1
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhou Y, Hu T, Zeng H, Lin L, Xie H, Lin R, Huang M. Naringenin Inhibits Ferroptosis in Renal Tubular Epithelial Cells of Diabetic Nephropathy Through SIRT1/FOXO3a Signaling Pathway. Drug Dev Res 2025; 86:e70044. [PMID: 39799560 DOI: 10.1002/ddr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models. HK-2 cells were cultured in HG medium to establish the DN cell model. HK-2 cells were treated with different doses of naringenin to explore the effect of naringenin. The CCK-8 results show that 50 μM ~ 200 μM of naringenin do not affect the viability of HK-2 cells and the viability of HG-induced HK-2 cells increase in a dose-dependent manner with naringenin treatment. Additionally, naringenin increased the levels of IL-10 while decreasing the levels of IL-1β, TNF-α, IL-6, and ROS in HG-induced HK-2 cells. Naringenin also reduced the levels of Fe2+, oxidized lipid ROS, MDA, 4-HNE, ACSL4, and TFR1 in HG-induced HK-2 cells, while increasing the levels of non-oxidized lipid ROS, SOD, GSH-Px, SLC7A11, and GPX4. Meanwhile, naringenin restored the levels of MMP, ATP and MPTP opening, reduced OCR in HG-induced HK-2 cells. Furthermore, naringenin reversed the decreased expression of SIRT1, p-FOXO3a, Nrf2 and Nuclear Nrf2 caused by HG. SIRT1 inhibitor EX527 and Nrf2 inhibitor ML385 attenuated the effects of naringenin on ferroptosis in HG-induced HK-2 cells, with EX527 demonstrating a stronger reversal effect on ferroptosis than ML385. These results suggest that naringenin inhibits ferroptosis in HG-induced HK-2 cells mainly through SIRT1/FOXO3a signaling pathway. This finding further enhanced our understanding of the mechanism behind naringenin's protective effect on DN.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Tianchi Hu
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Huarong Zeng
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Lin Lin
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Huan Xie
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Rong Lin
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Mengya Huang
- Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China
| |
Collapse
|
3
|
Tian S, Zhou S, Wu W, lin Y, Wang T, Sun H, A‐Ni‐Wan A, Li Y, Wang C, Li X, Yu P, Zhao Y. GLP-1 Receptor Agonists Alleviate Diabetic Kidney Injury via β-Klotho-Mediated Ferroptosis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409781. [PMID: 39630101 PMCID: PMC11775532 DOI: 10.1002/advs.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Semaglutide (Smg), a GLP-1 receptor agonist (GLP-1RA), shows renal protective effects in patients with diabetic kidney disease (DKD). However, the exact underlying mechanism remains elusive. This study employs transcriptome sequencing and identifies β-Klotho (KLB) as the critical target responsible for the role of Smg in kidney protection. Smg treatment alleviates diabetic kidney injury by inhibiting ferroptosis in patients, animal models, and HK-2 cells. Notably, Smg treatment significantly increases the mRNA expression of KLB through the activation of the cyclic adenosine monophosphate (cAMP) signaling pathway, specifically through the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Subsequently, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway is activated, reprograming the key metabolic processes of ferroptosis such as iron metabolism, fatty acid synthesis, and the antioxidant response against lipid peroxidation. Suppression of ferroptosis by Smg further attenuates renal inflammation and fibrosis. This work highlights the potential of GLP-1RAs and KLB targeting as promising therapeutic approaches for DKD management.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Department of NephrologyThe Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)TaiyuanShanxi030000China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yao lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Tongdan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Haizhen Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - A‐Shan‐Jiang A‐Ni‐Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| | - Chongyang Wang
- School of Life SciencesPeking UniversityBeijing100871China
| | - Xiaogang Li
- Department of Internal MedicineMayo ClinicRochesterMN55901USA
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Nephropathy & Blood Purification DepartmentThe Second Hospital of Tianjin Medical UniversityTianjin300134China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| |
Collapse
|
4
|
Kumar R, Kulshreshtha D, Aggarwal A, Asthana S, Dinda A, Mukhopadhyay CK. Glucose induced regulation of iron transporters implicates kidney iron accumulation. Biochim Biophys Acta Gen Subj 2024; 1868:130713. [PMID: 39278370 DOI: 10.1016/j.bbagen.2024.130713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Increased iron level is detected in rat kidney and human urine in diabetic condition and implicated in associated nephropathy. However, the biological cue and mechanism of the iron accumulation remain unclear. Here we reveal that glucose increases iron uptake by promoting transferrin receptor 1 (TFRC) in kidney cells by a translational mechanism but does not alter expression of endosomal iron transporter DMT1. Glucose decreases iron exporter ferroportin (FPN) by a protein degradation mechanism. Hepcidin is known to bind at Cys-326 residue in promoting degradation of human ferroportin. When Cys-326 was mutated to Ser in human-FPN-FLAG and expressed in kidney cells, glucose still could degrade FPN-FLAG implicating involvement of hepcidin independent mechanism in glucose induced ferroportin degradation. Chronic hyperglycemia was generated in rats by administering streptozotocin (STZ) with periodic insulin injection to determine the level of iron homeostasis components. Increased TFRC and decreased ferroportin levels were detected in hyperglycemic rat kidney by Western blot and immunohistochemistry analyses. Hepcidin mRNA was not significantly altered in kidney but was marginally decreased in liver. Perls' staining and non-heme iron estimation showed an elevated iron level in hyperglycemic rat kidney. These results suggest that high glucose dysregulates iron transport components resulting iron accumulation in diabetic kidney.
Collapse
Affiliation(s)
- Rajiv Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India
| | - Diksha Kulshreshtha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayushi Aggarwal
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India
| | - Somya Asthana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amit Dinda
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India.
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Zhu S, Kang Z, Zhang F. Tanshinone IIA suppresses ferroptosis to attenuate renal podocyte injury in diabetic nephropathy through the embryonic lethal abnormal visual-like protein 1 and acyl-coenzyme A synthetase long-chain family member 4 signaling pathway. J Diabetes Investig 2024; 15:1003-1016. [PMID: 38650121 PMCID: PMC11292391 DOI: 10.1111/jdi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
AIMS/INTRODUCTION Tanshinone IIA (TIIA) is one of the main components of the root of the red-rooted Salvia miltiorrhiza Bunge. However, the molecular mechanisms underlying TIIA-mediated protective effects in diabetic nephropathy (DN) are still unclear. MATERIALS AND METHODS High glucose (HG)-induced mouse podocyte cell line (MPC5) cells were used as the in vitro model of DN and treated with TIIA. Cell viability, proliferation and apoptosis were detected using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and flow cytometry assays. The protein levels were assessed using western blot assay. The levels of inflammatory factors were deleted by enzyme-linked immunoassay. Fe+ level, reactive oxygen species, malondialdehyde and glutathione products were detected using special assay kits. After ENCORI prediction, the interaction between embryonic lethal abnormal visual-like protein 1 (ELAVL1) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) was verified using co-immunoprecipitation assay and dual-luciferase reporter assays. ACSL4 messenger ribonucleic acid expression was measured using real-time quantitative polymerase chain reaction. RESULTS TIIA repressed HG-induced MPC5 cell apoptosis, inflammatory response and ferroptosis. ACSL4 upregulation relieved the repression of TIIA on HG-mediated MPC5 cell injury and ferroptosis. ELAVL1 is bound with ACSL4 to positively regulate the stability of ACSL4 messenger ribonucleic acid. TIIA hindered HG-triggered MPC5 cell injury and ferroptosis by regulating the ELAVL1-ACSL4 pathway. TIIA blocked DN progression in in vivo research. CONCLUSION TIIA treatment restrained HG-caused MPC5 cell injury and ferroptosis partly through targeting the ELAVL1-ACSL4 axis, providing a promising therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Shuai Zhu
- Graduate SchoolXinxiang Medical UniversityXinxiangChina
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Zhiqiang Kang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Fengjiao Zhang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Ali HA, Abbasi MH, Akhtar T, Arif A, Anjum M, Fatima S, Mehmood R, Farooq A, Sheikh N, Khawar MB. Platelet-Rich Plasma (PRP) Mitigates Kidney Dysfunction in Alloxan-Induced Diabetic Mice via Modulation of Renal Iron Regulatory Genes. Biochem Genet 2024:10.1007/s10528-024-10871-w. [PMID: 39060642 DOI: 10.1007/s10528-024-10871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Kidney dysfunction is a prevalent complication of diabetes mellitus, contributing significantly to diabetes-related morbidity and mortality. We aim to explore whether platelet-rich plasma administration can modulate iron regulation mechanism within the kidney, thereby mitigating renal dysfunction associated with diabetes. Albino mice with an average body weight of 20 ± 5 g were randomly divided into five groups (N = 50; n = 10): Control Group, PRP Group, diabetic group (DG), treated group A (TA), and treated group B (TB). A single intraperitoneal dose of alloxan (160 mg/kg of body weight) was administered to mice in the DG and in both treated groups. Upon confirmation of diabetes, the DG was left untreated, while PRP treatment (0.5 ml/kg of body weight) was administered to the TA and TB groups for two and four weeks, respectively. Histological examinations of kidney tissues revealed notable signs of damage in DG, which were subsequently improved upon PRP treatment. Likewise, PRP treatment restored the changes in liver enzymes, oxidative stress biomarkers and serum electrolytes in both treated groups. Furthermore, there was an observed upregulation of iron regulatory genes, such as Renin, Epo, Hepc, Kim1, and Hfe, in the DG, accompanied by a downregulation of Tfr1 and Fpn; however, Dmt1 and Dcytb1 expression remained unaltered. Treatment with PRP restored the expression of iron regulatory genes in both treated groups. This study concluded that PRP treatment effectively restored the renal histochemistry and the expression of renal iron regulatory genes in an alloxan-induced diabetic mice model.
Collapse
Affiliation(s)
| | | | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Amin Arif
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, Government MAO Graduate College, Lahore, Pakistan
| | - Mehreen Anjum
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Sana Fatima
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rabia Mehmood
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Adil Farooq
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
7
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
8
|
Sivaprasad M, Shalini T, Sahay M, Sahay R, Satyanarayanan M, Reddy GB. Plasma levels and dietary intake of minerals in patients with type 2 diabetes and chronic kidney disease: A case-control study. J Trace Elem Med Biol 2024; 84:127425. [PMID: 38484635 DOI: 10.1016/j.jtemb.2024.127425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIM Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease (CKD) worldwide. Altered mineral levels leading to adverse outcomes are widely reported in diabetes but limited in DKD, in the Indian scenario, hence this study was taken up to address this issue. METHODS A hospital-based case-control study was taken up with 54 healthy controls (C) and 140 subjects with type 2 diabetes wherein 74 subjects with diabetes and CKD formed the DKD group, and 66 subjects with diabetes but no CKD formed the diabetic no-chronic kidney disease (DNCKD) group. High-resolution inductively coupled plasma mass spectrometry was used to evaluate the blood levels of minerals (calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)), and a raw food-based food frequency questionnaire for dietary intakes. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (mL/min/1.73 m2) and albuminuria. Spearman's rank correlation was used to evaluate the relationship between the categorical variables. RESULTS The median values of plasma Ca in the DKD group were significantly lower compared with the DNCKD and C groups (10.5 mg/dL vs. 11.0 mg/dL and 11.7 mg/dL, p<0.001). Furthermore, plasma Ca levels lowered with declining kidney function, as evidenced by the eGFR and albuminuria segregation. Dietary intake of minerals did not correlate with the corresponding plasma levels. However, in the DKD group, eGFR correlated positively with the plasma levels of Ca (r= 0.422, p=0.001), Cr (r= 0.351, p=0.008), Mn (r= 0.338, p=0.011), Fe (r= 0.403, p=0.002), Cu (r= 0.274, p=0.041) and negatively with Se (r= -0.486, p<0.001). CONCLUSION Plasma Ca levels are lower in the DKD group with a strong positive association with eGFR, indicating its role in predicting the onset and progression of kidney function decline.
Collapse
Affiliation(s)
- Mudili Sivaprasad
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Tattari Shalini
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Manisha Sahay
- Nephrology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | - Rakesh Sahay
- Endocrinology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | | | | |
Collapse
|
9
|
Zhao QX, Yan SB, Wang F, Li XX, Shang GK, Zheng ZJ, Xiao J, Lin ZW, Li CB, Ji XP. STING deficiency alleviates ferroptosis through FPN1 stabilization in diabetic kidney disease. Biochem Pharmacol 2024; 222:116102. [PMID: 38428828 DOI: 10.1016/j.bcp.2024.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, has known as one of the most significant pathological processes involved in diabetic kidney disease (DKD). Stimulator of interferon genes (STING) has been demonstrated its potential in regulating ferroptosis, but the regulatory role in DKD mice and underlying mechanisms haven't been illustrated. To elucidate whether and how STING regulates ferroptosis in DKD, we detected the influence of STING on diabetic-related ferroptosis in a diabetic model and in erastin-induced renal tubular epithelial cells (RTECs). Our study demonstrated that STING was abnormally activated and promoted ferroptosis in DKD. STING deficiency alleviated renal pathologic damages and disfunction in diabetic mice via alleviating ferroptosis and reducing oxidative stress. Mechanismly, STING inhibition was shown to improve ferroptosis and reduce oxidative stress in erastin-induced RTECs. The disruption of ferroportin1 (FPN1) on the basis of STING inhibition abolished the improvements in ferroptosis and promoted reactive oxygen species (ROS) generation. Further, STING inhibition alleviated ferroptosis via stabilizing FPN1 protein level by decreasing ubiquitinated FPN1 for proteasomal degradation. In conclusion, STING deficiency protected against diabetic renal injury via alleviating ferroptosis through stabilizing FPN1 and reducing oxidative stress, providing a possible potential approach for the treatment of DKD.
Collapse
Affiliation(s)
- Qin-Xiao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Sen-Bo Yan
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fen Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Xing Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guo-Kai Shang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zi-Jie Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jie Xiao
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zong-Wei Lin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Chuan-Bao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Xiao-Ping Ji
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Lyu X, Zhang TT, Ye Z, Chen C. Astragaloside IV Mitigated Diabetic Nephropathy by Restructuring Intestinal Microflora and Ferroptosis. Mol Nutr Food Res 2024; 68:e2300734. [PMID: 38389170 DOI: 10.1002/mnfr.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Indexed: 02/24/2024]
Abstract
SCOPE To investigate the underlying mechanism of Astragaloside IV (AS-IV) in ameliorating diabetic nephropathy (DN) by regulating intestinal microbiota ecology and intestinal mucosal barrier. METHODS AND RESULTS Genetically db/db mice are used to establish DN mouse model to monitor the therapeutic effects of AS-IV and fecal microbiota transplantation (FMT) against DN. Supplementation with AS-IV dramatically attenuates several clinical indicators of DN in db/db mice. In addition, AS-IV markedly improves intestinal barrier function, modifies intestinal permeability, and reduces inflammation. Moreover, AS-IV treatment remarkably improves intestinal dysbiosis in db/db mice, characterized by an elevated abundance of Akkermansia, Ligilactobacillus, and Lactobacillus, indicating the fundamental role of the microbiome in DN progression. Furthermore, FMT derived from AS-IV-treated db/db mice is potentially efficient in antagonizing renal dysfunction, rebalancing gut microbiota, and improving intestinal permeability in recipient db/db mice. AS-IV-enriched Akkermansia muciniphila dramatically alleviates DN and intestinal mucosal barrier dysfunction in db/db mice. Intriguingly, AS-IV intervention dramatically diminishes ferroptosis in the kidney and colon tissues. CONCLUSION : Intestinal microbiome alterations and ferroptosis modulation by AS-IV may play instrumental roles in this mechanism, providing compelling evidence for the role of the gut-renal axis in DN.
Collapse
Affiliation(s)
- Xin Lyu
- Department of Endocrinology, Suqian First Hospital, Suqian, 223899, China
| | - Ting-Ting Zhang
- Department of Nephrology, Suqian First Hospital, Suqian, 223899, China
| | - Zhen Ye
- Department of Pharmacy, Suqian First Hospital, Suqian, 223899, China
| | - Ce Chen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
11
|
Xie D, Li K, Feng R, Xiao M, Sheng Z, Xie Y. Ferroptosis and Traditional Chinese Medicine for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1915-1930. [PMID: 37398945 PMCID: PMC10312342 DOI: 10.2147/dmso.s412747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis, an emerging form of regulated programmed cell death, has garnered significant attention in the past decade. It is characterized by the accumulation of lipid peroxides and subsequent damage to cellular membranes, which is dependent on iron. Ferroptosis has been implicated in the pathogenesis of various diseases, including tumors and diabetes mellitus. Traditional Chinese medicine (TCM) has unique advantages in preventing and treating type 2 diabetes mellitus (T2DM) due to its anti-inflammatory, antioxidant, immunomodulatory, and intestinal flora-regulating functions. Recent studies have determined that TCM may exert therapeutic effects on T2DM and its complications by modulating the ferroptosis-related pathways. Therefore, a comprehensive and systematic understanding of the role of ferroptosis in the pathogenesis and TCM treatment of T2DM is of great significance for developing therapeutic drugs for T2DM and enriching the spectrum of effective T2DM treatment with TCM. In this review, we review the concept, mechanism, and regulatory pathways of ferroptosis and the ferroptosis mechanism of action involved in the development of T2DM. Also, we develop a search strategy, establish strict inclusion and exclusion criteria, and summarize and analyze the application of the ferroptosis mechanism in TCM studies related to T2DM and its complications. Finally, we discuss the shortcomings of current studies and propose a future research focus.
Collapse
Affiliation(s)
- Dandan Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Clinical Nutrition, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Kai Li
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Ruxue Feng
- Department of Stomatology, Geriatric Hospital of Hainan, Haikou, Hainan, People’s Republic of China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
12
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Wu Y, Sun Y, Wu Y, Zhang K, Chen Y. Predictive value of ferroptosis-related biomarkers for diabetic kidney disease: a prospective observational study. Acta Diabetol 2023; 60:507-516. [PMID: 36633709 PMCID: PMC10033569 DOI: 10.1007/s00592-022-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
AIMS To explore the predictive value of ferroptosis-related (FR) biomarkers for diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). METHODS This prospective observational study enrolled patients with T2DM at the Second Hospital of Jilin University between December 2021 and March 2022. DKD was measured by the urinary albumin-to-creatinine ratio. Receiver operating characteristic curve (ROC) analysis was performed to assess the predictive value of ferroptosis-related biomarkers for DKD.The risk factors for massive proteinuria were performed by multivariable logistic regression analysis. RESULTS Finally, 118 patients (53.0 ± 12.2 years, 76 males) were enrolled, 52 of them without DKD (had normal proteinuria), while 66 with DKD. (Forty-one had microproteinuria, and 25 had massive proteinuria.) FR biomarkers, including acyl-CoA synthase long chain family member 4 (ACSL4), malondialdehyde (MDA), and reactive oxygen species (ROS), were significantly higher in the massive proteinuria group than in the other groups, while glutathione peroxidase 4 (GPX4) was significantly lower (all P < 0.05). The area under the ROC of the combination of GPX4, ACSL4, MDA, and ROS for predicting DKD was 0.804 (P < 0.001). Additionally, multivariate logistic regression analysis showed that the course of disease and ferritin levels were independent risk factors for massive proteinuria, while high serum iron, transferrin, and GPX4 levels were independent protective factors for massive proteinuria in patients with T2DM (all P < 0.05). CONCLUSIONS The GPX4, ACSL4, MDA, and ROS combination might have a good predictive value for DKD. Additionally, the course of disease, ferritin levels, serum iron, transferrin, and GPX4 were independently associated with massive proteinuria.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yunwei Sun
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yiwei Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Kecheng Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China.
| |
Collapse
|
14
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:1732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA's renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
15
|
Polycystic ovary syndrome and iron overload: biochemical link and underlying mechanisms with potential novel therapeutic avenues. Biosci Rep 2023; 43:232133. [PMID: 36408981 PMCID: PMC9867939 DOI: 10.1042/bsr20212234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women with components of significant genetic predisposition and possibly multiple, but not yet clearly defined, triggers. This disorder shares several clinical features with hemochromatosis, a genetically defined inheritable disorder of iron overload, which includes insulin resistance, increased adiposity, diabetes, fatty liver, infertility, and hyperandrogenism. A notable difference between the two disorders, however, is that the clinical symptoms in PCOS appear at much younger age whereas they become evident in hemochromatosis at a much later age. Nonetheless, noticeable accumulation of excess iron in the body is a common finding in both disorders even at adolescence. Hepcidin, the iron-regulatory hormone secreted by the liver, is reduced in both disorders and consequently increases intestinal iron absorption. Recent studies have shown that gut bacteria play a critical role in the control of iron absorption in the intestine. As dysbiosis is a common finding between PCOS and hemochromatosis, changes in bacterial composition in the gut may represent another cause for iron overload in both diseases via increased iron absorption. This raises the possibility that strategies to prevent accumulation of excess iron with iron chelators and/or probiotics may have therapeutic potential in the management of polycystic ovary syndrome.
Collapse
|
16
|
Kim HJ, Han R, Kang KP, Ryu JH, Kim MG, Huh KH, Park JB, Kim CD, Han S, Kim HW, Kim BS, Yang J. Impact of iron status on kidney outcomes in kidney transplant recipients. Sci Rep 2023; 13:861. [PMID: 36650247 PMCID: PMC9845230 DOI: 10.1038/s41598-023-28125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Iron plays an important role in hemodynamics and the immunity, independent of anemia. Since dynamic changes occur in iron storage after kidney transplantation (KT), we investigated the association between iron status and kidney outcomes in KT patients. We analyzed data from the KoreaN cohort study for Outcome in patients With KT (KNOW-KT). The iron status was classified into three groups based on ferritin or transferrin saturation (TSAT) levels one year after KT, with reference ranges of 20‒35% and 100‒300 ng/mL for TSAT and ferritin, respectively. The primary outcome was the composite outcome, which consisted of death, graft failure, and an estimated glomerular filtration rate decline ≥ 50%. In total, 895 patients were included in the final analysis. During a median follow-up of 5.8 years, the primary outcome occurred in 94 patients (19.8/1000 person-years). TSAT levels decreased one year after KT and thereafter gradually increased, whereas ferritin levels were maintained at decreased levels. The adjusted hazard ratios (95% confidence intervals) for the composite outcome were 1.67 (1.00-2.77) and 1.20 (0.60-2.40) in the TSAT > 35% and ferritin > 300 ng/mL groups, respectively. High iron status with high TSAT levels increases the risk of graft failure or kidney functional deterioration after KT.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ro Han
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jung-Hwa Ryu
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Seoul Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seungyeup Han
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | - Hyung Woo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Geng W, Pan L, Shen L, Sha Y, Sun J, Yu S, Qiu J, Xing W. Evaluating renal iron overload in diabetes mellitus by blood oxygen level-dependent magnetic resonance imaging: a longitudinal experimental study. BMC Med Imaging 2022; 22:200. [PMID: 36401188 PMCID: PMC9675154 DOI: 10.1186/s12880-022-00939-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Iron overload plays a critical role in the pathogenesis of diabetic nephropathy. Non-invasive evaluation of renal iron overload in diabetes in the management and intervention of diabetic nephropathy is of great significance. This study aimed to explore the feasibility of blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in evaluating renal iron overload in diabetes using a rabbit model. METHODS The rabbits were randomly divided into control, iron-overload (I), diabetes (D), and diabetes with iron-overload (DI) groups (each n = 19). The diabetes models were generated by injecting intravenous alloxan solution, and the iron-overload models were generated by injecting intramuscular iron-dextran. BOLD MRI was performed immediately (week 0) and at week 4, 8, and 12 following modeling. The differences in renal cortex (CR2*) and outer medulla R2* (MR2*) and the ratio of MR2*-CR2* (MCR) across the different time points were compared. RESULTS Iron was first deposited in glomeruli in the I group and in proximal tubular cells in renal cortex in the D group. In the DI group, there was iron deposition in both glomeruli and proximal tubular cells at week 4, and the accumulation increased subsequently. The degree of kidney injury and iron overload was more severe in the DI group than those in the I and D groups at week 12. At week 8 and 12, the CR2* and MR2* in the DI group were higher than those in the I and D groups (all P < 0.05). The MCR in the I, D, and DI groups decreased from week 0 to 4 (all P < 0.001), and that in the I group increased from week 8 to 12 (P = 0.034). CR2* and MR2* values displayed different trends from week 0-12. Dynamic MCR curves in the D and DI groups were different from that in the I group. CONCLUSION It presents interactions between diabetes and iron overload in kidney injury, and BOLD MRI can be used to evaluate renal iron overload in diabetes.
Collapse
Affiliation(s)
- Weiwei Geng
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liwen Shen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yuanyuan Sha
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jun Sun
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jianguo Qiu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
18
|
Ramlingareddy, A Ramachandrayya S, Jacob J, Mala M. A correlative study of copper, ceruloplasmin, iron, total iron binding capacity and total antioxidant capacity in diabetic nephropathy. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Diabetic nephropathy is the common cause of final stage of kidney disease. Studies on trace elements and oxidant-antioxidant status in diabetes mellitus are required for establishing the mechanisms involved in pathogenesis of diabetic complications, and also to establish biomarkers of diabetic nephropathy in addition to the conventional markers. The present study aimed to assess and correlate the blood levels of copper, iron, ceruloplasmin, total iron binding capacity (TIBC) and total antioxidant capacity (TAC) in diabetic nephropathy patients in comparison to diabetic individuals without complications and normal healthy controls.
Materials and Methods: The study subjects were, diabetic patients with nephropathy (group 1), diabetic patients without complications (group 2), and healthy controls (group 3). In the serum samples of all study subjects levels of copper, iron, ceruloplasmin, TIBC and TAC were estimated by standard spectrophotometric methods.
Results: Levels of copper, ceruloplasmin, iron and TIBC in serum were significantly higher and TAC was lower in diabetic patients when compared to controls, and more pronounced changes were seen in diabetic nephropathy patients when compared to diabetic patients with no complications. There was significant positive correlation among glycated hemoglobin, copper, iron and microalbumin in diabetic patients with or without nephropathy. Serum Total antioxidant capacity showed significant negative correlation with HbA1c, microalbuminuria, copper, and iron in diabetic patients with and without nephropathy.
Conclusion: Serum levels of trace elements could serve as diagnostic and prognostic biomarkers of diabetic nephropathy complimentary to microalbuminuria and glycated haemoglobin. Monitoring the trace elements and oxidative stress biomarkers in diabetic patients could be beneficial to prevent oxidative stress and pathogenesis of diabetic complications.
Collapse
|
19
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
20
|
Patino E, Akchurin O. Erythropoiesis-independent effects of iron in chronic kidney disease. Pediatr Nephrol 2022; 37:777-788. [PMID: 34244852 DOI: 10.1007/s00467-021-05191-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) leads to alterations of iron metabolism, which contribute to the development of anemia and necessitates iron supplementation in patients with CKD. Elevated hepcidin accounts for a significant iron redistribution in CKD. Recent data indicate that these alterations in iron homeostasis coupled with therapeutic iron supplementation have pleiotropic effects on many organ systems in patients with CKD, far beyond the traditional hematologic effects of iron; these include effects of iron on inflammation, oxidative stress, kidney fibrosis, cardiovascular disease, CKD-mineral and bone disorder, and skeletal growth in children. The effects of iron supplementation appear to be largely dependent on the route of administration and on the specific iron preparation. Iron-based phosphate binders exemplify the opportunity for using iron for both traditional (anemia) and novel (hyperphosphatemia) indications. Further optimization of iron therapy in patients with CKD may inform new approaches to the treatment of CKD complications and potentially allow modification of disease progression.
Collapse
Affiliation(s)
- Edwin Patino
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, NY, USA
| | - Oleh Akchurin
- Department of Pediatrics, Division of Pediatric Nephrology, Weill Cornell Medical College, New York, NY, USA. .,New York-Presbyterian Hospital, New York-Presbyterian Phyllis and David Komansky Children's Hospital, Weill Cornell Medicine, 505 East 70th Street - HT 388, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Shang X, Zhang R, Wang X, Yao J, Zhao X, Li H. The Relationship of Hyperferritinemia to Metabolism and Chronic Complications in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:175-182. [PMID: 35068935 PMCID: PMC8769058 DOI: 10.2147/dmso.s348232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
AIM Elevated serum ferritin has been found to be closely related to type 2 diabetes mellitus. This study aimed to explore the relationship of high serum ferritin to metabolism and chronic complications in type 2 diabetes. METHODS This was a cross-sectional study. A total of 330 type 2 diabetes patients who visited an endocrine clinic were included for the analysis. Serum ferritin and metabolic parameters were recorded. The prevalence of chronic diabetic complications was evaluated. Based on serum ferritin, participants were divided into hyperferritinemia and normal-ferritin groups. Metabolic parameters and prevalence of chronic diabetic complications were compared. The relationship between hyperferritinemia and chronic diabetic complications was explored with multivariate logistic regression models. Data were statistically analyzed by sex. RESULTS Compared with the normal-ferritin group, the hyperferritinemia group showed higher levels of the serum inflammatory marker CRP and higher prevalence of diabetic retinopathy (DR) and coronary heart disease (CHD), regardless of sex (p<0.05). Moreover, male patients with hyperferritinemia had increased serum triglyceride, alanine transferase, γ-glutamyltranspeptidase, urea nitrogen, creatinine, and uric acid and higher prevalence of microalbuminuria (p<0.01). After controlling for demographics and metabolic profiles, hyperferritinemia remained an independent risk factor of DR (male OR 3.957, 95% CI 1.559-10.041, p=0.004; female OR 2.474, 95% CI 1.127-5.430, p=0.024) and CHD (male OR 2.607, 95% CI 1.087-6.257, p=0.032; female OR 2.293, 95% CI 1.031-5.096, p=0.042). CONCLUSION This study found that hyperferritinemia was associated with increased CRP and higher prevalence of DR and CHD in type 2 diabetes. In men, high serum ferritin was also associated with dyslipidemia, hepatic dysfunction, and microalbuminuria.
Collapse
Affiliation(s)
- Xiaojing Shang
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Rui Zhang
- Division of Health Management, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Xiaolai Wang
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Junxin Yao
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Xiaoying Zhao
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Huanming Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
- Correspondence: Huanming Li Email
| |
Collapse
|
22
|
Sun J, Sha Y, Geng W, Chen J, Xing W. Susceptibility-weighted Imaging for Renal Iron Overload Assessment: A Pilot Study. Magn Reson Med Sci 2021; 21:415-424. [PMID: 33642470 PMCID: PMC9316138 DOI: 10.2463/mrms.mp.2020-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: To explore the feasibility of susceptibility-weighted imaging (SWI) for evaluating renal iron overload. Methods: Twenty-eight rabbits were randomly assigned into control (n = 14) and iron (n = 14) group. In the 0th week, the study group was injected with iron dextran. Both groups underwent SWI examination at the 0th, 8th, and 12th week. The signal intensity (SI) of cortex and medulla was assessed. Angle radian value (ARV) calculated with phase image was taken as the quantitative value for cortical and medullary iron deposition. After the 12th week, the left kidneys of rabbits were removed for pathology. The difference in the ARV among three groups was analyzed using Kruskal–Wallis test. The difference of the iron content between two groups was analyzed through independent sample t-test. Results: In the iron group: at the 12th week, eight rabbits were found to have decreased SI of only cortex, and the other six rabbits had decreased SI of cortex and medulla by the same degree; the ARV of cortex at the 8th and 12th week was significantly higher than that of the 0th week (P < 0.05); the ARV of the six rabbits’ medulla at the 12th week was significantly higher than that of the 0th week, 8th week, and the other eight rabbits at the 12th week (P < 0.05); at the 12th week, eight rabbits (iron group) were found to have many irons only deposit in the cortex, and the others were found to have many irons deposit in both cortex and medulla; the iron content of cortex and six rabbits’ medulla in the iron group was significantly higher than that of the control (P < 0.05). Conclusion: The ARV of SWI can be used to quantitatively assess the excess iron deposition in the kidneys. Excessive iron deposition mainly occurs in the cortex or medulla and causes their SWI SI to decrease.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Yuanyuan Sha
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Weiwei Geng
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| |
Collapse
|
23
|
Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M, Gao X. Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in db/db Mice. Front Endocrinol (Lausanne) 2021; 12:626390. [PMID: 33679620 PMCID: PMC7930496 DOI: 10.3389/fendo.2021.626390] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ferroptosis is a recently identified iron-dependent form of cell death as a result of increased reactive oxygen species (ROS) and lipid peroxidation. In this study, we investigated whether ferroptosis aggravated diabetic nephropathy (DN) and damaged renal tubules through hypoxia-inducible factor (HIF)-1α/heme oxygenase (HO)-1 pathway in db/db mice. METHODS Db/db mice were administered with or without ferroptosis inhibitor Ferrostatin-1 treatment, and were compared with db/m mice. RESULTS Db/db mice showed higher urinary albumin-to-creatinine ratio (UACR) than db/m mice, and Ferrostatin-1 reduced UACR in db/db mice. Db/db mice presented higher kidney injury molecular-1 and neutrophil gelatinase-associated lipocalin in kidneys and urine compared to db/m mice, with renal tubular basement membranes folding and faulting. However, these changes were ameliorated in db/db mice after Ferrostatin-1 treatment. Fibrosis area and collagen I were promoted in db/db mouse kidneys as compared to db/m mouse kidneys, which was alleviated by Ferrostatin-1 in db/db mouse kidneys. HIF-1α and HO-1 were increased in db/db mouse kidneys compared with db/m mouse kidneys, and Ferrostatin-1 decreased HIF-1α and HO-1 in db/db mouse kidneys. Iron content was elevated in db/db mouse renal tubules compared with db/m mouse renal tubules, and was relieved in renal tubules of db/db mice after Ferrostatin-1 treatment. Ferritin was increased in db/db mouse kidneys compared with db/m mouse kidneys, but Ferrostatin-1 reduced ferritin in kidneys of db/db mice. Diabetes accelerated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived ROS formation in mouse kidneys, but Ferrostatin-1 prevented ROS formation derived by NADPH oxidases in db/db mouse kidneys. The increased malondialdehyde (MDA) and the decreased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GSH-Px) were detected in db/db mouse kidneys compared to db/m mouse kidneys, whereas Ferrostatin-1 suppressed MDA and elevated SOD, CAT, and GSH-Px in db/db mouse kidneys. Glutathione peroxidase 4 was lower in db/db mouse kidneys than db/m mouse kidneys, and was exacerbated by Ferrostatin-1 in kidneys of db/db mice. CONCLUSIONS Our study indicated that ferroptosis might enhance DN and damage renal tubules in diabetic models through HIF-1α/HO-1 pathway.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng, ; Xia Gao,
| | - Shuo Wang
- Department of Infectious Diseases, Beijing Traditional Chinese Medical Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng, ; Xia Gao,
| |
Collapse
|
24
|
Li S, Zheng L, Zhang J, Liu X, Wu Z. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 2021; 162:435-449. [PMID: 33152439 DOI: 10.1016/j.freeradbiomed.2020.10.323] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is now considered the leading cause of end-stage renal disease. In diabetes, the accumulation of reactive oxygen species (ROS) and iron overload are important determinants that promote the occurrence of DN. However, the underlying mechanism of how they cause diabetic kidney damage remains unclear. Ferroptosis, characterized by iron-dependent lipid peroxidation, provided us with a new idea to explore the progression of DN. Iron overload, reduced antioxidant capability, massive ROS and lipid peroxidation were detected in the kidneys of streptozotocin-induced DBA/2J diabetic mice and high-glucose cultured human renal proximal tubular (HK-2) cells, which were the symbolic changes of ferroptosis. Furthermore, the characteristic mitochondrial morphological changes of ferroptosis were observed in high glucose cultured cells. Additional treatment of Ferrostatin-1 (Fer-1) in DN models significantly rescued these changes and alleviated the renal pathological injuries in diabetic mice. Besides, the decreased NFE2-related factor 2 (Nrf2) was observed in DN models. The specific knockdown of Nrf2 increased the sensitivity of cells to ferroptosis in the high glucose condition. In Nrf2 knockdown cells, up-regulating Nrf2 by treating with fenofibrate improved the situation of ferroptosis, which was verified in RSL-3 induced cells. Moreover, the ferroptosis-related changes were inhibited by increasing Nrf2 in fenofibrate treated diabetic mice, which delayed the progression of DN. Collectively, we demonstrated that ferroptosis was involved in the development of DN, and up-regulating Nrf2 by treating with fenofibrate inhibited diabetes-related ferroptosis, delaying the progression of DN. Our research revealed the development mechanism of DN from a new perspective, and provide a new approach delaying the progression of DN.
Collapse
Affiliation(s)
- Shuangwen Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lisi Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xuejun Liu
- Department of Neurology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
25
|
Fenofibrate prevents iron induced activation of canonical Wnt/β-catenin and oxidative stress signaling in the retina. NPJ Aging Mech Dis 2020; 6:12. [PMID: 33145027 PMCID: PMC7599211 DOI: 10.1038/s41514-020-00050-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence strongly implicates iron in the pathogenesis of aging and disease. Iron levels have been found to increase with age in both the human and mouse retinas. We and others have shown that retinal diseases such as age-related macular degeneration and diabetic retinopathy are associated with disrupted iron homeostasis, resulting in retinal iron accumulation. In addition, hereditary disorders due to mutation in one of the iron regulatory genes lead to age dependent retinal iron overload and degeneration. However, our knowledge on whether iron toxicity contributes to the retinopathy is limited. Recently, we reported that iron accumulation is associated with the upregulation of retinal and renal renin-angiotensin system (RAS). Evidences indicate that multiple genes/components of the RAS are targets of Wnt/β-catenin signaling. Interestingly, aberrant activation of Wnt/β-catenin signaling is observed in several degenerative diseases. In the present study, we explored whether iron accumulation regulates canonical Wnt signaling in the retina. We found that in vitro and in vivo iron treatment resulted in the upregulation of Wnt/β-catenin signaling and its downstream target genes including renin-angiotensin system in the retina. We confirmed further that iron activates canonical Wnt signaling in the retina using TOPFlash T-cell factor/lymphoid enhancer factor promoter assay and Axin2-LacZ reporter mouse. The presence of an iron chelator or an antioxidant reversed the iron-mediated upregulation of Wnt/β-catenin signaling in retinal pigment epithelial (RPE) cells. In addition, treatment of RPE cells with peroxisome proliferator-activated receptor (PPAR) α-agonist fenofibrate prevented iron-induced activation of oxidative stress and Wnt/β-catenin signaling by chelating the iron. The role of fenofibrate, an FDA-approved drug for hyperlipidemia, as an iron chelator has potentially significant therapeutic impact on iron associated degenerative diseases.
Collapse
|
26
|
Zhao L, Zou Y, Zhang J, Zhang R, Ren H, Li L, Guo R, Zhang J, Liu F. Serum transferrin predicts end-stage Renal Disease in Type 2 Diabetes Mellitus patients. Int J Med Sci 2020; 17:2113-2124. [PMID: 32922172 PMCID: PMC7484672 DOI: 10.7150/ijms.46259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: To investigate the relationship between serum iron status and renal outcome in patients with type 2 diabetes mellitus (T2DM). Methods: Chinese patients (n=111) with T2DM and biopsy-proven diabetic nephropathy (DN) were surveyed in a longitudinal, retrospective study. Serum iron, total iron-binding capacity, ferritin, and transferrin were measured at the time of renal biopsy. Iron deposition and transferrin staining were performed with renal biopsy specimens of DN patients and potential kidney donors. End-stage renal disease (ESRD) was the end-point. ESRD was defined as an estimated glomerular filtration rate <15 mL/min/1.73 m2 or the need for chronic renal replacement therapy. Cox proportional hazard models were used to estimate the hazard ratios (HRs) for the influence of serum iron metabolism on ESRD. Results: During a median follow up of 30.9 months, 66 (59.5%) patients progressed to ESRD. After adjusting for age, sex, baseline systolic blood pressure, renal functions, hemoglobin, HbA1c, and pathological findings, lower serum transferrin concentrations were significantly associated with higher ESRD in multivariate models. Compared with patients in the highest transferrin quartile (≥1.65 g/L), patients in the lowest quartile (≤1.15 g/L) had multivariable-adjusted HR (95% confidence interval) of 7.36 (1.40-38.65) for ESRD. Moreover, tubular epithelial cells in DN exhibited a higher deposition of iron and transferrin expression compared with healthy controls. Conclusions: Low serum transferrin concentration was associated with diabetic ESRD in patients with T2DM. Free iron nephrotoxicity and poor nutritional status with accumulated iron or transferrin deposition might contribute to ESRD.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Honghong Ren
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin Li
- Division of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ruikun Guo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Pan S, Qian ZM, Cui S, Zhao D, Lan W, Wang X, Chen X. Local hepcidin increased intracellular iron overload via the degradation of ferroportin in the kidney. Biochem Biophys Res Commun 2019; 522:322-327. [PMID: 31761321 DOI: 10.1016/j.bbrc.2019.11.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Hepcidin is a key regulator of iron homeostasis. Some studies showed that exogenous hepcidin decreased the expression of divalent metal transporter (DMT1) rather than ferroportin(FPN1) to regulate renal iron metabolism. This study explored the effects of hepcidin synthesized by the kidney and its mechanism of iron regulation. METHODS In the in vivo experiments, mice were divided into a unilateral ureter obstruction (UUO) model group and a sham operation group, and mice in the UUO model group were sacrificed on days 1, 3, 5 and 7. The expression of renal hepcidin, FPN1, DMT1 and the retention of renal iron were studied. In the in vitro experiments, we overexpressed hepcidin in HK-2 cells. Then we tested the expression of renal hepcidin, FPN1, DMT1 and observed the production of intracellular ferrous ions. RESULTS Renal hepcidin expression was consistently higher in the UUO group than in the sham group from the first day. The expression of FPN1 gradually decreased, and the expression of DMT1 gradually increased in the UUO model. Intracellular ferrous ions significantly increased on the first day of the UUO model. In hepcidin overexpressed HK-2 cells, the expression of FPN1 was decreased, while the expression of DMT1 has no significant change. In addition, production of intracellular ferrous ions increased. CONCLUSION local hepcidin can regulate iron metabolism in the kidney by adjusting the expression of FPN1.
Collapse
Affiliation(s)
- Sai Pan
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, People's Republic of China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Delong Zhao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Weiren Lan
- The Second Affiliated Hospital of Army Medical University, Chongqing, People's Republic of China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China.
| |
Collapse
|