This review aims to briefly present the potassium physiology and discuss the main conditions that lead to hyperkalemia in diabetic individuals, the main signs, symptoms, and exams for the diagnosis of hyperkalemia, and the steps that should be followed to manage patients with this potentially life-threatening condition.
Collapse
Affiliation(s)
- Kleber Goia-Nishide
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-901, Brazil; (K.G.-N.); (L.C.-R.)
| | - Lucas Coregliano-Ring
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-901, Brazil; (K.G.-N.); (L.C.-R.)
| | - Érika Bevilaqua Rangel
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-901, Brazil; (K.G.-N.); (L.C.-R.)
- Jewish Institute of Research and Education, Albert Einstein Hospital, São Paulo 05652-900, Brazil
| |
Collapse
|
33
|
Saha A, Pande P, Vala K, Kapadia S, Patel H. Clinical exome sequencing uncovers an unsuspected diagnosis of Bartter syndrome type 2 in a child with incidentally detected nephrocalcinosis. CEN Case Rep 2022; 11:417-421. [PMID: 35195872 DOI: 10.1007/s13730-022-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nephrocalcinosis is a characteristic feature of both type 1 and type 2 Bartter syndrome. Bartter syndrome type 2 presents antenatally and very early in life. Late-onset presentation with isolated nephrocalcinosis is extremely rare. We describe an 11-year-old girl with incidentally detected medullary nephrocalcinosis on renal ultrasonography. She was clinically suspected to have primary hyperoxaluria based on high urine oxalate. However, clinical exome sequencing revealed a pathogenic missense variant in the KCNJ1 gene leading to the molecular diagnosis of Bartter syndrome type 2. Both parents were heterozygous carriers of the same variant. Subsequent investigations did reveal a mild Bartter syndrome phenotype with mild metabolic alkalosis, high urine chloride and high renin and aldosterone. Our case illustrates phenotypic heterogeneity of Bartter syndrome type 2 and the usefulness of genetic testing in establishing the correct diagnosis and guiding further management in such cases.
Collapse
Affiliation(s)
- Anshuman Saha
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India.
| | - Priyadarshini Pande
- Med Genome Labs Ltd, 3rd Floor, Narayana Netralaya Building, Narayana Health City, #258/A, Bommasandra, Hosur Rd, Bengaluru, Karnataka, 560099, India
| | - Kinnari Vala
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Shahenaz Kapadia
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Himanshu Patel
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| |
Collapse
|
34
|
Vargas-Poussou R. Pathophysiological aspects of the thick ascending limb and novel genetic defects: HELIX syndrome and transient antenatal Bartter syndrome. Pediatr Nephrol 2022; 37:239-252. [PMID: 33733301 DOI: 10.1007/s00467-021-05019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
The thick ascending limb plays a central role in human kidney physiology, participating in sodium reabsorption, urine concentrating mechanisms, calcium and magnesium homeostasis, bicarbonate and ammonium homeostasis, and uromodulin synthesis. This review aims to illustrate the importance of these roles from a pathophysiological point of view by describing the interactions of the key proteins of this segment and by discussing how recently identified and long-known hereditary diseases affect this segment. The descriptions of two recently described salt-losing tubulopathies, transient antenatal Bartter syndrome and HELIX syndrome, which are caused by mutations in MAGED2 and CLDN10 genes, respectively, highlight the role of new players in the modulation of sodium reabsorption the thick ascending limb.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Department of Molecular Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France. .,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
35
|
Young MJ, Kanki M, Karthigan N, Konstandopoulos P. The Role of the Mineralocorticoid Receptor and Mineralocorticoid Receptor-Directed Therapies in Heart Failure. Endocrinology 2021; 162:6288445. [PMID: 34050730 DOI: 10.1210/endocr/bqab105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists (MRA), also referred to as aldosterone blockers, are now well-recognized for their clinical benefit in patients who have heart failure (HF) with reduced ejection fraction (HFrEF). Recent studies have also shown MRA can improve outcomes in patients with HFpEF, where the ejection fraction is preserved but left ventricular filling is reduced. While the MR is a steroid hormone receptor best known for antinatriuretic actions on electrolyte homeostasis in the distal nephron, it is now established that the MR has many physiological and pathophysiological roles in the heart, vasculature, and other nonepithelial tissue types. It is the impact of MR activation on these tissues that underpins the use of MRA in cardiovascular disease, in particular HF. This mini-review will discuss the origins and the development of MRA and highlight how their use has evolved from the "potassium-sparing diuretics" spironolactone and canrenone over 60 years ago, to the more receptor-selective eplerenone and most recently the emergence of new nonsteroidal receptor antagonists esaxerenone and finerenone.
Collapse
Affiliation(s)
- Morag J Young
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| | - Monica Kanki
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Nikshay Karthigan
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Penny Konstandopoulos
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| |
Collapse
|
36
|
Carullo N, Zicarelli MT, Casarella A, Nicotera R, Castagna A, Urso A, Presta P, Andreucci M, Russo E, Bolignano D, Coppolino G. Retarding Progression of Chronic Kidney Disease in Autosomal Dominant Polycystic Kidney Disease with Metformin and Other Therapies: An Update of New Insights. Int J Gen Med 2021; 14:5993-6000. [PMID: 34588803 PMCID: PMC8473846 DOI: 10.2147/ijgm.s305491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and extrarenal complications of ADPKD, but improved knowledge of the pathophysiological mechanisms leading to the generation and growth of cysts has permitted the identification of new drug candidates for clinical trials. Among these, in this review, we will examine above all the role of metformin, hypothesized to be able to activate the AMP-activated protein kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset and the growth of the cysts.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | | | - Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alberto Castagna
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandra Urso
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
37
|
de las Heras N, Galiana A, Ballesteros S, Olivares-Álvaro E, Fuller PJ, Lahera V, Martín-Fernández B. Proanthocyanidins Maintain Cardiac Ionic Homeostasis in Aldosterone-Induced Hypertension and Heart Failure. Int J Mol Sci 2021; 22:ijms22179602. [PMID: 34502509 PMCID: PMC8431754 DOI: 10.3390/ijms22179602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Excess aldosterone promotes pathological remodeling of the heart and imbalance in cardiac ion homeostasis of sodium, potassium and calcium. Novel treatment with proanthocyanidins in aldosterone-treated rats has resulted in downregulation of cardiac SGK1, the main genomic aldosterone-induced intracellular mediator of ion handling. It therefore follows that proanthocyanidins could be modulating cardiac ion homeostasis in aldosterone-treated rats. Male Wistar rats received aldosterone (1 mg kg−1 day−1) +1% NaCl for three weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5 mg kg−1 day−1). PRO80 prevented cardiac hypertrophy and decreased calcium content. Expression of ion channels (ROMK, NHE1, NKA and NCX1) and calcium transient mediators (CAV1.2, pCaMKII and oxCaMKII) were reduced by PRO80 treatment in aldosterone-treated rats. To conclude, our data indicate that PRO80 may offer an alternative treatment to conventional MR-blockade in the prevention of aldosterone-induced cardiac pathology.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Peter J. Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Correspondence: ; Tel.: +34-987-291-000 (ext. 3650)
| |
Collapse
|
38
|
Duan Y, Li G, Xu M, Qi X, Deng M, Lin X, Lei Z, Hu Y, Jia Z, Yang Q, Cao G, Liu Z, Wen Q, Li Z, Tang J, Zhang WK, Huang P, Zheng L, Flavell RA, Hao J, Yin Z. CFTR is a negative regulator of γδ T cell IFN-γ production and antitumor immunity. Cell Mol Immunol 2021; 18:1934-1944. [PMID: 32669666 PMCID: PMC8322328 DOI: 10.1038/s41423-020-0499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
CFTR, a chloride channel and ion channel regulator studied mostly in epithelial cells, has been reported to participate in immune regulation and likely affect the risk of cancer development. However, little is known about the effects of CFTR on the differentiation and function of γδ T cells. In this study, we observed that CFTR was functionally expressed on the cell surface of γδ T cells. Genetic deletion and pharmacological inhibition of CFTR both increased IFN-γ release by peripheral γδ T cells and potentiated the cytolytic activity of these cells against tumor cells both in vitro and in vivo. Interestingly, the molecular mechanisms underlying the regulation of γδ T cell IFN-γ production by CFTR were either TCR dependent or related to Ca2+ influx. CFTR was recruited to TCR immunological synapses and attenuated Lck-P38 MAPK-c-Jun signaling. In addition, CFTR was found to modulate TCR-induced Ca2+ influx and membrane potential (Vm)-induced Ca2+ influx and subsequently regulate the calcineurin-NFATc1 signaling pathway in γδ T cells. Thus, CFTR serves as a negative regulator of IFN-γ production in γδ T cells and the function of these cells in antitumor immunity. Our investigation suggests that modification of the CFTR activity of γδ T cells may be a potential immunotherapeutic strategy for cancer.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guangqiang Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Miaomiao Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaofei Qi
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mingxia Deng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xuejia Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhiwei Lei
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yi Hu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenghu Jia
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zonghua Liu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiong Wen
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhua Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Kevin Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
39
|
Boder P, Mary S, Mark PB, Leiper J, Dominiczak AF, Padmanabhan S, Rampoldi L, Delles C. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens 2021; 39:1490-1504. [PMID: 34187999 PMCID: PMC7611110 DOI: 10.1097/hjh.0000000000002861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a significant risk factor for cardiovascular disease and mortality worldwide. The kidney is a major regulator of blood pressure and electrolyte homeostasis, with monogenic disorders indicating a link between abnormal ion transport and salt-sensitive hypertension. However, the association between salt and hypertension remains controversial. Thus, there is continued interest in deciphering the molecular mechanisms behind these processes. Uromodulin (UMOD) is the most abundant protein in the normal urine and is primarily synthesized by the thick ascending limb epithelial cells of the kidney. Genome-wide association studies have linked common UMOD variants with kidney function, susceptibility to chronic kidney disease and hypertension independent of renal excretory function. This review will discuss and provide predictions on the role of the UMOD protein in renal ion transport and hypertension based on current observational, biochemical, genetic, pharmacological and clinical evidence.
Collapse
Affiliation(s)
- Philipp Boder
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheon Mary
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Casarella A, Nicotera R, Zicarelli MT, Urso A, Presta P, Deodato F, Bolignano D, De Sarro G, Andreucci M, Russo E, Coppolino G. Autosomic dominant polycystic kidney disease and metformin: Old knowledge and new insights on retarding progression of chronic kidney disease. Med Res Rev 2021; 42:629-640. [PMID: 34328226 DOI: 10.1002/med.21850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 01/19/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common congenital kidney disorder, generally caused by mutations in the PKD1 and PKD2 genes, coding for polycystins 1 and 2. Its pathogenesis is accompanied by alterations of the cAMP, mTOR, MAPK/ERK, and JAK/STAT pathways. ADPKD is clinically characterized by the formation of many growing cysts with kidney enlargement and a progressive damage to the parenchyma, up to its complete loss of function, and the onset of end-stage renal disease (ESRD). The current aim of ADPKD therapy is the inhibition of cyst development and retardation of chronic kidney disease progression. Several drugs have been recently included as potential therapies for ADPKD including metformin, the drug of choice for the treatment of type 2 diabetes mellitus, according to its potential inhibitory effects on cystogenesis. In this review, we summarize preclinical and clinical evidence endorsing or rejecting metformin administration in ADPKD evolution and pathological mechanisms. We explored the biology of APDKD and the role of metformin in slowing down cystogenesis searching PubMed and Clinical Trials to identify relevant data from the database inception to December 2020. From our research analysis, evidence for metformin as emerging cure for ADPKD mainly arise from preclinical studies. In fact, clinical studies are still scanty and stronger evidence is awaited. Its effects are likely mediated by inhibition of the ERK pathway and increase of AMPK levels, which are both linked to ADPKD pathogenesis.
Collapse
Affiliation(s)
| | - Ramona Nicotera
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Maria T Zicarelli
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandra Urso
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Pierangela Presta
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Francesca Deodato
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Davide Bolignano
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | | | - Michele Andreucci
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, Renal Unit, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
41
|
Sung CC, Chen MH, Lin YC, Lin YC, Lin YJ, Yang SS, Lin SH. Urinary Extracellular Vesicles for Renal Tubular Transporters Expression in Patients With Gitelman Syndrome. Front Med (Lausanne) 2021; 8:679171. [PMID: 34179047 PMCID: PMC8219937 DOI: 10.3389/fmed.2021.679171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3. Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled. Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues. Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chang Lin
- Division of Cardiovascular Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chun Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Jia Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Jiang J, Ding FX, Zhou X, Bateman TJ, Dong S, Gu X, Keh deJesus R, Pio B, Tang H, Chobanian HR, Levorse D, Hu M, Thomas-Fowlkes B, Margulis M, Koehler M, Weinglass A, Gibson J, Houle K, Yudkovitz J, Hampton C, Pai LY, Samuel K, Cutarelli T, Sullivan K, Parmee ER, Davies I, Pasternak A. Discovery of MK-8153, a Potent and Selective ROMK Inhibitor and Novel Diuretic/Natriuretic. J Med Chem 2021; 64:7691-7701. [PMID: 34038119 DOI: 10.1021/acs.jmedchem.1c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, 2 (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics. However, 2 projected to a short human half-life (∼5 h) that could necessitate more frequent than once a day dosing. In addition, a short half-life would confer a high peak-to-trough ratio which could evoke an excessive peak diuretic effect, a common liability associated with loop diuretics such as furosemide. This report describes the discovery of a new ROMK inhibitor 22e (MK-8153), with a longer projected human half-life (∼14 h), which should lead to a reduced peak-to-trough ratio, potentially extrapolating to more extended and better tolerated diuretic effects.
Collapse
Affiliation(s)
- Jinlong Jiang
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fa-Xiang Ding
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xiaoyan Zhou
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thomas J Bateman
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shuzhi Dong
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xin Gu
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Reynalda Keh deJesus
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Barbara Pio
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haifeng Tang
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Harry R Chobanian
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dorothy Levorse
- Discovery and Preclinical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mengwei Hu
- Discovery and Preclinical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Brande Thomas-Fowlkes
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael Margulis
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Martin Koehler
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Adam Weinglass
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jack Gibson
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kevin Houle
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Joel Yudkovitz
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Caryn Hampton
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lee-Yuh Pai
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Koppara Samuel
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Timothy Cutarelli
- Discovery Process Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kathleen Sullivan
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Emma R Parmee
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ian Davies
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alexander Pasternak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
43
|
Polidoro JZ, Rebouças NA, Girardi ACC. The Angiotensin II Type 1 Receptor-Associated Protein Attenuates Angiotensin II-Mediated Inhibition of the Renal Outer Medullary Potassium Channel in Collecting Duct Cells. Front Physiol 2021; 12:642409. [PMID: 34054566 PMCID: PMC8160308 DOI: 10.3389/fphys.2021.642409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Adjustments in renal K+ excretion constitute a central mechanism for K+ homeostasis. The renal outer medullary potassium (ROMK) channel accounts for the major K+ secretory route in collecting ducts during basal conditions. Activation of the angiotensin II (Ang II) type 1 receptor (AT1R) by Ang II is known to inhibit ROMK activity under the setting of K+ dietary restriction, underscoring the role of the AT1R in K+ conservation. The present study aimed to investigate whether an AT1R binding partner, the AT1R-associated protein (ATRAP), impacts Ang II-mediated ROMK regulation in collecting duct cells and, if so, to gain insight into the potential underlying mechanisms. To this end, we overexpressed either ATRAP or β-galactosidase (LacZ; used as a control), in M-1 cells, a model line of cortical collecting duct cells. We then assessed ROMK channel activity by employing a novel fluorescence-based microplate assay. Experiments were performed in the presence of 10−10 M Ang II or vehicle for 40 min. We observed that Ang II-induced a significant inhibition of ROMK in LacZ, but not in ATRAP-overexpressed M-1 cells. Inhibition of ROMK-mediated K+ secretion by Ang II was accompanied by lower ROMK cell surface expression. Conversely, Ang II did not affect the ROMK-cell surface abundance in M-1 cells transfected with ATRAP. Additionally, diminished response to Ang II in M-1 cells overexpressing ATRAP was accompanied by decreased c-Src phosphorylation at the tyrosine 416. Unexpectedly, reduced phospho-c-Src levels were also found in M-1 cells, overexpressing ATRAP treated with vehicle, suggesting that ATRAP can also downregulate this kinase independently of Ang II-AT1R activation. Collectively, our data support that ATRAP attenuates inhibition of ROMK by Ang II in collecting duct cells, presumably by reducing c-Src activation and blocking ROMK internalization. The potential role of ATRAP in K+ homeostasis and/or disorders awaits further investigation.
Collapse
Affiliation(s)
| | - Nancy Amaral Rebouças
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
44
|
Ilyaskin AV, Korbmacher C, Diakov A. Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem 2021; 296:100404. [PMID: 33577799 PMCID: PMC7973139 DOI: 10.1016/j.jbc.2021.100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αβγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of β- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of β- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Krajewska M, Koprowski P. Solubilization, purification, and functional reconstitution of human ROMK potassium channel in copolymer styrene-maleic acid (SMA) nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183555. [PMID: 33444624 DOI: 10.1016/j.bbamem.2021.183555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Expression, purification, and functional reconstitution of mammalian ion channels are often challenging. Heterologous expression of mammalian channels in bacteria can be advantageous due to unrelated protein environment and the lack of risk of copurification of endogenous proteins, e.g., accessory channel subunits that can influence the channel activity. Also, direct recording of channel activity could be challenging due to their intracellular localization like in the case of mitochondrial channels. The activity of purified channels can be characterized at the single-molecule level by electrophysiological techniques, such as planar lipid bilayers (PLB). In this work, we describe a simple approach to accomplish PLB recording of the activity of single renal outer medullary potassium channels ROMK expressed in E. coli. We focused on the ROMK2 isoform that is present at low levels in the mitochondria and can be responsible for mitoKATP activity. We screened for the best construct to express the codon-optimized ROMK proteins with a 6xHis tag for protein purification. The strategy involved the use of optimal styrene-maleic acid (SMA) copolymer, which forms so-called polymer nanodiscs, to solubilize and purify ROMK-containing SMA lipid particles (SMALPs), which were amenable for fusion with PLB. Reconstituted ROMK channels exhibited ion selectivity, rectification, and pharmacological properties, which are in agreement with previous work on ROMK channels.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteur str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteur str. 3, Warsaw 02-093, Poland.
| |
Collapse
|
46
|
Okada M, Kozaki I, Honda H. Antidepressive effect of an inward rectifier K+ channel blocker peptide, tertiapin-RQ. PLoS One 2020; 15:e0233815. [PMID: 33186384 PMCID: PMC7665585 DOI: 10.1371/journal.pone.0233815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Renal outer medullary K+ channel, ROMK (Kir1.1, kcnj1) is expressed in the kidney and brain, but its role in the central nervous system remains unknown. Recent studies suggested an involvement of the ROMK channel in mental diseases. Tertiapin (TPN) is a European honey bee venom peptide and is reported to selectively block the ROMK channel. Here, we have chemically synthesized a series of mutated TPN peptides, including TPN-I8R and -M13Q (TPN-RQ), reported previously, and examined their blocking activity on the ROMK channel. Among 71 peptides tested, TPN-RQ was found to block the ROMK channel most effectively. Whole-cell patch-clamp recordings showed the essential roles of two disulfide bonds and the circular structure for the blockade activity. To examine the central role, we injected TPN-RQ intracerebroventricularly and examined the effects on depression- and anxiety-like behaviors in mice. TPN-RQ showed an antidepressive effect in tail-suspension and forced swim tests. The injection of TPN-RQ also enhanced the anxiety-like behavior in the elevated plus-maze and light/dark box tests and impaired spontaneous motor activities in balance beam and wheel running tests. Administration of TPM-RQ suppressed the anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in antidepressant-related nuclei, e.g. the dorsal raphe nucleus and locus coeruleus. TPN-RQ may exert its antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| | - Ikkou Kozaki
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
47
|
Verma S, Chanchlani R, Siu VM, Filler G. Transient hyponatremia of prematurity caused by mild Bartter syndrome type II: a case report. BMC Pediatr 2020; 20:311. [PMID: 32590952 PMCID: PMC7318402 DOI: 10.1186/s12887-020-02214-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartter syndrome subtypes are a group of rare renal tubular diseases characterized by impaired salt reabsorption in the tubule, specifically the thick ascending limb of Henle's loop. Clinically, they are characterized by the association of hypokalemic metabolic alkalosis, hypercalciuria, nephrocalcinosis, increased levels of plasma renin and aldosterone, low blood pressure and vascular resistance to angiotensin II. Bartter syndrome type II is caused by mutations in the renal outer medullary potassium channel (ROMK) gene (KCNJ1), can present in the newborn period and typically requires lifelong therapy. CASE PRESENTATION We describe a case of a prematurely born female infant presenting with antenatal polyhydramnios, and postnatal dehydration and hyponatremia. After 7 weeks of sodium supplementation, the patient demonstrated complete resolution of her hyponatremia and developed only transient metabolic alkalosis at 2 months of age but continues to be polyuric and exhibits hypercalciuria, without development of nephrocalcinosis. She was found to have two pathogenic variants in the KCNJ1 gene: a frameshift deletion, p.Glu334Glyfs*35 and a missense variant, p. Pro110Leu. While many features of classic ROMK mutations have resolved, the child does have Bartter syndrome type II and needs prolonged pediatric nephrology follow-up. CONCLUSION Transient neonatal hyponatremia warrants a multi-system workup and genetic variants of KCNJ1 should be considered.
Collapse
Affiliation(s)
- Subhrata Verma
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster Children's Hospital, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Victoria Mok Siu
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada.,Division of Medical Genetics, and Department of Biochemistry, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.,Children's Health Research Institute, 750 Baseline Road East, London, ON, N6C 2R5, Canada
| | - Guido Filler
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada. .,Children's Health Research Institute, 750 Baseline Road East, London, ON, N6C 2R5, Canada. .,Departments of Pathology and Laboratory Medicine, Division of Nephrology, Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, University of Western Ontario, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
48
|
Sun Z, Lou F, Zhang Y, Song N. Gill Transcriptome Sequencing and De Novo Annotation of Acanthogobius ommaturus in Response to Salinity Stress. Genes (Basel) 2020; 11:genes11060631. [PMID: 32521805 PMCID: PMC7349121 DOI: 10.3390/genes11060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.
Collapse
Affiliation(s)
| | | | | | - Na Song
- Correspondence: or ; Tel.: +86-532-820-31658
| |
Collapse
|
49
|
Ponzoni L, Nguyen NH, Bahar I, Brodsky JL. Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel. PLoS Comput Biol 2020; 16:e1007749. [PMID: 32251469 PMCID: PMC7162551 DOI: 10.1371/journal.pcbi.1007749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/16/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants’ pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein. As the number of sequenced human genomes rises, a major challenge is to identify which single amino acid variations in a protein affect function and predispose individuals to disease. While predictive algorithms are available for this purpose, a comparative analysis of recently developed algorithms has not been adequately performed, nor is it clear whether combining algorithms would improve predictive power. To this end, we compared the efficacy of three publicly available algorithms and applied the results to Bartter syndrome, a human disease for which numerous poorly-characterized single amino acid variants have been identified and for which there is no cure. In silico saturation mutagenesis, i.e., the computational prediction of pathogenesis for every possible amino acid substitution, allowed us to experimentally test predictions by measuring the activity of an ion channel linked to Bartter syndrome. Based on data from blinded experiments, we discovered that Rhapsody and EVmutation successfully predicted deleterious mutations. Moreover, Rhapsody—which takes into account evolutionary as well as structural and dynamic considerations—predicted that >90% of known Bartter syndrome mutations are deleterious. Overall, our data will aid investigators who wish to test single amino acid variants in any protein and aid biomedical researchers who wish to develop hypotheses on the potential severity of genetic variants uncovered from genome databases.
Collapse
Affiliation(s)
- Luca Ponzoni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (JLB)
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (JLB)
| |
Collapse
|
50
|
Papanicolaou KN, Ashok D, Liu T, Bauer TM, Sun J, Li Z, da Costa E, D'Orleans CC, Nathan S, Lefer DJ, Murphy E, Paolocci N, Foster DB, O'Rourke B. Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP. J Mol Cell Cardiol 2020; 139:176-189. [PMID: 32004507 PMCID: PMC7849919 DOI: 10.1016/j.yjmcc.2020.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Abstract
The renal-outer-medullary‑potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tyler M Bauer
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Eduardo da Costa
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Crepy D'Orleans
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Nathan
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|