1
|
Qin Q, Liu R, Li Z, Liu M, Wu X, Wang H, Yang S, Sun X, Yi X. Resolving candidate genes of duck ovarian tissue transplantation via RNA-Seq and expression network analyses. Poult Sci 2024; 103:103788. [PMID: 38692177 PMCID: PMC11070914 DOI: 10.1016/j.psj.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Rongxu Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Midi Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xian Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Huimin Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Shuailiang Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xuyang Sun
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China.
| |
Collapse
|
2
|
Ullah MM, Collett JA, Monroe JC, Traktuev D, Coleman M, March KL, Basile DP. Subcutaneous injection of adipose stromal cell-secretome improves renal function and reduces inflammation in established acute kidney injury. Stem Cell Res Ther 2024; 15:119. [PMID: 38659070 PMCID: PMC11040889 DOI: 10.1186/s13287-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Dr. MS 2063, Indianapolis, IN, 46202, USA
| | - Jason A Collett
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Dr. MS 2063, Indianapolis, IN, 46202, USA
| | - Jacob C Monroe
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Dr. MS 2063, Indianapolis, IN, 46202, USA
| | - Dmitry Traktuev
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA
- Theratome Bio, Inc., Indianapolis, IN, USA
| | - Michael Coleman
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA
| | - Keith L March
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA
- Theratome Bio, Inc., Indianapolis, IN, USA
| | - David P Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Dr. MS 2063, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Zhang T, Huo H, Zhang Y, Tao J, Yang J, Rong X, Yang Y. Th17 cells: A new target in kidney disease research. Int Rev Immunol 2024; 43:263-279. [PMID: 38439681 DOI: 10.1080/08830185.2024.2321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghui Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, Guangdong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Noel S, Newman-Rivera A, Lee K, Gharaie S, Patel S, Singla N, Rabb H. Kidney double positive T cells have distinct characteristics in normal and diseased kidneys. Sci Rep 2024; 14:4469. [PMID: 38396136 PMCID: PMC10891070 DOI: 10.1038/s41598-024-54956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple types of T cells have been described and assigned pathophysiologic functions in the kidneys. However, the existence and functions of TCR+CD4+CD8+ (double positive; DP) T cells are understudied in normal and diseased murine and human kidneys. We studied kidney DPT cells in mice at baseline and after ischemia reperfusion (IR) and cisplatin injury. Additionally, effects of viral infection and gut microbiota were studied. Human kidneys from patients with renal cell carcinoma were evaluated. Our results demonstrate that DPT cells expressing CD4 and CD8 co-receptors constitute a minor T cell population in mouse kidneys. DPT cells had significant Ki67 and PD1 expression, effector/central memory phenotype, proinflammatory cytokine (IFNγ, TNFα and IL-17) and metabolic marker (GLUT1, HKII, CPT1a and pS6) expression at baseline. IR, cisplatin and viral infection elevated DPT cell proportions, and induced distinct functional and metabolic changes. scRNA-seq analysis showed increased expression of Klf2 and Ccr7 and enrichment of TNFα and oxidative phosphorylation related genes in DPT cells. DPT cells constituted a minor population in both normal and cancer portion of human kidneys. In conclusion, DPT cells constitute a small population of mouse and human kidney T cells with distinct inflammatory and metabolic profile at baseline and following kidney injury.
Collapse
Affiliation(s)
- Sanjeev Noel
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Andrea Newman-Rivera
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Kyungho Lee
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Sepideh Gharaie
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Shishir Patel
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Nirmish Singla
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Ross 970, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Stocker SD, Sullivan JB. Deletion of the Transient Receptor Potential Vanilloid 1 Channel Attenuates Sympathoexcitation and Hypertension and Improves Glomerular Filtration Rate in 2-Kidney-1-Clip Rats. Hypertension 2023; 80:1671-1682. [PMID: 37334698 PMCID: PMC10527253 DOI: 10.1161/hypertensionaha.123.21153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Renal denervation lowers arterial blood pressure in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves. The TRPV1 (transient receptor potential vanilloid 1) channel is highly expressed in renal sensory nerves and detects changes in noxious and mechanosensitive stimuli, pH, and chemokines. However, the extent to which TRPV1 channels contribute to 2-kidney-1-clip (2K1C) renovascular hypertension has not been tested. METHODS We generated a novel Trpv1-/- (TRPV1 knockout) rat using CRISPR/Cas9 and 26-bp deletion in exon 3 and induced 2K1C hypertension. RESULTS The majority (85%) of rat renal sensory neurons retrogradely labeled from the kidney were TRPV1-positive. Trpv1-/- rats lacked TRPV1 immunofluorescence in the dorsal root ganglia, had a delayed tail-flick response to hot but not cold water, and lacked an afferent renal nerve activity response to intrarenal infusion of the TRPV1 agonist capsaicin. Interestingly, 2K1C hypertension was significantly attenuated in male Trpv1-/- versus wild-type rats. 2K1C hypertension significantly increased the depressor response to ganglionic blockade, total renal nerve activity (efferent and afferent), and afferent renal nerve activity in wild-type rats, but these responses were attenuated in male Trpv1-/- rats. 2K1C hypertension was attenuated in female rats with no differences between female strains. Finally, glomerular filtration rate was reduced by 2K1C in wild-type rats but improved in Trpv1-/- rats. CONCLUSIONS These findings suggest that renovascular hypertension requires activation of the TRPV1 channel to elevate renal afferent and sympathetic nerve activity, reduce glomerular filtration rate, and increase arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| | - Jacob B Sullivan
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
6
|
Song N, Xu Y, Paust HJ, Panzer U, de Las Noriega MM, Guo L, Renné T, Huang J, Meng X, Zhao M, Thaiss F. IKK1 aggravates ischemia-reperfusion kidney injury by promoting the differentiation of effector T cells. Cell Mol Life Sci 2023; 80:125. [PMID: 37074502 PMCID: PMC10115737 DOI: 10.1007/s00018-023-04763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI), and experimental work has revealed detailed insight into the inflammatory response in the kidney. T cells and NFκB pathway play an important role in IRI. Therefore, we examined the regulatory role and mechanisms of IkappaB kinase 1 (IKK1) in CD4+T lymphocytes in an experimental model of IRI. IRI was induced in CD4cre and CD4IKK1Δ mice. Compared to control mice, conditional deficiency of IKK1 in CD4+T lymphocyte significantly decreased serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score. Mechanistically, lack in IKK1 in CD4+T lymphocytes reduced the ability of CD4 lymphocytes to differentiate into Th1/Th17 cells. Similar to IKK1 gene ablation, pharmacological inhibition of IKK also protected mice from IRI. Together, lymphocyte IKK1 plays a pivotal role in IRI by promoting T cells differentiation into Th1/Th17 and targeting lymphocyte IKK1 may be a novel therapeutic strategy for IRI.
Collapse
Affiliation(s)
- Ning Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | | | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, 55131, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
7
|
Dery KJ, Kupiec-Weglinski JW. New insights into ischemia-reperfusion injury signaling pathways in organ transplantation. Curr Opin Organ Transplant 2022; 27:424-433. [PMID: 35857344 DOI: 10.1097/mot.0000000000001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Ischemia-reperfusion injury (IRI) leading to allograft rejection in solid organ transplant recipients is a devastating event that compromises graft and patient survival. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers translating to important therapeutic intervention remains a challenge. This review will summarize recent findings in this area. RECENT FINDINGS In the past 18 months, our understanding of organ transplantation IRI has improved. IRI involves a positive amplification feedback loop encompassing damaged cells at the graft site, the activity of redox-sensitive damage-associated molecular patterns, and local sequestration of recipient-derived monocytes, lymphocytes and polymorphonuclear leukocytes, like neutrophils, to sustain the immunological cascade and to enhance the destruction of the foreign tissue. Recent studies have identified critical components leading to IRI, including the oxidation state of high mobility group box 1, a classic danger signal, its role in the Toll-like receptor 4-interleukin (IL)-23-IL-17A signaling axis, and the role of neutrophils and CD321, a marker for transmigration of circulating leukocytes into the inflamed tissue. In addition, recent findings imply that the protective functions mediated by autophagy activation counterbalance the detrimental nucleotide-binding domain-like receptor family, pyrin domain containing 3 inflammasome pathway. Finally, clinical studies reveal the posttransplant variables associated with early allograft dysfunction and IRI. SUMMARY The future challenge will be understanding how crosstalk at the molecular and cellular levels integrate prospectively to predict which peri-transplant signals are essential for long-term clinical outcomes.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
8
|
RNA sequencing reveals dynamic expression of spleen lncRNAs and mRNAs in Beagle dogs infected by Toxocara canis. Parasit Vectors 2022; 15:279. [PMID: 35927758 PMCID: PMC9351231 DOI: 10.1186/s13071-022-05380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Toxocara canis is a cosmopolitan parasite with a significant adverse impact on the health of humans and animals. The spleen is a major immune organ that plays essential roles in protecting the host against various infections. However, its role in T. canis infection has not received much attention. METHODS We performed sequencing-based transcriptome profiling of long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression in the spleen of Beagle puppies at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi). Deep sequencing of RNAs isolated from the spleen of six puppies (three infected and three control) at each time point after infection was conducted. RESULTS Our analysis revealed 614 differentially expressed (DE) lncRNAs and 262 DEmRNAs at 24 hpi; 726 DElncRNAs and 878 DEmRNAs at 96 hpi; and 686 DElncRNAs and 504 DEmRNAs at 36 dpi. Of those, 35 DElncRNA transcripts and 11 DEmRNAs were detected at all three time points post-infection. Many DE genes were enriched in immune response, such as ifit1, ifit2 and rorc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that some genes (e.g. prkx and tnfrsf11a) were involved in the T cell receptor signaling pathway, calcium signaling pathway, Ras signaling pathway and NF-κB signaling pathway. CONCLUSIONS The findings of this study show marked alterations in the expression profiles of spleen lncRNAs and mRNAs, with possible implications in the pathophysiology of toxocariasis.
Collapse
|
9
|
Collett JA, Ortiz-Soriano V, Li X, Flannery AH, Toto RD, Moe OW, Basile DP, Neyra JA. Serum IL-17 levels are higher in critically ill patients with AKI and associated with worse outcomes. Crit Care 2022; 26:107. [PMID: 35422004 PMCID: PMC9008961 DOI: 10.1186/s13054-022-03976-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) antagonism in rats reduces the severity and progression of AKI. IL-17-producing circulating T helper-17 (TH17) cells is increased in critically ill patients with AKI indicating that this pathway is also activated in humans. We aim to compare serum IL-17A levels in critically ill patients with versus without AKI and to examine their relationship with mortality and major adverse kidney events (MAKE). METHODS Multicenter, prospective study of ICU patients with AKI stage 2 or 3 and without AKI. Samples were collected at 24-48 h after AKI diagnosis or ICU admission (in those without AKI) [timepoint 1, T1] and 5-7 days later [timepoint 2, T2]. MAKE was defined as the composite of death, dependence on kidney replacement therapy or a reduction in eGFR of ≥ 30% from baseline up to 90 days following hospital discharge. RESULTS A total of 299 patients were evaluated. Patients in the highest IL-17A tertile (versus lower tertiles) at T1 had higher acuity of illness and comorbidity scores. Patients with AKI had higher levels of IL-17A than those without AKI: T1 1918.6 fg/ml (692.0-5860.9) versus 623.1 fg/ml (331.7-1503.4), p < 0.001; T2 2167.7 fg/ml (839.9-4618.9) versus 1193.5 fg/ml (523.8-2198.7), p = 0.006. Every onefold higher serum IL-17A at T1 was independently associated with increased risk of hospital mortality (aOR 1.35, 95% CI: 1.06-1.73) and MAKE (aOR 1.26, 95% CI: 1.02-1.55). The highest tertile of IL-17A (vs. the lowest tertile) was also independently associated with higher risk of MAKE (aOR 3.03, 95% CI: 1.34-6.87). There was no effect modification of these associations by AKI status. IL-17A levels remained significantly elevated at T2 in patients that died or developed MAKE. CONCLUSIONS Serum IL-17A levels measured by the time of AKI diagnosis or ICU admission were differentially elevated in critically ill patients with AKI when compared to those without AKI and were independently associated with hospital mortality and MAKE.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victor Ortiz-Soriano
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky Medical Center, University of Kentucky, 800 Rose St., MN668, Lexington, KY, 40536, USA
| | - Xilong Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander H Flannery
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Robert D Toto
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier A Neyra
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky Medical Center, University of Kentucky, 800 Rose St., MN668, Lexington, KY, 40536, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Human Endothelial Progenitor Cells Protect the Kidney against Ischemia-Reperfusion Injury via the NLRP3 Inflammasome in Mice. Int J Mol Sci 2022; 23:ijms23031546. [PMID: 35163466 PMCID: PMC8835871 DOI: 10.3390/ijms23031546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and progression to chronic kidney disease (CKD). However, no effective therapeutic intervention has been established for ischemic AKI. Endothelial progenitor cells (EPCs) have major roles in the maintenance of vascular integrity and the repair of endothelial damage; they also serve as therapeutic agents in various kidney diseases. Thus, we examined whether EPCs have a renoprotective effect in an IRI mouse model. Mice were assigned to sham, EPC, IRI-only, and EPC-treated IRI groups. EPCs originating from human peripheral blood were cultured. The EPCs were administered 5 min before reperfusion, and all mice were killed 72 h after IRI. Blood urea nitrogen, serum creatinine, and tissue injury were significantly increased in IRI mice; EPCs significantly improved the manifestations of IRI. Apoptotic cell death and oxidative stress were significantly reduced in EPC-treated IRI mice. Administration of EPCs decreased the expression levels of NLRP3, cleaved caspase-1, p-NF-κB, and p-p38. Furthermore, the expression levels of F4/80, ICAM-1, RORγt, and IL-17RA were significantly reduced in EPC-treated IRI mice. Finally, the levels of EMT-associated factors (TGF-β, α-SMA, Snail, and Twist) were significantly reduced in EPC-treated IRI mice. This study shows that inflammasome-mediated inflammation accompanied by immune modulation and fibrosis is a potential target of EPCs as a treatment for IRI-induced AKI and the prevention of progression to CKD.
Collapse
|
11
|
Gholamipoor Z, Rahimzadeh M, Montazerghaem H, Naderi N. RORC gene polymorphism is associated with acute kidney injury following cardiac surgery. Acta Anaesthesiol Scand 2021; 65:1397-1403. [PMID: 34252205 DOI: 10.1111/aas.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication of cardiopulmonary bypass (CPB), associated with increased mortality in surgical patients. It is well-proven that Th17 and its hallmark cytokine, IL-17, contribute to AKI development. Since the RAR-related orphan receptor C (RORC) gene is a master regulator of the Th17 differentiation, we aimed to evaluate the association between its polymorphisms, CPB-AKI and plasma IL-17 levels among Iranian patients undergoing CPB. METHOD Totally, 138 patients undergoing CPB in Bandar Abbas, Iran, were enrolled. The allele and genotype frequencies of the selected SNPs were determined using PCR-SSP. IL-17 serum level was determined using an enzyme-linked immunosorbent assay. RESULTS Rs9017 GG genotype and G allele were associated with increased risk of CPB-AKI (OR = 3, 95% CI = 1.4-6.6 and OR = 2.3, 95% CI = 1.3-3.9, respectively) while A allele was protective against the disease (OR = 0.4, 95% CI = 0.3-0.7, p = .02). There was not a statistically significant interaction between the three genotypes of rs9017 and AKI disease with IL-17 serum level before (p = .9) and after (p = .6) the operation. The IL-17 serum level before surgery was significantly higher in patients carrying GG genotype compared to GA genotype (p = .017). CONCLUSION Our results showed that the rs9017 GG genotype was associated with an increased level of IL-17 and risk of CBP-AKI in the Iranian population. Our current results suggest that the rs9017 GG genotype could be a probable predictor of AKI after cardiac surgery.
Collapse
Affiliation(s)
- Zeynab Gholamipoor
- Molecular Medicine Research Center Hormozgan Health InstituteHormozgan University of Medical Sciences Bandar Abbas Iran
- Department of Biochemistry Faculty of Medicine Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Mahsa Rahimzadeh
- Molecular Medicine Research Center Hormozgan Health InstituteHormozgan University of Medical Sciences Bandar Abbas Iran
- Department of Biochemistry Faculty of Medicine Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Nadereh Naderi
- Department of Immunology Faculty of Medicine Hormozgan University of Medical Sciences Bandar Abbas Iran
| |
Collapse
|
12
|
Miller B, Kostrominova TY, Geurts AM, Sorokin A. Double p52Shc/p46Shc Rat Knockout Demonstrates Severe Gait Abnormalities Accompanied by Dilated Cardiomyopathy. Int J Mol Sci 2021; 22:5237. [PMID: 34063460 PMCID: PMC8155973 DOI: 10.3390/ijms22105237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
The ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait. p52Shc/46Shc-KO rats demonstrate severe functional abnormalities associated with impaired gait. Our analysis of p52Shc/46Shc-KO rat axons and myelin sheets in cross-sections of the sciatic nerve revealed the presence of significant anomalies. Based on the lack of skeletal muscle fiber atrophy and the presence of sciatic nerve abnormalities, we suggest that the impaired gait in p52Shc/46Shc-KO rats might be due to the sensory feedback from active muscle to the brain locomotor centers. The lack of dystrophin in some heart muscle fibers reflects damage due to dilated cardiomyopathy. Since rats with only p52Shc knockout do not display the phenotype of p52Shc/p46Shc-KO, abnormal locomotion is likely to be caused by p46Shc deletion. Our data suggest a previously unknown role of 46Shc actions and signaling in regulation of gait.
Collapse
Affiliation(s)
- Bradley Miller
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| |
Collapse
|
13
|
Sasaki K, Terker AS, Pan Y, Li Z, Cao S, Wang Y, Niu A, Wang S, Fan X, Zhang MZ, Harris RC. Deletion of Myeloid Interferon Regulatory Factor 4 (Irf4) in Mouse Model Protects against Kidney Fibrosis after Ischemic Injury by Decreased Macrophage Recruitment and Activation. J Am Soc Nephrol 2021; 32:1037-1052. [PMID: 33619052 PMCID: PMC8259665 DOI: 10.1681/asn.2020071010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AKI is characterized by abrupt and reversible kidney dysfunction, and incomplete recovery leads to chronic kidney injury. Previous studies by us and others have indicated that macrophage infiltration and polarization play key roles in recovery from AKI. The role in AKI recovery played by IFN regulatory factor 4 (IRF4), a mediator of polarization of macrophages to the M2 phenotype, is unclear. METHODS We used mice with myeloid or macrophage cell-specific deletion of Irf4 (MΦ Irf4-/- ) to evaluate Irf4's role in renal macrophage polarization and development of fibrosis after severe AKI. RESULTS Surprisingly, although macrophage Irf4 deletion had a minimal effect on early renal functional recovery from AKI, it resulted in decreased renal fibrosis 4 weeks after severe AKI, in association with less-activated macrophages. Macrophage Irf4 deletion also protected against renal fibrosis in unilateral ureteral obstruction. Bone marrow-derived monocytes (BMDMs) from MΦ Irf4-/- mice had diminished chemotactic responses to macrophage chemoattractants, with decreased activation of AKT and PI3 kinase and increased PTEN expression. PI3K and AKT inhibitors markedly decreased chemotaxis in wild-type BMDMs, and in a cultured macrophage cell line. There was significant inhibition of homing of labeled Irf4-/- BMDMs to postischemic kidneys. Renal macrophage infiltration in response to AKI was markedly decreased in MΦ Irf4-/- mice or in wild-type mice with inhibition of AKT activity. CONCLUSIONS Deletion of Irf4 from myeloid cells protected against development of tubulointerstitial fibrosis after severe ischemic renal injury in mice, due primarily to inhibition of AKT-mediated monocyte recruitment to the injured kidney and reduced activation and subsequent polarization into a profibrotic M2 phenotype.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew S. Terker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Pan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhilian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shirong Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yinqiu Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aolei Niu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Suwan Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaofeng Fan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University School of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond C. Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University School of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
14
|
Basile DP, Ullah MM, Collet JA, Mehrotra P. T helper 17 cells in the pathophysiology of acute and chronic kidney disease. Kidney Res Clin Pract 2021; 40:12-28. [PMID: 33789382 PMCID: PMC8041630 DOI: 10.23876/j.krcp.20.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic kidney disease have a strong underlying inflammatory component. This review focuses primarily on T helper 17 (Th17) cells as mediators of inflammation and their potential to modulate acute and chronic kidney disease. We provide updated information on factors and signaling pathways that promote Th17 cell differentiation with specific reference to kidney disease. We highlight numerous clinical studies that have investigated Th17 cells in the setting of human kidney disease and provide updated summaries from various experimental animal models of kidney disease indicating an important role for Th17 cells in renal fibrosis and hypertension. We focus on the pleiotropic effects of Th17 cells in different renal cell types as potentially relevant to the pathogenesis of kidney disease. Finally, we highlight studies that present contrasting roles for Th17 cells in kidney disease progression.
Collapse
Affiliation(s)
- David P Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Md Mahbub Ullah
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Jason A Collet
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| | - Purvi Mehrotra
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, IN, United States
| |
Collapse
|