1
|
Pazarci P, Özler S, Kaplan HM. Effect of alpha-linolenic acid on aminoglycoside nephrotoxicity and RhoA/Rho-kinase pathway in kidney. PeerJ 2024; 12:e18335. [PMID: 39434789 PMCID: PMC11493068 DOI: 10.7717/peerj.18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Aminoglycoside nephrotoxicity stands as a primary contributor to the development of acute intrinsic renal failure. Distinctive characteristic associated with this nephrotoxicity is the occurrence of tubular necrosis, which is why it is commonly referred to as acute tubular necrosis. Studies have demonstrated that inhibiting rhoA/rho-kinase pathway is beneficial for kidney damage induced by diabetes and renal ischemia. Comparable pathological conditions can be observed in aminoglycoside nephrotoxicity, like those found in diabetes and renal ischemia. Gentamicin, an aminoglycoside, is known to activate Rho/Rho-kinase pathway. The primary goal of this study is to explore influence of oxidative stress on this pathway by concurrently administering gentamicin and alpha-linolenic acid (ALA) possessing known antioxidant properties. To achieve this, gentamicin (100 mg kg-1) and ALA (70 mg kg-1) were administered to mice for a period of 9 days, and Rho/Rho-kinase pathway was examined by using ELISA. Administration of gentamicin to mice led to an elevation in RhoA and rho-kinase II levels, along with the activity of rho-kinase in kidneys. However, ALA effectively reversed this heightened response. ALA, known for its antioxidant properties, inhibited activation of Rho/Rho-kinase pathway induced by gentamicin. This finding suggests that gentamicin induces nephrotoxicity through oxidative stress.
Collapse
Affiliation(s)
- Percin Pazarci
- Department of Medical Biology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Serkan Özler
- Department of Urology, Mustafa Kemal University Faculty of Medicine, Hatay, Turkey
| | - Halil Mahir Kaplan
- Department of Pharmacology, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
2
|
Cui T, Liu W, Yu C, Ren J, Li Y, Shi X, Li Q, Zhang J. Protective Effects of Allicin on Acute Myocardial Infarction in Rats via Hydrogen Sulfide-mediated Regulation of Coronary Arterial Vasomotor Function and Myocardial Calcium Transport. Front Pharmacol 2022; 12:752244. [PMID: 35046802 PMCID: PMC8762278 DOI: 10.3389/fphar.2021.752244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (AMI) is a condition with high morbidity and mortality, for which effective treatments are lacking. Allicin has been reported to exert therapeutic effects on AMI, but the underlying mechanisms of its action have not been fully elucidated. To investigate this, a rat model of AMI was generated by ligating the left anterior descending branch of the coronary artery. DL-propargylglycine (PAG), a specific hydrogen sulfide (H2S) synthetase inhibitor, was used to examine the effects of allicin on H2S production. Isolated coronary arteries and cardiomyocytes were assessed for vascular reactivity and cellular Ca2+ transport using a multiwire myography system and a cell-contraction-ion detection system, respectively. Allicin administration improved cardiac function and myocardial pathology, reduced myocardial enzyme levels, and increased H2S and H2S synthetase levels. Allicin administration resulted in concentration-dependent effects on coronary artery dilation, which were mediated by receptor-dependent Ca2+ channels, ATP-sensitive K+ channels, and sarcoplasmic reticulum (SR) Ca2+ release induced by the ryanodine receptor. Allicin administration improved Ca2+ homeostasis in cardiomyocytes by increasing cardiomyocyte contraction, Ca2+ transient amplitude, myofilament sensitivity, and SR Ca2+ content. Allicin also enhanced Ca2+ uptake via SR Ca2+-ATPase and Ca2+ removal via the Na+/Ca2+ exchanger, and it reduced SR Ca2+ leakage. Notably, the protective effects of allicin were partially attenuated by blockade of H2S production with PAG. Our findings provide novel evidence that allicin-induced production of H2S mediates coronary artery dilation and regulation of Ca2+ homeostasis in AMI. Our study presents a novel mechanistic insight into the anti-AMI effects of allicin and highlights the therapeutic potential of this compound.
Collapse
Affiliation(s)
- Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiyu Liu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenghao Yu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Ren
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yikui Li
- Health Prevention Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Shi
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyan Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
4
|
Jackson WF. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front Physiol 2021; 12:699517. [PMID: 34366889 PMCID: PMC8339585 DOI: 10.3389/fphys.2021.699517] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Feng W, Remedies CE, Obi IE, Aldous SR, Meera SI, Sanders PW, Inscho EW, Guan Z. Restoration of afferent arteriolar autoregulatory behavior in ischemia-reperfusion injury in rat kidneys. Am J Physiol Renal Physiol 2021; 320:F429-F441. [PMID: 33491564 PMCID: PMC7988813 DOI: 10.1152/ajprenal.00500.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Renal autoregulation is critical in maintaining stable renal blood flow (RBF) and glomerular filtration rate (GFR). Renal ischemia-reperfusion (IR)-induced kidney injury is characterized by reduced RBF and GFR. The mechanisms contributing to renal microvascular dysfunction in IR have not been fully determined. We hypothesized that increased reactive oxygen species (ROS) contributed to impaired renal autoregulatory capability in IR rats. Afferent arteriolar autoregulatory behavior was assessed using the blood-perfused juxtamedullary nephron preparation. IR was induced by 60 min of bilateral renal artery occlusion followed by 24 h of reperfusion. Afferent arterioles from sham rats exhibited normal autoregulatory behavior. Stepwise increases in perfusion pressure caused pressure-dependent vasoconstriction to 65 ± 3% of baseline diameter (13.2 ± 0.4 μm) at 170 mmHg. In contrast, pressure-mediated vasoconstriction was markedly attenuated in IR rats. Baseline diameter averaged 11.7 ± 0.5 µm and remained between 90% and 101% of baseline over 65-170 mmHg, indicating impaired autoregulatory function. Acute antioxidant administration (tempol or apocynin) to IR kidneys for 20 min increased baseline diameter and improved autoregulatory capability, such that the pressure-diameter profiles were indistinguishable from those of sham kidneys. Furthermore, the addition of polyethylene glycol superoxide dismutase or polyethylene glycol-catalase to the perfusate blood also restored afferent arteriolar autoregulatory responsiveness in IR rats, indicating the involvement of superoxide and/or hydrogen peroxide. IR elevated mRNA expression of NADPH oxidase subunits and monocyte chemoattractant protein-1 in renal tissue homogenates, and this was prevented by tempol pretreatment. These results suggest that ROS accumulation, likely involving superoxide and/or hydrogen peroxide, impairs renal autoregulation in IR rats in a reversible fashion.NEW & NOTEWORTHY Renal ischemia-reperfusion (IR) leads to renal microvascular dysfunction manifested by impaired afferent arteriolar autoregulatory efficiency. Acute administration of scavengers of reactive oxygen species, polyethylene glycol-superoxide dismutase, or polyethylene glycol-catalase following renal IR restored afferent arteriolar autoregulatory capability in IR rats, indicating that renal IR led to reversible impairment of afferent arteriolar autoregulatory capability. Intervention with antioxidant treatment following IR may improve outcomes in patients by preserving renovascular autoregulatory function and potentially preventing the progression to chronic kidney disease after acute kidney injury.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colton E Remedies
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ijeoma E Obi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen R Aldous
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia I Meera
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Pang Y, Thomas P. Involvement of sarco/endoplasmic reticulum Ca 2+-ATPase (SERCA) in mPRα (PAQR7)-mediated progesterone induction of vascular smooth muscle relaxation. Am J Physiol Endocrinol Metab 2021; 320:E453-E466. [PMID: 33427050 DOI: 10.1152/ajpendo.00359.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progesterone acts directly on vascular smooth muscle cells (VSMCs) through activation of membrane progesterone receptor α (mPRα)-dependent signaling to rapidly decrease cytosolic Ca2+ concentrations and induce muscle relaxation. However, it is not known whether this progesterone action involves uptake of Ca2+ by the sarco/endoplasmic reticulum (SR) and increased sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity. The present results show that treatment of cultured human VSMCs with progesterone and the selective mPR agonist Org OD-02-0 (OD 02-0) but not with the nuclear PR agonist R5020 increased SERCA protein expression, which was blocked by knockdown of mPRα with siRNA. Moreover, treatments with progesterone and OD 02-0, but not with R5020, increased phospholamban (PLB) phosphorylation, which would result in disinhibition of SERCA function. Progesterone and OD 02-0 significantly increased Ca2+ levels in the SR and caused VSMC relaxation. These effects were blocked by pretreatment with cyclopiazonic acid (CPA), a SERCA inhibitor, and by knockdown of SERCA2 with siRNA, suggesting that SERCA2 plays a critical role in progesterone induction of VSMC relaxation. Treatment with inhibitors of inhibitory G proteins (Gi, NF023), MAP kinase (AZD 6244), Akt/Pi3k (wortmannin), and a Rho activator (calpeptin) blocked the progesterone- and OD 02-0-induced increase in Ca2+ levels in the SR and SERCA expressions. These results suggest that the rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.NEW & NOTEWORTHY The rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| |
Collapse
|
7
|
Tsai YM, Jones F, Mullen P, Porter KE, Steele D, Peers C, Gamper N. Vascular Kv7 channels control intracellular Ca 2+ dynamics in smooth muscle. Cell Calcium 2020; 92:102283. [PMID: 32950876 PMCID: PMC7695684 DOI: 10.1016/j.ceca.2020.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Voltage-gated Kv7 (or KCNQ) channels control activity of excitable cells, including vascular smooth muscle cells (VSMCs), by setting their resting membrane potential and controlling other excitability parameters. Excitation-contraction coupling in muscle cells is mediated by Ca2+ but until now, the exact role of Kv7 channels in cytosolic Ca2+ dynamics in VSMCs has not been fully elucidated. We utilised microfluorimetry to investigate the impact of Kv7 channel activity on intracellular Ca2+ levels and electrical activity of rat A7r5 VSMCs and primary human internal mammary artery (IMA) SMCs. Both, direct (XE991) and G protein coupled receptor mediated (vasopressin, AVP) Kv7 channel inhibition induced robust Ca2+ oscillations, which were significantly reduced in the presence of Kv7 channel activator, retigabine, L-type Ca2+ channel inhibitor, nifedipine, or T-type Ca2+ channel inhibitor, NNC 55-0396, in A7r5 cells. Membrane potential measured using FluoVolt exhibited a slow depolarisation followed by a burst of sharp spikes in response to XE991; spikes were temporally correlated with Ca2+ oscillations. Phospholipase C inhibitor (edelfosine) reduced AVP-induced, but not XE991-induced Ca2+ oscillations. AVP and XE991 induced a large increase of [Ca2+]i in human IMA, which was also attenuated with retigabine, nifedipine and NNC 55-0396. RT-PCR, immunohistochemistry and electrophysiology suggested that Kv7.5 was the predominant Kv7 subunit in both rat and human arterial SMCs; CACNA1C (Cav1.2; L-type) and CACNA1 G (Cav3.1; T-type) were the most abundant voltage-gated Ca2+ channel gene transcripts in both types of VSMCs. This study establishes Kv7 channels as key regulators of Ca2+ signalling in VSMCs with Kv7.5 playing a dominant role.
Collapse
Affiliation(s)
- Yuan-Ming Tsai
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom; Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defence Medical Centre, Taipei 11490, Taiwan.
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pierce Mullen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Karen E Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Chris Peers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Kulthinee S, Shao W, Franco M, Navar LG. Purinergic P2X 1 receptor, purinergic P2X 7 receptor, and angiotensin II type 1 receptor interactions in the regulation of renal afferent arterioles in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2020; 318:F1400-F1408. [PMID: 32308022 DOI: 10.1152/ajprenal.00602.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In ANG II-dependent hypertension, ANG II activates ANG II type 1 receptors (AT1Rs), elevating blood pressure and increasing renal afferent arteriolar resistance (AAR). The increased arterial pressure augments interstitial ATP concentrations activating purinergic P2X receptors (P2XRs) also increasing AAR. Interestingly, P2X1R and P2X7R inhibition reduces AAR to the normal range, raising the conundrum regarding the apparent disappearance of AT1R influence. To evaluate the interactions between P2XRs and AT1Rs in mediating the increased AAR elicited by chronic ANG II infusions, experiments using the isolated blood perfused juxtamedullary nephron preparation allowed visualization of afferent arteriolar diameters (AAD). Normotensive and ANG II-infused hypertensive rats showed AAD responses to increases in renal perfusion pressure from 100 to 140 mmHg by decreasing AAD by 26 ± 10% and 19 ± 4%. Superfusion with the inhibitor P2X1Ri (NF4490; 1 μM) increased AAD. In normotensive kidneys, superfusion with ANG II (1 nM) decreased AAD by 16 ± 4% and decreased further by 19 ± 5% with an increase in renal perfusion pressure. Treatment with P2X1Ri increased AAD by 30 ± 6% to values higher than those at 100 mmHg plus ANG II. In hypertensive kidneys, the inhibitor AT1Ri (SML1394; 1 μM) increased AAD by 10 ± 7%. In contrast, treatment with P2X1Ri increased AAD by 21 ± 14%; combination with P2X1Ri plus P2X7Ri (A438079; 1 μM) increased AAD further by 25 ± 8%. The results indicate that P2X1R, P2X7R, and AT1R actions converge at receptor or postreceptor signaling pathways, but P2XR exerts a dominant influence abrogating the actions of AT1Rs on AAR in ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Weijian Shao
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana
| | - Martha Franco
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez," México City, México
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Ion channels and the regulation of myogenic tone in peripheral arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:19-58. [DOI: 10.1016/bs.ctm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|