1
|
Liu H, Sun Q, Ding Z, Shi W, Wang WH, Zhang C. Adenosine stimulates the basolateral 50 pS K + channel in renal proximal tubule via adenosine-A1 receptor. Front Physiol 2023; 14:1242975. [PMID: 37700760 PMCID: PMC10493268 DOI: 10.3389/fphys.2023.1242975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: The basolateral potassium channels play an important role in maintaining the membrane transport in the renal proximal tubules (PT) and adenosine receptors have been shown to regulate the trans-epithelial Na+ absorption in the PT. The aim of the present study is to explore whether adenosine also regulates the basolateral K+ channel of the PT and to determine the adenosine receptor type and the signaling pathway which mediates the effect of adenosine on the K+ channel. Methods: We have used the single channel recording to examine the basolateral K+ channel activity in the proximal tubules of the mouse kidney. All experiments were performed in cell-attached patches. Results: Single channel recording has detected a 50 pS inwardly-rectifying K+ channel with high channel open probability and this 50 pS K+ channel is a predominant type K+ channel in the basolateral membrane of the mouse PT. Adding adenosine increased 50 pS K+ channel activity in cell-attached patches, defined by NPo (a product of channel Numbers and Open Probability). The adenosine-induced stimulation of the 50 pS K+ channel was absent in the PT pretreated with DPCPX, a selective inhibitor of adenosine A1 receptor. In contrast, adenosine was still able to stimulate the 50 pS K+ channel in the PT pretreated with CP-66713, a selective adenosine A2 receptor antagonist. This suggests that the stimulatory effect of adenosine on the 50 pS K+ channel of the PT was mediated by adenosine-A1 receptor. Moreover, the effect of adenosine on the 50 pS K+ channel was blocked in the PT pretreated with U-73122 or Calphostin C, suggesting that adenosine-induced stimulation of the 50 pS K+ channels of the PT was due to the activation of phospholipase C (PLC) and protein kinase C (PKC) pathway. In contrast, the inhibition of phospholipase A2 (PLA2) with AACOCF3 or inhibition of protein kinase A (PKA) with H8 failed to block the adenosine-induced stimulation of the 50 pS K+ channel of the PT. Conclusion: We conclude that adenosine activates the 50 pS K+ channels in the basolateral membrane of PT via adenosine-A1 receptor. Furthermore, the effect of adenosine on the 50 pS K+ channel is mediated by PLC-PKC signaling pathway.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Ding
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wensen Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Zhang G, Han H, Zhuge Z, Dong F, Jiang S, Wang W, Guimarães DD, Schiffer TA, Lai EY, Ribeiro Antonino Carvalho LR, Lucena RB, Braga VA, Weitzberg E, Lundberg JO, Carlstrom M. Renovascular effects of inorganic nitrate following ischemia-reperfusion of the kidney. Redox Biol 2020; 39:101836. [PMID: 33360353 PMCID: PMC7772560 DOI: 10.1016/j.redox.2020.101836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injury is a common cause of acute kidney injury (AKI), which is associated with oxidative stress and reduced nitric oxide (NO) bioactivity and increased risk of developing chronic kidney disease (CKD) and cardiovascular disease (CVD). New strategies that restore redox balance may have therapeutic implications during AKI and associated complications. AIM To investigate the therapeutic value of boosting the nitrate-nitrite-NO pathway during development of IR-induced renal and cardiovascular dysfunction. METHODS Male C57BL/6 J mice were given sodium nitrate (10 mg/kg, i. p) or vehicle 2 h prior to warm ischemia of the left kidney (45 min) followed by sodium nitrate supplementation in the drinking water (1 mmol/kg/day) for the following 2 weeks. Blood pressure and glomerular filtration rate were measured and blood and kidneys were collected and used for biochemical and histological analyses as well as renal vessel reactivity studies. Glomerular endothelial cells exposed to hypoxia-reoxygenation, with or without angiotensin II, were used for mechanistic studies. RESULTS IR was associated with reduced renal function and slightly elevated blood pressure, in combination with renal injuries, inflammation, endothelial dysfunction, increased Ang II levels and Ang II-mediated vasoreactivity, which were all ameliorated by nitrate. Moreover, treatment with nitrate (in vivo) and nitrite (in vitro) restored NO bioactivity and reduced mitochondrial oxidative stress and injuries. CONCLUSIONS Acute treatment with inorganic nitrate prior to renal ischemia may serve as a novel therapeutic approach to prevent AKI and CKD and associated risk of developing cardiovascular dysfunction.
Collapse
Affiliation(s)
- Gensheng Zhang
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huirong Han
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang, China
| | - Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Dong
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Jiang
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Dept. of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Drielle D Guimarães
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A Schiffer
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - En Yin Lai
- Dept. of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Valdir A Braga
- Dept. of Biotechnology - Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlstrom
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55:62-74. [DOI: 10.1016/j.mam.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
5
|
Prieto-García L, Pericacho M, Sancho-Martínez SM, Sánchez Á, Martínez-Salgado C, López-Novoa JM, López-Hernández FJ. Mechanisms of triple whammy acute kidney injury. Pharmacol Ther 2016; 167:132-145. [PMID: 27490717 DOI: 10.1016/j.pharmthera.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/26/2022]
Abstract
Pre-renal acute kidney injury (AKI) results from glomerular haemodynamic alterations leading to reduced glomerular filtration rate (GFR) with no parenchymal compromise. Renin-angiotensin system inhibitors, such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor antagonists (ARAs), non-steroidal anti-inflammatory drugs (NSAIDs) and diuretics, are highly prescribed drugs that are frequently administered together. Double and triple associations have been correlated with increased pre-renal AKI incidence, termed "double whammy" and "triple whammy", respectively. This article presents an integrative analysis of the complex interplay among the effects of NSAIDs, ACEIs/ARAs and diuretics, acting alone and together in double and triple therapies. In addition, we explore how these drug combinations alter the equilibrium of regulatory mechanisms controlling blood pressure (renal perfusion pressure) and GFR to increase the odds of inducing AKI through the concomitant reduction of blood pressure and distortion of renal autoregulation. Using this knowledge, we propose a more general model of pre-renal AKI based on a multi whammy model, whereby several factors are necessary to effectively reduce net filtration. The triple whammy was the only model associated with pre-renal AKI accompanied by a course of other risk factors, among numerous potential combinations of clinical circumstances causing hypoperfusion in which renal autoregulation is not operative or is deregulated. These factors would uncouple the normal BP-GFR relationship, where lower GFR values are obtained at every BP value.
Collapse
Affiliation(s)
- Laura Prieto-García
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Miguel Pericacho
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - Sandra M Sancho-Martínez
- Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ángel Sánchez
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Hospital Universitario de Salamanca, Unidad de Hipertensión, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - José Miguel López-Novoa
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco J López-Hernández
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
6
|
Schnermann J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 2015; 77:301-22. [PMID: 25668021 DOI: 10.1146/annurev-physiol-021014-071829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes the negative relationship between (a) NaCl concentration at the macula densa and (b) glomerular filtration rate or glomerular capillary pressure. TGF-induced vasoconstriction of the afferent arteriole results from the enhanced effect of several vasoconstrictors with an effect size sequence of adenosine = 20-HETE > angiotensin II > thromboxane = superoxide > renal nerves > ATP. TGF-mediated vasoconstriction is limited by the simultaneous release of several vasodilators with an effect size sequence of nitric oxide > carbon monoxide = kinins > adenosine. The sum of the constrictor effects exceeds that of the dilator effects by the magnitude of the TGF response. The validity of the additive model used in this analysis can be tested by determining the effect of combined inhibition of some or all agents contributing to TGF. Multiple independent contributors to TGF are consistent with the variability of TGF and of the factors contributing to TGF resetting.
Collapse
Affiliation(s)
- Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
7
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Lu Y, Zhang R, Ge Y, Carlstrom M, Wang S, Fu Y, Cheng L, Wei J, Roman RJ, Wang L, Gao X, Liu R. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol 2015; 308:F1020-5. [PMID: 25608966 DOI: 10.1152/ajprenal.00422.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.
Collapse
Affiliation(s)
- Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi;
| | - Rui Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ying Ge
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Yiling Fu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Liang Cheng
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Richard J Roman
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xichun Gao
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
9
|
Kim SM, Mizel D, Qin Y, Huang Y, Schnermann J. Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds. Acta Physiol (Oxf) 2015; 213:259-67. [PMID: 25182861 DOI: 10.1111/apha.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/28/2014] [Accepted: 08/27/2014] [Indexed: 01/11/2023]
Abstract
AIM Differences in genetic background between control mice and mice with targeted gene mutations have been recognized as a potential cause for phenotypic differences. In this study, we have used A1AR-deficient mice in a C57Bl/6 and SWR/J congenic background to assess the influence of background on the effect of A1AR-deficiency on cardiovascular and renal functional parameters. METHODS In A1AR+/+ and A1AR-/- mice in C57Bl/6 and SWR/J congenic backgrounds, we assessed blood pressure and heart rate using radio-telemetry, plasma renin concentrations and tubuloglomerular feedback. RESULTS We did not detect significant differences in arterial blood pressure (MAP) and heart rates (HR) between A1AR+/+ and A1AR-/- mice in either C57Bl/6, SWR/J or mixed backgrounds. MAP and HR were significantly higher in SWR/J than in C57Bl/6 mice. A high NaCl intake increased MAP in A1AR-/- mice on C57Bl/6 background while there was less or no salt sensitivity in the SWR/J background. No significant differences in plasma renin concentration were detected between A1AR-/- and A1AR+/+ mice in any of the strains. Tubuloglomerular feedback was found to be absent in A1AR-/- mice with SWR/J genetic background. CONCLUSIONS While this study confirmed important differences between inbred mouse strains, we did not identify phenotypic modifications of A1AR-related effects on blood pressure, heart rate and plasma renin by differences in genetic background.
Collapse
Affiliation(s)
- S. M. Kim
- Department of Physiology; Chonbuk National University Medical School; Jeonju South Korea
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - D. Mizel
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - Y. Qin
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - Y. Huang
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - J. Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| |
Collapse
|
10
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
11
|
Singh P, Thomson SC. Salt sensitivity of tubuloglomerular feedback in the early remnant kidney. Am J Physiol Renal Physiol 2013; 306:F172-80. [PMID: 24259514 DOI: 10.1152/ajprenal.00431.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported internephron heterogeneity in the tubuloglomerular feedback (TGF) response 1 wk after subtotal nephrectomy (STN), with 50% of STN nephrons exhibiting anomalous TGF (Singh P, Deng A, Blantz RC, Thomson SC. Am J Physiol Renal Physiol 296: F1158-F1165, 2009). Presently, we tested the theory that anomalous TGF is an adaptation of the STN kidney to facilitate increased distal delivery when NaCl balance forces the per-nephron NaCl excretion to high levels. To this end, the effect of dietary NaCl on the TGF response was tested by micropuncture in STN and sham-operated Wistar rats. An NaCl-deficient (LS) or high-salt NaCl diet (HS; 1% NaCl in drinking water) was started on day 0 after STN or sham surgery. Micropuncture followed 8 days later with measurements of single-nephron GFR (SNGFR), proximal reabsorption, and tubular stop-flow pressure (PSF) obtained at both extremes of TGF activation, while TGF was manipulated by microperfusing Henle's loop (LOH) from the late proximal tubule. Activating TGF caused SNGFR to decline by similar amounts in Sham-LS, Sham-HS and STN-LS [ΔSNGFR (nl/min) = -16 ± 2, -11 ± 3, -11 ± 2; P = not significant by Tukey]. Activating TGF in STN-HS actually increased SNGFR by 5 ± 2 nl/min (P < 0.0005 vs. each other group by Tukey). HS had no effect on the PSF response to LOH perfusion in sham [ΔPSF (mmHg) = -9.6 ± 1.1 vs. -9.8 ± 1.0] but eliminated the PSF response in STN (+0.3 ± 0.9 vs. -5.7 ± 1.0, P = 0.0002). An HS diet leads to anomalous TGF in the early remnant kidney, which facilitates NaCl and fluid delivery to the distal nephron.
Collapse
Affiliation(s)
- Prabhleen Singh
- Div. of Nephrology-Hypertension, VASDHS, 3350 La Jolla Village Dr. 9151, San Diego, CA 92161.
| | | |
Collapse
|
12
|
Oppermann M, Carota I, Schiessl I, Eisner C, Castrop H, Schnermann J. Direct assessment of tubuloglomerular feedback responsiveness in connexin 40-deficient mice. Am J Physiol Renal Physiol 2013; 304:F1181-6. [PMID: 23445620 PMCID: PMC3651628 DOI: 10.1152/ajprenal.00721.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/26/2013] [Indexed: 11/22/2022] Open
Abstract
Participation of connexin 40 (Cx40) in the regulation of renin secretion and in the tubuloglomerular feedback (TGF) component of renal autoregulation suggests that gap junctional coupling through Cx40 contributes to the function of the juxtaglomerular apparatus. In the present experiments, we determined the effect of targeted Cx40 deletion in C57BL/6 and FVB mice on TGF responsiveness. In C57BL/6 mice, stop-flow pressure (PSF) fell from 40.3 ± 2 to 34.5 ± 2 mmHg in wild-type (WT) and from 31 ± 1.06 to 26.6 ± 0.98 mmHg in Cx40-/- mice. PSF changes of 5.85 ± 0.67 mmHg in WT and of 4.3 ± 0.55 mmHg in Cx40-/- mice were not significantly different (P = 0.08). In FVB mice, PSF fell from 37.4 ± 1.5 to 31.6 ± 1.5 mmHg in WT and from 28.1 ± 1.6 to 25.4 ± 1.7 mmHg in Cx40-/-, with mean TGF responses being significantly greater in WT than Cx40-/- (5.5 ± 0.55 vs. 2.7 ± 0.84 mmHg; P = 0.002). In both genetic backgrounds, PSF values were significantly lower in Cx40-/- than WT mice at all flow rates. Arterial blood pressure in the animals prepared for micropuncture was not different between WT and Cx40-/- mice. We conclude that the TGF response magnitude in superficial cortical nephrons is reduced by 30-50% in mice without Cx40, but that with the exception of a small number of nephrons, residual TGF activity is maintained. Thus gap junctional coupling appears to modulate TGF, perhaps by determining the kinetics of signal transmission.
Collapse
Affiliation(s)
- Mona Oppermann
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Carlström M, Brown RD, Yang T, Hezel M, Larsson E, Scheffer PG, Teerlink T, Lundberg JO, Persson AEG. L-arginine or tempol supplementation improves renal and cardiovascular function in rats with reduced renal mass and chronic high salt intake. Acta Physiol (Oxf) 2013; 207:732-41. [PMID: 23387940 DOI: 10.1111/apha.12079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 12/23/2022]
Abstract
AIM Early life reduction in nephron number and chronic high salt intake cause development of renal and cardiovascular disease, which has been associated with oxidative stress and nitric oxide (NO) deficiency. We investigated the hypothesis that interventions stimulating NO signalling or reducing oxidative stress may restore renal autoregulation, attenuate hypertension and reduce renal and cardiovascular injuries following reduction in renal mass and chronic high salt intake. METHODS Male Sprague-Dawley rats were uninephrectomized (UNX) or sham-operated at 3 weeks of age and given either a normal-salt (NS) or high-salt (HS) diet. Effects on renal and cardiovascular functions were assessed in rats supplemented with substrate for NO synthase (L-Arg) or a superoxide dismutase mimetic (Tempol). RESULTS Rats with UNX + HS developed hypertension and displayed increased renal NADPH oxidase activity, elevated levels of oxidative stress markers in plasma and urine, and reduced cGMP in plasma. Histological analysis showed signs of cardiac and renal inflammation and fibrosis. These changes were linked with abnormal renal autoregulation, measured as a stronger tubuloglomerular feedback (TGF) response. Simultaneous treatment with L-Arg or Tempol restored cGMP levels in plasma and increased markers of NO signalling in the kidney. This was associated with normalized TGF responses, attenuated hypertension and reduced signs of histopathological changes in the kidney and in the heart. CONCLUSION Reduction in nephron number during early life followed by chronic HS intake is associated with oxidative stress, impaired renal autoregulation and development of hypertension. Treatment strategies that increase NO bioavailability, or reduce levels of reactive oxygen species, were proven beneficial in this model of renal and cardiovascular disease.
Collapse
Affiliation(s)
| | | | - T. Yang
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - M. Hezel
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - E. Larsson
- Department of Genetics and Pathology; Uppsala University; Uppsala; Sweden
| | - P. G. Scheffer
- Department of Clinical Chemistry; VU University Medical Centre; Amsterdam; the Netherlands
| | - T. Teerlink
- Department of Clinical Chemistry; VU University Medical Centre; Amsterdam; the Netherlands
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - A. E. G. Persson
- Department of Medical Cell Biology; Uppsala University; Uppsala; Sweden
| |
Collapse
|
14
|
Riksen NP, Rongen GA. Targeting adenosine receptors in the development of cardiovascular therapeutics. Expert Rev Clin Pharmacol 2012; 5:199-218. [PMID: 22390562 DOI: 10.1586/ecp.12.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine receptor stimulation has negative inotropic and dromotropic actions, reduces cardiac ischemia-reperfusion injury and remodeling, and prevents cardiac arrhythmias. In the vasculature, adenosine modulates vascular tone, reduces infiltration of inflammatory cells and generation of foam cells, and may prevent the development of atherosclerosis as a result. Modulation of insulin sensitivity may further add to the anti-atherosclerotic properties of adenosine signaling. In the kidney, adenosine plays an important role in tubuloglomerular feedback and modulates tubular sodium reabsorption. The challenge is to take advantage of the beneficial actions of adenosine signaling while preventing its potential adverse effects, such as salt retention and sympathoexcitation. Drugs that interfere with adenosine formation and elimination or drugs that allosterically enhance specific adenosine receptors seem to be most promising to meet this challenge.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology-Toxicology 149 and Internal Medicine 463, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
15
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
16
|
Carroll MA. Role of the adenosine(2A) receptor-epoxyeicosatrienoic acid pathway in the development of salt-sensitive hypertension. Prostaglandins Other Lipid Mediat 2011; 98:39-47. [PMID: 22227265 DOI: 10.1016/j.prostaglandins.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 01/07/2023]
Abstract
Activation of rat adenosine(2A) receptors (A(2A) R) dilates preglomerular microvessels, an effect mediated by epoxyeicosatrienoic acids (EETs). High salt (HS) intake increases epoxygenase activity and adenosine levels. A greater vasodilator response to a stable adenosine analog, 2-chloroadenosine (2-CA), was seen in kidneys obtained from HS-fed rats which was mediated by increased EET release. Because this pathway is antipressor, we examined the role of the A(2A) R-EET pathway in a genetic model of salt-sensitive hypertension, the Dahl salt-sensitive (SS) rats. Dahl salt resistant (SR) rats fed a HS diet demonstrated a greater renal vasodilator response to 2-CA. In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed normal salt (NS) or HS diet. In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A) R and cytochrome P450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake. In vivo inhibition of the A(2A) R-EET pathway in Dahl SR rats fed a HS diet results in reduced renal EETs levels, diminished natriuretic capacity and hypertension, thus supporting a role for the A(2A) R-EET pathway in the adaptive natriuretic response to modulate blood pressure during salt loading. An inability of Dahl SS rats to upregulate the A(2A) R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mairéad A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA. mairead
| |
Collapse
|
17
|
Gao X, Patzak A, Sendeski M, Scheffer PG, Teerlink T, Sällström J, Fredholm BB, Persson AEG, Carlström M. Adenosine A1-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1669-81. [DOI: 10.1152/ajpregu.00268.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine mediates tubuloglomerular feedback responses via activation of A1-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A1-receptor knockout (A1−/−) and wild-type (A1+/+) mice we investigated the hypothesis that A1-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) or ANG II treatment. The hypertensive responses to l-NAME and ANG II were clearly attenuated in A1−/− mice. Arteriolar contractions to l-NAME (10−4 mol/l; 15 min) and cumulative ANG II application (10−12 to 10−6 mol/l) were lower in A1−/− mice. Simultaneous treatment with tempol (10−4 mol/l; 15 min) attenuated arteriolar responses in A1+/+ but not in A1−/− mice, suggesting differences in ROS formation. Chronic treatment with l-NAME or ANG II did not alter arteriolar responses in A1−/− mice, but enhanced maximal contractions in A1+/+ mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A1+/+ mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A1-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A1-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Mauricio Sendeski
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Peter G. Scheffer
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Jankowski M, Szamocka E, Kowalski R, Angielski S, Szczepańska-Konkel M. The effects of P2X receptor agonists on renal sodium and water excretion in anaesthetized rats. Acta Physiol (Oxf) 2011; 202:193-201. [PMID: 21392268 DOI: 10.1111/j.1748-1716.2011.02276.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate in vivo effects of P2X receptor activation on sodium and water excretion in urine. METHODS The clearance experiments were carried out in anaesthetized rats during intravenous infusion (2 μmol kg(-1) + 20 nmol (kg min)(-1) , v = 40 μL min(-1)) of P2X receptors agonists: α,β-methylene ATP (α,β-meATP) and β,γ-methylene ATP (β,γ-meATP). Cortical blood flow (CBF) was estimated by laser Doppler flux during intrarenal artery infusion of β,γ-meATP (20 nmol (kg min)(-1) , v = 2 μL min(-1)). Influence of α,β-meATP and β,γ-meATP on the activity of Na-K-ATPase was investigated in isolated proximal tubules. RESULTS Intravenous infusion of β,γ-meATP resulted in a marked, progressively increasing diuresis and this effect was accompanied by a progressive increase in the sodium excretion rate. The glomerular filtration rate was unaffected. The effects of β,γ-meATP were abolished by P2 receptor antagonist PPADS (70 nmol (kg min)(-1)). CBF increased by 16 ± 2% during renal artery infusion of β,γ-meATP. Furthermore, α,β-meATP and β,γ-meATP increased 1.5-fold lithium clearance (C(Li)). Sodium excretion, expressed as a fraction of the distal delivery (C(Na) C(Li) (-1)), increased 1.5-fold during infusion of α,β-meATP or β,γ-meATP. Both agonists at 10(-6) (M) produced a statistical significant decrement in the ouabain-sensitive ATPase activity about 16-20% and these effects were blocked in the presence of PPADS. CONCLUSION Activation of P2X receptors increased renal sodium and water excretion. Mechanistically, P2X agonists increased renal perfusion and inhibited sodium reabsorption via an Na-K-ATPase-dependent mechanism.
Collapse
Affiliation(s)
- M Jankowski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Poland.
| | | | | | | | | |
Collapse
|
19
|
Wang M, Sui H, Li W, Wang J, Liu Y, Gu L, Wang WH, Gu R. Stimulation of A(₂a) adenosine receptor abolishes the inhibitory effect of arachidonic acid on the basolateral 50-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol 2011; 300:F906-13. [PMID: 21209003 DOI: 10.1152/ajprenal.00617.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A(₂a) receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A(₂a) receptor with CGS-21680 or inhibition of phospholipase A₂ (PLA₂) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA(2) at serine residue 505, an indication of inhibiting PLA₂ activity. In the presence of CGS-21680, inhibition of PLA₂ had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA₂ in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A(₂a) receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A(₂a) receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA₂ activity and 20-HETE-induced inhibition.
Collapse
Affiliation(s)
- Mingxiao Wang
- Dept. of Pharmacology, Harbin Med. Univ., Harbin 150086, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schnermann J. Maintained tubuloglomerular feedback responses during acute inhibition of P2 purinergic receptors in mice. Am J Physiol Renal Physiol 2010; 300:F339-44. [PMID: 21147842 DOI: 10.1152/ajprenal.00637.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubuloglomerular feedback (TGF), the change of afferent arteriolar resistance initiated by changes of luminal NaCl concentration, is thought to be related to NaCl-dependent release of ATP by macula densa cells. In the present study, we have explored the possibility that the released ATP may directly interact with vasoconstrictor P2 purinergic receptors in the vicinity of the glomerular vascular pole. In two different strains of wild-type mice (SWR/J and FVB), TGF responses were determined in vivo by measuring the stop flow pressure (P(SF)) change caused by a saturating increase in loop of Henle flow rate before and during the administration of the P2 receptor inhibitors PPADS (12 mg/kg + 35 mg·kg(-1)·h(-1) iv) or suramin (50 mg/kg + 150 mg·kg(-1)·h(-1)). Both agents significantly reduced the blood pressure response to the P2X agonist α,β-methylene ATP. In SWR/J and FVB mice, elevating flow to 30 nl/min reduced P(SF) by 16.4 ± 2.2 and 17.1 ± 1.8%. During infusion of PPADS, P(SF) fell by 18.8 ± 2 (P = 0.4) and 16.5 ± 1.5% (P = 0.82) in the two strains of mice. During suramin infusion, P(SF) decreased by 14.7 ± 2.4 (P = 0.62) and 15 ± 1.3% (P = 0.4) in SWR/J and FVB mice, respectively. Including PPADS (10(-4) M) in the loop perfusate did not significantly alter the P(SF) response (18.9 ± 1.8%; P = 0.54). Arterial blood pressure was not systematically affected by the P2 inhibitors. As measured by free-flow micropuncture, PPADS significantly reduced proximal tubular fluid reabsorption in both fractional and absolute terms. These results indicate that the direct activation of P2 purinergic receptors by ATP is not a major cause of TGF-induced vasoconstriction in vivo.
Collapse
Affiliation(s)
- Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Carlström M, Wilcox CS, Welch WJ. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2010; 300:F457-64. [PMID: 21106859 DOI: 10.1152/ajprenal.00567.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(2) receptors have been suggested to modulate tubuloglomerular feedback (TGF) responses by counteracting adenosine A(1) receptor-mediated vasoconstriction, but the mechanisms are unclear. We tested the hypothesis that A(2A) receptor activation blunts TGF by release of nitric oxide in the juxtaglomerular apparatus (JGA). Maximal TGF responses were measured in male Sprague-Dawley rats as changes in proximal stop-flow pressure (ΔP(SF)) in response to increased perfusion of the loop of Henle (0 to 40 nl/min) with artificial tubular fluid (ATF). The maximal TGF response was studied after 5 min intratubular perfusion (10 nl/min) with ATF or ATF + A(2A) receptor agonist (CGS-21680; 10(-7) mol/l). The interaction with nitric oxide synthase (NOS) isoforms was tested by perfusion with a nonselective NOS inhibitor [N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME); 10(-3) mol/l] or a selective neuronal NOS (nNOS) inhibitor [N(ω)-propyl-L-arginine (L-NPA); 10(-6) mol/l] alone, and with the A(2A) agonist. Blood pressure, urine flow, and P(SF) at 0 nl/min were similar among the groups. The maximal TGF response (ΔP(SF)) with ATF alone (12.3 ± 0.6 mmHg) was attenuated by selective A(2A) stimulation (9.5 ± 0.4 mmHg). L-NAME enhanced maximal TGF responses (18.9 ± 0.4 mmHg) significantly more than L-NPA (15.2 ± 0.7 mmHg). Stimulation of A(2A) receptors did not influence maximal TGF response during nonselective NOS inhibition (19.0 ± 0.4) but attenuated responses during nNOS inhibition (10.3 ± 0.4 mmHg). In conclusion, adenosine A(2A) receptor activation attenuated TGF responses by stimulation of endothelial NOS (eNOS), presumably in the afferent arteriole. Moreover, NO derived from both eNOS and nNOS in the JGA may blunt TGF responses.
Collapse
Affiliation(s)
- Mattias Carlström
- Division of Nephrology and Hypertension, and Hypertension, Kidney & Vascular Research Center, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|