1
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
2
|
Ming J, Sana SRGL, Deng X. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:978601. [PMID: 36329882 PMCID: PMC9623046 DOI: 10.3389/fendo.2022.978601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a chronic microvascular complication in patients with diabetes mellitus, which is the leading cause of end-stage renal disease. However, the role of copper-related genes (CRGs) in DN development remains unclear. MATERIALS AND METHODS CRGs were acquired from the GeneCards and NCBI databases. Based on the GSE96804 and GSE111154 datasets from the GEO repository, we identified hub CRGs for DN progression by taking the intersection of differentially expressed CRGs (DECRGs) and genes in the key module from Weighted Gene Co-expression Network Analysis. The Maximal Clique Centrality algorithm was used to identify the key CRGs from hub CRGs. Transcriptional factors (TFs) and microRNAs (miRNAs) targeting hub CRGs were acquired from publicly available databases. The CIBERSORT algorithm was used to perform comparative immune cell infiltration analysis between normal and DN samples. RESULTS Eighty-two DECRGs were identified between normal and DN samples, as were 10 hub CRGs, namely PTGS2, DUSP1, JUN, FOS, S100A8, S100A12, NAIP, CLEC4E, CXCR1, and CXCR2. Thirty-nine TFs and 165 miRNAs potentially targeted these 10 hub CRGs. PTGS2 was identified as the key CRG and FOS as the most significant gene among all of DECRGs. RELA was identified as the hub TF interacting with PTGS2 by taking the intersection of potential TFs from the ChEA and JASPAR public databases. let-7b-5p was identified as the hub miRNA targeting PTGS2 by taking the intersection of miRNAs from the miRwalk, RNA22, RNAInter, TargetMiner, miRTarBase, and ENCORI databases. Similarly, CREB1, E2F1, and RELA were revealed as hub TFs for FOS, and miR-338-3p as the hub miRNA. Finally, compared with those in healthy samples, there are more infiltrating memory B cells, M1 macrophages, M2 macrophages, and resting mast cells and fewer infiltrating activated mast cells and neutrophils in DN samples (all p< 0.05). CONCLUSION The 10 identified hub copper-related genes provide insight into the mechanisms of DN development. It is beneficial to examine and understand the interaction between hub CRGs and potential regulatory molecules in DN. This knowledge may provide a novel theoretical foundation for the development of diagnostic biomarkers and copper-related therapy targets in DN.
Collapse
Affiliation(s)
- Jie Ming
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si Ri Gu Leng Sana
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Si Ri Gu Leng Sana,
| | - Xijin Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Okamura M, Fukuda N, Horikoshi S, Kobayashi H, Tsunemi A, Akiya Y, Endo M, Matsumoto T, Abe M. Transcriptional Suppression of Diabetic Nephropathy with Novel Gene Silencer Pyrrole-Imidazole Polyamides Preventing USF1 Binding to the TGF-β1 Promoter. Int J Mol Sci 2021; 22:ijms22094741. [PMID: 33947045 PMCID: PMC8125144 DOI: 10.3390/ijms22094741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Upstream stimulatory factor 1 (USF1) is a transcription factor that is increased in high-glucose conditions and activates the transforming growth factor (TGF)-β1 promoter. We examined the effects of synthetic pyrrole-imidazole (PI) polyamides in preventing USF1 binding on the TGF-β1 promoter in Wistar rats in which diabetic nephropathy was established by intravenous administration of streptozotocin (STZ). High glucose induced nuclear localization of USF1 in cultured mesangial cells (MCs). In MCs with high glucose, USF1 PI polyamide significantly inhibited increases in promoter activity of TGF-β1 and expression of TGF-β1 mRNA and protein, whereas it significantly decreased the expression of osteopontin and increased that of h-caldesmon mRNA. We also examined the effects of USF1 PI polyamide on diabetic nephropathy. Intraperitoneal injection of USF1 PI polyamide significantly suppressed urinary albumin excretion and decreased serum urea nitrogen in the STZ-diabetic rats. USF1 PI polyamide significantly decreased the glomerular injury score and tubular injury score in the STZ-diabetic rats. It also suppressed the immunostaining of TGF-β1 in the glomerulus and proximal tubules and significantly decreased the expression of TGF-β1 protein from kidney in these rats. These findings indicate that synthetic USF1 PI polyamide could potentially be a practical medicine for diabetic nephropathy.
Collapse
Affiliation(s)
- Makiyo Okamura
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan;
- Correspondence: (N.F.); (M.A.); Tel.: +81-3-3972-8111 (N.F.); Fax: +81-3-3972-8666 (N.F.)
| | - Shu Horikoshi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
| | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
| | - Yurie Akiya
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori 031-8588, Japan;
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan; (M.O.); (S.H.); (H.K.); (A.T.); (Y.A.)
- Correspondence: (N.F.); (M.A.); Tel.: +81-3-3972-8111 (N.F.); Fax: +81-3-3972-8666 (N.F.)
| |
Collapse
|
4
|
Zheng B, Peng Y, Wu W, Ma J, Zhang Y, Guo Y, Sun S, Chen Z, Li Q, Hu G. Synthesis and structure-activity relationships of pyrazolo-[3,4-b]pyridine derivatives as adenosine 5'-monophosphate-activated protein kinase activators. Arch Pharm (Weinheim) 2020; 352:e1900066. [PMID: 31373047 DOI: 10.1002/ardp.201900066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023]
Abstract
A series of pyrazolo[3,4-b]pyridine derivatives were designed, synthesized, and evaluated for their activation activity toward adenosine 5'-monophosphate-activated protein kinase (AMPK). According to the enzyme activity, the pyrazole N-H exposure and para substitution on the diphenyl group were proved to be essential for the activation potency. Compound 17f showed equal activation compared with A-769662. In the molecular modeling study, compound 17f exhibited important hydrogen bond interaction with Lys29, Asp88, and Arg83. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on the NRK-49F cell line showed that potent enzyme activators could effectively inhibit cell proliferation, especially for 17f (EC50 [AMPKα1γ1β1] = 0.42 μM, efficacy = 79%; IC50 [NRK-49F cell line] = 0.78 μM). These results might provide new insights to explore novel AMPK activators.
Collapse
Affiliation(s)
- Bifeng Zheng
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yajun Peng
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Weihong Wu
- Department of Pharmacy, Shandong Medical University, Jinan, Shandong, China
| | - Junlong Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yuzhao Zhang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yu Guo
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Shengjie Sun
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang M, Zhang Y, Xiao D, Zhang J, Wang X, Guan F, Zhang M, Chen L. Highly bioavailable berberine formulation ameliorates diabetic nephropathy through the inhibition of glomerular mesangial matrix expansion and the activation of autophagy. Eur J Pharmacol 2020; 873:172955. [PMID: 32001218 DOI: 10.1016/j.ejphar.2020.172955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Glomerular mesangial matrix expansion and cell autophagy are the most important factors in the development of kidney damage under diabetic conditions. The activation of AMPK might be an important treatment target for diabetic nephropathy. Berberine has multiple effects on all types of diabetic complications as an activator of AMPK. However, the poor bioavailability of berberine limits its clinical applications. Huang-Gui Solid Dispersion (HGSD), a new formulation of berberine developed in our lab, has 4-fold greater bioavailability than berberine. However, its therapeutic application and mechanism still need to be explored. In the present study, the effect of HGSD on kidney function in type 2 diabetic rats and db/db mice was investigated. The results demonstrated that HGSD improved kidney function in these two animal models, decreased the glomerular volume and increased autophagy. Meanwhile, AMPK phosphorylation levels and autophagy-related protein expression were significantly increased, and extracellular matrix protein deposition-related protein expression was decreased after treatment. The present study indicated that HGSD protected against diabetic kidney dysfunction by inhibiting glomerular mesangial matrix expansion and activating autophagy. The mechanism of HGSD in the treatment of diabetic nephropathy might be connected to the activation of AMPK phosphorylation.
Collapse
Affiliation(s)
- Meishuang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Yining Zhang
- Research Institution of Paediatrics, Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Dong Xiao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Jing Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Xinxin Wang
- Senior Officials Inpatient Ward, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
7
|
Liu X, Li X. Key Genes Involved in Diabetic Nephropathy Investigated by Microarray Analysis. J Comput Biol 2019; 26:1438-1447. [PMID: 31356112 DOI: 10.1089/cmb.2019.0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We aimed to investigate significant genes associated with diabetic nephropathy (DN), and their potential mechanisms in the process of DN pathogenesis. We downloaded the microarray data of GSE111154 from gene expression omnibus (GEO) database. First, we analyzed differentially expressed genes (DEGs) between early diabetic nephropathy (EDN) samples and nondiabetic control samples. Functional and pathway enrichment analysis was carried out. Disease-related gene sets were analyzed. Then, we constructed the protein-protein interaction (PPI) network and predicted the relation. Finally, transcriptional regulation analyses of microRNA and transcription factors were performed. Totally 554 DEGs between EDN samples and nondiabetic control samples were obtained. Enrichment analysis of disease-related gene sets showed that transforming growth factor beta 1 (TGFB1) was significantly enriched in DN. TGFB1 was involved in more pathways, such as proteoglycans in cancer, malaria, and amebiasis. Furthermore, TGFB1 had the highest degree in PPI network. In addition, TGFB1 was correlated with miR-21-5p, miR-146a-5p, and RAD21. TGFB1, miR-146a-5p, and miR-21-5p are important for DN development. Furthermore, TGFB1 may be involved in DN progression through the regulation of miR-21-5p, miR-146a-5p, and RAD21.
Collapse
Affiliation(s)
- Xinxin Liu
- Public Health of College, Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Natarajan M, Habib SL, Reddick RL, Delma CR, Manickam K, Prihoda TJ, Werner SL, Mohan S. Endothelial cell-specific overexpression of endothelial nitric oxide synthase in Ins2Akita mice exacerbates diabetic nephropathy. J Diabetes Complications 2019; 33:23-32. [PMID: 30424931 PMCID: PMC6344355 DOI: 10.1016/j.jdiacomp.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/13/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Previous studies demonstrated that global deficiency of eNOS in diabetic mice exacerbated renal lesions and that overexpression of eNOS may protect against tissue injury. Our study revealed for the first time overexpression of eNOS leads to disease progression rather than protection. Transgenic mice selectively expressing eNOS in endothelial cells (eNOSTg) were cross bred with Ins2Akita type-1 (AK) diabetic mice to generate eNOS overexpressing eNOSTg/AK mice. Wild type, eNOSTg, AK and eNOSTg/AK mice were assessed for kidney function and blood glucose levels. Remarkably, overexpressing eNOSTg mice showed evidence of unpredicted glomerular injury with segmental mesangiolysis and occasional microaneurysms. Notably, in eNOSTg/AK mice overexpression of eNOS led to increased glomerular/endothelial injury that was associated with increased superoxide levels and renal dysfunction. Results indicate for the first time that overexpressing eNOS in endothelial cells cannot ameliorate diabetic lesions, but paradoxically leads to progression of nephropathy likely due to eNOS uncoupling and superoxide upsurge. This novel finding has a significant impact on current therapeutic strategies to improve endothelial function and prevent progression of diabetic renal disease. Further, the eNOSTg/AK model developed in this study has significant translational potentials for elucidating the underlying mechanism implicated in the deflected function of eNOS in diabetic nephropathy.
Collapse
Affiliation(s)
- Mohan Natarajan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Samy L Habib
- Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System and Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert L Reddick
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Caroline R Delma
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Krishnan Manickam
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas J Prihoda
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sherry L Werner
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sumathy Mohan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 2017; 128:91-108. [PMID: 28453961 DOI: 10.1016/j.diabres.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is one of the most prevalent microvascular complication in patients suffering from diabetes and is reported to be the major cause of renal failure when compared to any other kidney disease. Currently, available therapies provide only symptomatic relief and unable to treat the underlying pathophysiology of diabetic nephropathy. This review will explore new insights into the established therapeutic paradigms targeting oxidative stress, inflammation and endoplasmic reticulum stress with the focus on recent clinical developments. Apart from this, the involvement of novel cellular and molecular mechanisms including the role of endothelin-receptor antagonists, Wnt signaling pathway, epigenetics and micro RNA is also discussed so that key molecular switches involved in the pathogenesis of diabetic nephropathy can be identified. Elucidating new molecular pathways will help in the development of novel therapeutics for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
10
|
Coughlan MT, Sharma K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 2016; 90:272-279. [PMID: 27217197 DOI: 10.1016/j.kint.2016.02.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023]
Abstract
The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Baker International Diabetes Institute (IDI) Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Institute of Metabolomic Medicine, University of California-San Diego, La Jolla, California, USA; Division of Medical Genetics, Department of Medicine, University of California-San Diego, La Jolla, California, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, California, USA.
| |
Collapse
|
11
|
Yuan Q, Bu Q, Li G, Zhang J, Cui T, Zhu R, Mu D. Association between single nucleotide polymorphisms of upstream transcription factor 1 (USF1) and susceptibility to papillary thyroid cancer. Clin Endocrinol (Oxf) 2016; 84:564-70. [PMID: 26052935 DOI: 10.1111/cen.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/02/2015] [Accepted: 06/01/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thyroid cancer, predominantly by papillary thyroid cancer (PTC), is a malignant tumour of endocrine system with increasing incidence rate worldwide. Upstream transcription factor 1 (USF1) regulates a variety of biological processes by transactivation of functional genes. In this study, we investigated the association between USF1 polymorphisms and PTC risk. MATERIAL & METHODS A total of 334 patients with PTC, 186 patients with benign nodules (BN) and 668 healthy controls were enrolled in our study. Tag-SNPs were identified in Chinese Han in Beijing (CHB) from International HapMap Project Databases. Genomic DNAs were extracted by TaqMan Blood DNA kits. SNPs of USF1 were genotyped by TaqMan SNPs genotyping assay. Odds ratios (OR) and corresponding 95% confidence interval (CI) were used to assess the association between USF1 genetic variants and PTC risk. The statistical analyses were carried out with spss 13.0 software. RESULTS Five tag-SNPs were retrieved to capture all the genetic variants of USF1. Among the five tag-SNPs, genetic variants in rs2516838, rs3737787 and rs2516839 have significant association with PTC risk. The rs2516838 polymorphisms dominant model (CG+GG vs CC: OR = 0·71; 95% CI: 0·52-0·97; P = 0·033) and allelic model (C vs G: OR = 0·031; 95% CI: 0·56-0·97; P = 0·031) indicated it may act as a protective factor against PTC. On the contrary, the results of rs3737787 polymorphisms: dominant model (CT+TT vs CC: OR = 1·55; 95%CI: 1·09-2·02; P = 0·001) and allelic model (C vs T: OR = 1·35; 95%CI: 1·10-1·64; P = 0·003), as well as the results of rs2516839 polymorphisms: dominant model (GA+AA vs GG: OR = 1·77; 95%CI: 1·31-2·38; P < 0·001) and allelic model (G vs A: OR = 1·36; 95%CI: 1·13-1·63; P = 0·014), revealed that they may act as risk factors for PTC. CONCLUSION In this study, we found the SNPs of rs2516838 (mutant G alleles vs wild C alleles), rs3737787 (mutant T alleles vs wild C alleles) and rs2516839 (mutant A alleles vs wild G alleles) were significantly associated with PTC risk. Further large-scale studies with different ethnicities are still needed to validate our findings and explore the underlying mechanism of USF1 in PTC development.
Collapse
Affiliation(s)
- Qingzhong Yuan
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingao Bu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Guoqiang Li
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Zhang
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Tao Cui
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Rui Zhu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Dongpo Mu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
12
|
Cao C, Chen J, Lyu C, Yu J, Zhao W, Wang Y, Zou D. Bioinformatics Analysis of the Effects of Tobacco Smoke on Gene Expression. PLoS One 2015; 10:e0143377. [PMID: 26629988 PMCID: PMC4667894 DOI: 10.1371/journal.pone.0143377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
This study was designed to explore the effects of tobacco smoke on gene expression through bioinformatics analyses. Gene expression profile GSE17913 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in buccal mucosa tissues between 39 active smokers and 40 never smokers were identified. Gene Ontology Specifically, the DEG distribution in the pathway of Metabolism of xenobiotics by cytochrome P450 was shown in Fig 2[corrected] were performed, followed by protein-protein interaction (PPI) network, transcriptional regulatory network as well as miRNA-target regulatory network construction. In total, 88 up-regulated DEGs and 106 down-regulated DEGs were identified. Among these DEGs, cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and CYP1B1 were enriched in the Metabolism of xenobiotics by cytochrome P450 pathway. In the PPI network, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), and CYP1A1 were hub genes. In the transcriptional regulatory network, transcription factors of MYC associated factor X (MAX) and upstream transcription factor 1 (USF1) regulated many overlapped DEGs. In addition, protein tyrosine phosphatase, receptor type, D (PTPRD) was regulated by multiple miRNAs in the miRNA-DEG regulatory network. CYP1A1, CYP1B1, YWHAZ and PTPRD, and TF of MAX and USF1 may have the potential to be used as biomarkers and therapeutic targets in tobacco smoke-related pathological changes.
Collapse
Affiliation(s)
- Chunhua Cao
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Jia Yu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Wei Zhao
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Yi Wang
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China
| |
Collapse
|
13
|
Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24:28-36. [PMID: 25470014 DOI: 10.1097/mnh.0000000000000087] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To provide a perspective by investigating the potential cross-talk between the adipose tissue and the kidney during obesity. RECENT FINDINGS It is well established that excessive caloric intake contributes to organ injury. The associated increased adiposity initiates a cascade of cellular events that leads to progressive obesity-associated diseases such as kidney disease. Recent evidence has indicated that adipose tissue produces bioactive substances that contribute to obesity-related kidney disease, altering the renal function and structure. In parallel, proinflammatory processes within the adipose tissue can also lead to pathophysiological changes in the kidney during the obese state. SUMMARY Despite considerable efforts to better characterize the pathophysiology of obesity-related metabolic disease, there are still a lack of efficient therapeutic strategies. New strategies focused on regulating adipose function with respect to AMP-activated protein kinase activation, NADPH oxidase function, and TGF-β may contribute to reducing adipose inflammation that may also provide renoprotection.
Collapse
|
14
|
Zhao J, Miyamoto S, You YH, Sharma K. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. Am J Physiol Renal Physiol 2014; 308:F1167-77. [PMID: 25428125 DOI: 10.1152/ajprenal.00234.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy is characterized by diffuse mesangial matrix expansion and is largely dependent on the TGF-β/Smad signaling pathway. Smad4 is required for TGF-β signaling; however, its regulation has not been well characterized in diabetic kidney disease. Here, we report that high glucose is sufficient to stimulate nuclear translocation of Smad4 in mesangial cells and that stimulation of the major energy sensor AMP-activated protein kinase (AMPK) has a potent effect to block Smad4 nuclear translocation. Activation of AMPK by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) inhibited high glucose-induced and TGF-β stimulation of nuclear Smad4. To identify which of the catalytic α-subunits may be involved, small interfering (si) RNA-based inhibition of AMPK α1- or α2-subunit was employed. Inhibition of either subunit reduced overall AMPK activity and contributed to Smad4 nuclear accumulation. In an animal model of early diabetic kidney disease, induction of diabetes was found to markedly stimulate Smad4 protein levels and enhance nuclear accumulation. AMPK activation with AICAR completely prevented the upregulation of Smad4 and reduced mesangial matrix accumulation. We conclude that stimulation of Smad4 in cell culture and in in vivo models of early diabetic kidney disease is dependent on AMPK.
Collapse
Affiliation(s)
- Jinghong Zhao
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, La Jolla, California; Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China; and
| | - Satoshi Miyamoto
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, La Jolla, California; Veterans Administration San Diego HealthCare System, La Jolla, California
| | - Young-Hyun You
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, La Jolla, California; Veterans Administration San Diego HealthCare System, La Jolla, California
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, La Jolla, California; Veterans Administration San Diego HealthCare System, La Jolla, California
| |
Collapse
|
15
|
Abstract
Obesity in combination with diabetes and hypertension likely is contributing to the increasing incidence of chronic kidney disease (CKD) in the 21st century worldwide and requires novel insights and strategies for treatment. There is an increasing recognition that the kidney has an important role in the complex inter-organ communication that occurs with the development of inflammation and fibrosis with obesity. Inhibition of the adiponectin-AMPK pathway has now become established as a critical pathway regulating both inflammation and pro-fibrotic pathways for both obesity-related kidney disease and diabetic kidney disease. AMPK regulates NFκB activation and is a potent regulator of NADPH oxidases. Nox4 in particular has emerged as a key contribtor to the early inflammation of diabetic kidney disease. AMPK also regulates several transcription factors that contribute to stimulation of the transforming growth factor-beta (TGF-β) system. Another key aspect of AMPK regulation is its control of mammalian target of rapamycin (mTOR) and mitochondrial biogenesis. Inhibition of PGC-1α, the transcriptional co-activator of mitochondrial biogenesis is being recognized as a key pathway that is inhibited in diabetic kidney disease and may be linked to inhibition of mitochondrial function. Translation of this concept is emerging via the field of urine metabolomics, as several metabolites linked to mitochondria are consistently downregulated in human diabetic kidney disease. Further studies to explore the role of AMPK and related energy-sensing pathways will likely lead to a more comprehensive understanding of why the kidney is affected early on and in a progressive manner with obesity and diabetes.
Collapse
|
16
|
Abstract
Increasing incidence of chronic kidney disease (CKD) which leads to end-stage renal disease (ESRD) is one of the major health issues in the modern world and requires novel strategies for treatment. Adipose tissue has been recognized to have endocrine function and secretes a variety of hormones called adipokines. Several adipokines have been implicated in the pathogenesis of CKD and may have a strong impact as a risk factor for renal decline. The aim of this review is to provide an overview of the role of adipokines in the progression of CKD, with focus on recent experimental and clinical advances.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Center for Renal Translational Medicine, University of California San Diego/Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | | |
Collapse
|
17
|
Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K, Liu Y, Zhao J. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol 2014; 234:560-72. [PMID: 25130652 DOI: 10.1002/path.4420] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/14/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
Increased basic fibroblast growth factor-2 (FGF2) and reduced Klotho have both been reported to be closely associated with renal fibrosis. However, the relationship between Klotho and FGF2 remains unclear. We demonstrate that FGF2 induced tubulo-epithelial plasticity in cultured HK-2 cells, accompanied by a reduction in Klotho expression, whereas recombinant Klotho protein could inhibit the action of FGF2. The FGF2 effects required extracellular signal-regulated protein kinase 1/2 activation, which was suppressed by Klotho. Moreover, Klotho also restrained FGF2-induced fibroblast proliferation and activation. The inhibitory effect of Klotho on the activity of FGF2 was likely due to its potent ability to compete with FGF2 binding to FGF receptor 1. Unilateral ureteral obstruction (UUO)-induced renal fibrosis was associated with an increase in FGF2 and a reduction in Klotho expression in wild-type mice, whereas FGF2(-/-) mice largely preserved Klotho expression and developed only mild renal fibrosis after obstructive injury. Furthermore, administration of Klotho protein in UUO mice significantly reduced renal fibrosis, concomitant with a marked suppression of FGF2 production and signalling. These studies demonstrate a feedback loop between Klotho depletion and FGF2 activation in renal fibrosis. Our results also suggest that Klotho treatment reduces renal fibrosis, at least in part, by inhibiting FGF2 signalling.
Collapse
Affiliation(s)
- Xu Guan
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Centre of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Chronic kidney disease (CKD) is becoming a worldwide epidemic, driven largely by the dramatic rise in the prevalence of diabetes and obesity. Novel targets and treatments for CKD are, therefore, desperately needed-to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This Review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease-arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and inflammation in the pathogenesis of CKD. We also highlight a new understanding regarding kidney energy sensing pathways (AMPK, sirtuins, and mTOR) in a variety of kidney diseases and how they are linked to inflammation and fibrosis. Finally, exciting new insights have been made into the role of mitochondrial function and mitochondrial biogenesis in relation to progressive kidney disease. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), CP603, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego and Veterans Affairs San Diego Healthcare System, Stein Clinical Research Building, 4th Floor, 9500 Gilman Drive, La Jolla, CA 92093-0711, USA
| |
Collapse
|
19
|
New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling. Kidney Int 2014; 84:11-4. [PMID: 23812359 DOI: 10.1038/ki.2013.95] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shen et al. exploit glycobiology to dampen transforming growth factor-β (TGF-β) signaling and ameliorate renal fibrosis after ureteral obstruction. Core fucosylation of N-linked oligosaccharides in TGF-β receptors is required for receptor function. Adenoviruses expressing Fut8-fucosyl transferase-shRNA inhibited receptor fucosylation, decreased tubule TGF-β signaling, and reduced fibrosis. Fut8-shRNA interferes with core fucosylation of other receptors also. Regardless, this first attempt to capitalize on a new aspect of TGF-β receptor function provides a basis for further research.
Collapse
|
20
|
Wu H, Qiao M, Peng X, Wu J, Liu G, Sun H, Li L, Mei S. Molecular characterization, expression patterns, and association analysis with carcass traits of porcine USF1 gene. Appl Biochem Biotechnol 2013; 170:1310-9. [PMID: 23666615 DOI: 10.1007/s12010-013-0280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 05/01/2013] [Indexed: 01/15/2023]
Abstract
The upstream stimulatory factor 1 (USF1) is a transcription factor controlling expression of several genes involved in lipid and glucose homeostasis. In this study, two isoforms of the porcine USF1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR), termed USF1 wild-type (wt) and USF1/CD, both of them contain a helix-loop-helix leucine zipper (HLH-LZ) conserved domain. Tissue distribution analysis showed that the two transcripts of porcine USF1 gene were ubiquitously expressed in all tested tissues, except for heart. Moreover, we found that a single nucleotide polymorphism (SNP, C/T) in intron 10 was significantly associated with ratio of lean to fat (P < 0.05), dress percentage (P < 0.05), average backfat thickness (P < 0.05), loin eye width (P < 0.05), lean meat percentage (P < 0.01), loin eye height (P < 0.01), and loin eye area (P < 0.01). This result suggests that porcine USF1 gene may be a candidate gene of meat production trait.
Collapse
Affiliation(s)
- Huayu Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Matsuda M, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Uneda K, Haku S, Tsurumi-Ikeya Y, Toya Y, Maeshima Y, Yamashita A, Umemura S. Upstream stimulatory factors 1 and 2 mediate the transcription of angiotensin II binding and inhibitory protein. J Biol Chem 2013; 288:19238-49. [PMID: 23653383 PMCID: PMC3696694 DOI: 10.1074/jbc.m113.451054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP/Agtrap) promotes constitutive internalization of the AT1R so as to specifically inhibit the pathological activation of its downstream signaling yet preserve the base-line physiological signaling activity of the AT1R. Thus, tissue-specific regulation of Agtrap expression is relevant to the pathophysiology of cardiovascular and renal disease. However, the regulatory mechanism of Agtrap gene expression has not yet been fully elucidated. In this study, we show that the proximal promoter region from −150 to +72 of the mouse Agtrap promoter, which contains the X-box, E-box, and GC-box consensus motifs, is able to elicit substantial transcription of the Agtrap gene. Among these binding motifs, we showed that the E-box specifically binds upstream stimulatory factor (Usf) 1 and Usf2, which are known E-box-binding transcription factors. It is indicated that the E-box-Usf1/Usf2 binding regulates Agtrap expression because of the following: 1) mutation of the E-box to prevent Usf1/Usf2 binding reduces Agtrap promoter activity; 2) knockdown of Usf1 or Usf2 affects both endogenous Agtrap mRNA and Agtrap protein expression, and 3) the decrease in Agtrap mRNA expression in the afflicted kidney by unilateral ureteral obstruction is accompanied by changes in Usf1 and Usf2 mRNA. Furthermore, the results of siRNA transfection in mouse distal convoluted tubule cells and those of unilateral ureteral obstruction in the afflicted mouse kidney suggest that Usf1 decreases but Usf2 increases the Agtrap gene expression by binding to the E-box. The results also demonstrate a functional E-box-USF1/USF2 interaction in the human AGTRAP promoter, thereby suggesting that a strategy of modulating the E-box-USF1/USF2 binding has novel therapeutic potential.
Collapse
Affiliation(s)
- Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
TGF-β is well known to play a critical role in diabetic kidney disease, and ongoing clinical studies are testing the potential therapeutic promise of inhibiting TGF-β production and action. An aspect of TGF-β action that has not received much attention is its potential role in explaining sex-related proclivity for kidney disease. In this review, we discuss recent studies linking TGF-β signaling to sex-related effects in diabetic kidney disease and suggest targets for future studies.
Collapse
Affiliation(s)
- Maggie K Diamond-Stanic
- Center for Renal Translational Medicine, University of California San Diego/Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093-0711, USA
| | | | | |
Collapse
|
23
|
Lo CS, Chang SY, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Heterogeneous nuclear ribonucleoprotein F suppresses angiotensinogen gene expression and attenuates hypertension and kidney injury in diabetic mice. Diabetes 2012; 61:2597-608. [PMID: 22664958 PMCID: PMC3447919 DOI: 10.2337/db11-1349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the impact of heterogeneous nuclear ribonucleoprotein F (hnRNP F) overexpression on angiotensinogen (Agt) gene expression, hypertension, and renal proximal tubular cell (RPTC) injury in high-glucose milieu both in vivo and in vitro. Diabetic Akita transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs were created, and the effects on systemic hypertension, Agt gene expression, renal hypertrophy, and interstitial fibrosis were studied. We also examined immortalized rat RPTCs stably transfected with control plasmid or plasmid containing hnRNP F cDNA in vitro. The results showed that hnRNP F overexpression attenuated systemic hypertension, suppressed Agt and transforming growth factor-β1 (TGF-β1) gene expression, and reduced urinary Agt and angiotensin II levels, renal hypertrophy, and glomerulotubular fibrosis in Akita hnRNP F-Tg mice. In vitro, hnRNP F overexpression prevented the high-glucose stimulation of Agt and TGF-β1 mRNA expression and cellular hypertrophy in RPTCs. These data suggest that hnRNP F plays a modulatory role and can ameliorate hypertension, renal hypertrophy, and interstitial fibrosis in diabetes. The underlying mechanism is mediated, at least in part, via the suppression of intrarenal Agt gene expression in vivo. hnRNP F may be a potential target in the treatment of hypertension and kidney injury in diabetes.
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Shiao-Ying Chang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Janos G. Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Shao Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - John S.D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
- Corresponding author: John S.D. Chan,
| |
Collapse
|
24
|
Guoguo S, Akaike T, Tao J, Qi C, Nong Z, Hui L. HGF-mediated inhibition of oxidative stress by 8-nitro-cGMP in high glucose-treated rat mesangial cells. Free Radic Res 2012; 46:1238-48. [PMID: 22690849 DOI: 10.3109/10715762.2012.701292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatocyte growth factor (HGF) is a potential therapeutic agent for diabetic nephropathy. The mechanisms for the renoprotective effect of HGF have been studied extensively, but antioxidant signalling of HGF in diabetic nephropathy is minimally understood. Our observations indicated that a nitrated guanine nucleotide, 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) diminished in high glucose (HG)-treated rat mesangial cells (RMC). However, HGF obviously lifted intracellular 8-nitro-cGMP level, which was accompanied by remarkably suppressed oxidative stress as evidenced by decreased reactive oxygen species and malondialdehyde levels and elevated glutathione level. Inhibitor of soluble guanylyl cyclase (sGC) NS-2028 and inhibitor of nitric oxide synthase (NOS) l-NMMA could block increased 8-nitro-cGMP level and repress oxidative stress by HGF. Accordingly, these two inhibitors abrogated HGF-induced nuclear accumulation of NF-E2 related factor 2 (Nrf2) and up-regulation of Nrf2 downstream glutamate-cysteine ligase catalytic subunit (GCLC) expression. In conclusion, HGF ameliorated HG-mediated oxidative stress in RMC at least in part by enhancing nitric oxide and subsequent 8-nitro-cGMP production.
Collapse
Affiliation(s)
- Shang Guoguo
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin-angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.
Collapse
Affiliation(s)
- Hanna E Abboud
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|