1
|
Zhong Z, Ye Y, Xia L, Na N. Identification of RNA-binding protein genes associated with renal rejection and graft survival. Ren Fail 2024; 46:2360173. [PMID: 38874084 PMCID: PMC11182075 DOI: 10.1080/0886022x.2024.2360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Rejection is one of the major factors affecting the long-term prognosis of kidney transplantation, and timely recognition and aggressive treatment of rejection is essential to prevent disease progression. RBPs are proteins that bind to RNA to form ribonucleoprotein complexes, thereby affecting RNA stability, processing, splicing, localization, transport, and translation, which play a key role in post-transcriptional gene regulation. However, their role in renal transplant rejection and long-term graft survival is unclear. The aim of this study was to comprehensively analyze the expression of RPBs in renal rejection and use it to construct a robust prediction strategy for long-term graft survival. The microarray expression profiles used in this study were obtained from GEO database. In this study, a total of eight hub RBPs were identified, all of which were upregulated in renal rejection samples. Based on these RBPs, the renal rejection samples could be categorized into two different clusters (cluster A and cluster B). Inflammatory activation in cluster B and functional enrichment analysis showed a strong association with rejection-related pathways. The diagnostic prediction model had a high diagnostic accuracy for T cell mediated rejection (TCMR) in renal grafts (area under the curve = 0.86). The prognostic prediction model effectively predicts the prognosis and survival of renal grafts (p < .001) and applies to both rejection and non-rejection situations. Finally, we validated the expression of hub genes, and patient prognosis in clinical samples, respectively, and the results were consistent with the above analysis.
Collapse
Affiliation(s)
- Zhaozhong Zhong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongrong Ye
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liubing Xia
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Yang Z, Chen L, Huang Y, Dong J, Yan Q, Li Y, Qiu J, Li H, Zhao D, Liu F, Tang D, Dai Y. Proteomic profiling of laser capture microdissection kidneys from diabetic nephropathy patients. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124231. [PMID: 38996754 DOI: 10.1016/j.jchromb.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Diabetic nephropathy (DN) remains the primary cause of end-stage renal disease (ESRD), warranting equal attention and separate analysis of glomerular, tubular, and interstitial lesions in its diagnosis and intervention. This study aims to identify the specific proteomics characteristics of DN, and assess changes in the biological processes associated with DN. 5 patients with DN and 5 healthy kidney transplant donor control individuals were selected for analysis. The proteomic characteristics of glomeruli, renal tubules, and renal interstitial tissue obtained through laser capture microscopy (LCM) were studied using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Significantly, the expression of multiple heat shock proteins (HSPs), tubulins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) in glomeruli and tubules was significantly reduced. Differentially expressed proteins (DEPs) in the glomerulus showed significant enrichment in pathways related to cell junctions and cell movement, including the regulation of actin cytoskeleton and tight junction. DEPs in renal tubules were significantly enriched in glucose metabolism-related pathways, such as glucose metabolism, glycolysis/gluconeogenesis, and the citric acid cycle. Moreover, the glycolysis/gluconeogenesis pathway was a co-enrichment pathway in both DN glomeruli and tubules. Notably, ACTB emerged as the most crucial protein in the protein-protein interaction (PPI) analysis of DEPs in both glomeruli and renal tubules. In this study, we delve into the unique proteomic characteristics of each sub-region of renal tissue. This enhances our understanding of the potential pathophysiological changes in DN, particularly the potential involvement of glycolysis metabolic disorder, glomerular cytoskeleton and cell junctions. These insights are crucial for further research into the identification of disease biomarkers and the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiqian Yang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Liangmei Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Yingxin Huang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Department of Nephrology, Xiaolan People's Hospital of Zhongshan, 528400, China
| | - Jingjing Dong
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Qiang Yan
- Department of Organ Transplantation, 924 Hospital, Guilin 541002, China
| | - Ya Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jing Qiu
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Haitao Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Da Zhao
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China.
| | - Yong Dai
- Comprehensive Health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317000, China; The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China.
| |
Collapse
|
3
|
Deng MS, Chen KJ, zhang DD, Li GH, Weng CM, Wang JM. m6A RNA Methylation Regulators Contribute to Predict and as a Therapy Target of Pulmonary Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2425065. [PMID: 35497924 PMCID: PMC9050297 DOI: 10.1155/2022/2425065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 01/04/2023]
Abstract
Background Pulmonary fibrosis is difficult to treat. Early diagnosis and finding potential drug therapy targets of pulmonary fibrosis are particularly important. There were still various problems with existing pulmonary fibrosis markers, so it is particularly important to find new biomarkers and drug treatment targets. m6A (N6,2'-O-dimethyladenosine) RNA methylation was the cause of many diseases, and it is regulated by m6A methylation regulators. So, whether RNA methylation regulators can be a diagnostic marker and potential drug therapy target of early pulmonary fibrosis needs to be explored. Materials and Methods Using GSE110147 and GSE33566 in the GEO database to predict the m6A methylation regulators that may be related to the development of pulmonary fibrosis, we used 10 mg/ml bleomycin to induce mouse pulmonary fibrosis models and human pulmonary fibrosis samples, to confirm whether this indicator can be an early diagnostic marker of pulmonary fibrosis. Results According to the database prediction results, METTL3 can predict the occurrence and development of pulmonary fibrosis, and the results of MASSON and HE staining show that the fibrosis model of mice is successful, and the fibrosis of human samples is obvious. The results of immunohistochemistry showed that the expression of METTL3 was significantly reduced in pulmonary fibrosis. Conclusions The m6A methylation regulator METTL3 can be considered as an important biomarker for diagnosing pulmonary fibrosis occurrence, furthermore it could be considered as a drug target because of its low expression in pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Sheng Deng
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dong-Dong zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Guan-Hua Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chang-Mei Weng
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
4
|
Fattahi F, Ellis JS, Sylvester M, Bahleda K, Hietanen S, Correa L, Lugogo NL, Atasoy U. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:38-48. [PMID: 34862257 DOI: 10.4049/jimmunol.2100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
RNA-binding protein HuR (ELAVL1) is a master regulator of gene expression in human pathophysiology. Its dysregulation plays an important role in many diseases. We hypothesized that HuR plays an important role in Th2 inflammation in asthma in both mouse and human. To address this, we used a model of airway inflammation in a T cell-specific knockout mouse model, distal lck-Cre HuRfl/fl, as well as small molecule inhibitors in human peripheral blood-derived CD4+ T cells. Peripheral CD4+ T cells were isolated from 26 healthy control subjects and 45 asthmatics (36 type 2 high and 9 non-type 2 high, determined by blood eosinophil levels and fraction of exhaled NO). Our mouse data showed conditional ablation of HuR in T cell-abrogated Th2 differentiation, cytokine production, and lung inflammation. Studies using human T cells showed that HuR protein levels in CD4+ T cells were significantly higher in asthmatics compared with healthy control subjects. The expression and secretion of Th2 cytokines were significantly higher in asthmatics compared with control subjects. AMP-activated protein kinase activator treatment reduced the expression of several cytokines in both type 2 high and non-type 2 high asthma groups. However, the effects of CMLD-2 (a HuR-specific inhibitor) were more specific to endotype-defining cytokines in type 2 high asthmatics. Taken together, these data suggest that HuR plays a permissive role in both allergen and non-allergen-driven airway inflammation by regulating key genes, and that interfering with its function may be a novel method of asthma treatment.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Jason S Ellis
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Michael Sylvester
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI.,Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kristin Bahleda
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Samuel Hietanen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Luis Correa
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; .,Division of Allergy-Immunology, Ann Arbor VA Health System, Ann Arbor, MI
| |
Collapse
|
5
|
Liu L, Zhong J, Chen B, Wang W, Xi H, Su X. CCAAT/enhancer binding protein (C/EBP) delta promotes the expression of PTX3 and macrophage phagocytosis during A. fumigatus infection. J Leukoc Biol 2021; 111:1225-1234. [PMID: 34939225 DOI: 10.1002/jlb.4ma1121-451rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Given the increasing incidence of pulmonary aspergillosis, it is important to understand the natural defense mechanisms by which the body can kill Aspergillus fumigatus conidia. Pentraxin 3 (PTX3) plays a nonredundant role in resistance to A. fumigatus. Here, we found that the key predicted PTX3 transcription factor, CCAAT/enhancer-binding protein δ (CEBPD), was up-regulated during A. fumigatus conidia infection. Functionally, CEBPD significantly promoted the expression of PTX3 and the phagocytic ability of macrophages. Mechanistically, CEBPD activated the PTX3 by directly binding to the promoter region of the PTX3 gene. We also showed that the RNA-binding protein human antigen R promoted CEBPD expression. These findings provide new insights into the crucial role of CEBPD in the phagocytosis of A. fumigatus conidia by macrophages and highlight this protein as a potential therapeutic target for invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinjin Zhong
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bilin Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| | - Haiyan Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| |
Collapse
|
6
|
Zheng B, Yuan M, Wang S, Tan Y, Xu Y, Ye J, Gao Y, Sun X, Wang T, Kong L, Wu X, Xu Q. Fraxinellone alleviates kidney fibrosis by inhibiting CUG-binding protein 1-mediated fibroblast activation. Toxicol Appl Pharmacol 2021; 420:115530. [PMID: 33845055 DOI: 10.1016/j.taap.2021.115530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Chronic Kidney Disease (CKD) is a serious threat to human health. In addition, kidney fibrosis is a key pathogenic intermediate for the progression of CDK. Moreover, excessive activation of fibroblasts is key to the development of kidney fibrosis and this process is difficult to control. Notably, fraxinellone is a natural compound isolated from Dictamnus dasycarpus and has a variety of pharmacological activities, including hepatoprotective, anti-inflammatory and anti-cancer effects. However, the effect of fraxinellone on kidney fibrosis is largely unknown. The present study showed that fraxinellone could alleviate folic acid-induced kidney fibrosis in mice in a dose dependent manner. Additionally, the results revealed that fraxinellone could effectively down-regulate the expression of CUGBP1, which was highly up-regulated in human and murine fibrotic renal tissues. Furthermore, expression of CUGBP1 was selectively induced by the Transforming Growth Factor-beta (TGF-β) through p38 and JNK signaling in kidney fibroblasts. On the other hand, downregulating the expression of CUGBP1 significantly inhibited the activation of kidney fibroblasts. In conclusion, these findings demonstrated that fraxinellone might be a new drug candidate and CUGBP1 could be a promising target for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manman Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shenglan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yizhu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yanjie Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xueqing Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Angiotensin II type 1 receptor-associated protein deficiency attenuates sirtuin1 expression in an immortalised human renal proximal tubule cell line. Sci Rep 2019; 9:16550. [PMID: 31719572 PMCID: PMC6851135 DOI: 10.1038/s41598-019-52566-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
The proximal tubule is a particularly important site for ageing-related kidney damage. Sirtuin 1 (SIRT1), an NAD+ (nicotinamide adenine dinucleotide)-dependent deacetylase in the proximal tubule, may be involved in renal injury associated with ageing. However, the mechanisms of SIRT1 regulation remain to be elucidated. We recently reported that angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP)-deficient mice displayed age-associated renal function decline and tubulointerstitial fibrosis. Our data showed that SIRT1 protein expression was reduced in ATRAP-deficient mice, although the relationship between ATRAP deficiency and age-associated renal fibrosis is still not fully understood. It is, therefore, necessary to investigate how ATRAP affects SIRT1 protein expression to resolve ageing-associated kidney dysfunction. Here, since ageing studies are inherently lengthy, we used an ex vivo model of the proximal tubule to determine the role of ATRAP in SIRT1 protein expression. We first generated a clonal immortalised human renal proximal tubule epithelial cell line (ciRPTEC) expressing AT1R and ATRAP. Using this cell line, we demonstrated that ATRAP knockdown reduced SIRT1 protein expression in the ciRPTEC but did not alter SIRT1 mRNA expression. Thus, ATRAP likely mediates SIRT1 protein abundance in ciRPTEC.
Collapse
|
8
|
Hao K, Lei W, Wu H, Wu J, Yang Z, Yan S, Lu XA, Li J, Xia X, Han X, Deng W, Zhong G, Zhao ZA, Hu S. LncRNA- Safe contributes to cardiac fibrosis through Safe- Sfrp2-HuR complex in mouse myocardial infarction. Am J Cancer Res 2019; 9:7282-7297. [PMID: 31695768 PMCID: PMC6831303 DOI: 10.7150/thno.33920] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: As a hallmark of various heart diseases, cardiac fibrosis ultimately leads to end-stage heart failure. Anti-fibrosis is a potential therapeutic strategy for heart failure. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of heart diseases that promise to serve as therapeutic targets. However, few lncRNAs have been directly implicated in cardiac fibrosis. Methods: The lncRNA expression profiles were assessed by microarray in cardiac fibrotic and remote ventricular tissues in mice with myocardial infarction. The mechanisms and functional significance of lncRNA-AK137033 in cardiac fibrosis were further investigated with both in vitro and in vivo models. Results: We identified 389 differentially expressed lncRNAs in cardiac fibrotic and remote ventricular tissues in mice with myocardial infarction. Among them, a lncRNA (AK137033) we named Safe was enriched in the nuclei of fibroblasts, and elevated in both myocardial infarction and TGF-β-induced cardiac fibrosis. Knockdown of Safe prevented TGF-β-induced fibroblast-myofibroblast transition, aberrant cell proliferation and secretion of extracellular matrix proteins in vitro, and mended the impaired cardiac function in mice suffering myocardial infarction. In vitro studies indicated that knockdown of Safe significantly inhibited the expression of its neighboring gene Sfrp2, and vice versa. The Sfrp2 overexpression obviously disturbed the regulatory effects of Safe shRNAs in both the in vitro cultured cardiac fibroblasts and myocardial infarction-induced fibrosis. Dual-Luciferase assay demonstrated that Safe and Sfrp2 mRNA stabilized each other via their complementary binding at the 3'-end. RNA electrophoretic mobility shift assay and RNA immunoprecipitation assay indicated that RNA binding protein HuR could bind to Safe-Sfrp2 RNA duplex, whereas the knockdown of HuR dramatically reduced the stabilization of Safe and Sfrp2 mRNAs, down-regulated their expression in cardiac fibroblasts, and thus inhibited TGF-β-induced fibrosis. The Safe overexpression partially restrained the phenotype change of cardiac fibroblasts induced by Sfrp2 shRNAs, but not that induced by HuR shRNAs. Conclusions: Our study identifies Safe as a critical regulator of cardiac fibrosis, and demonstrates Safe-Sfrp2-HuR complex-mediated Sfrp2 mRNA stability is the underlying mechanism of Safe-regulated cardiac fibrosis. Fibroblast-enriched Safe could represent a novel target for anti-fibrotic therapy in heart diseases.
Collapse
|
9
|
Feng Y, Fang Z, Liu B, Zheng X. p38MAPK plays a pivotal role in the development of acute respiratory distress syndrome. Clinics (Sao Paulo) 2019; 74:e509. [PMID: 31411275 PMCID: PMC6683303 DOI: 10.6061/clinics/2019/e509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by a complex pathophysiology, involving not only the respiratory system but also nonpulmonary distal organs. Although advances in the management of ARDS have led to a distinct improvement in ARDS-related mortality, ARDS is still a life-threatening respiratory condition with long-term consequences. A better understanding of the pathophysiology of this condition will allow us to create a personalized treatment strategy for improving clinical outcomes. In this article, we present a general overview p38 mitogen-activated protein kinase (p38MAPK) and recent advances in understanding its functions. We consider the potential of the pharmacological targeting of p38MAPK pathways to treat ARDS.
Collapse
Affiliation(s)
- Ying Feng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| | - Zhicheng Fang
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| | - Boyi Liu
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| |
Collapse
|
10
|
Yang C, Kelaini S, Caines R, Margariti A. RBPs Play Important Roles in Vascular Endothelial Dysfunction Under Diabetic Conditions. Front Physiol 2018; 9:1310. [PMID: 30294283 PMCID: PMC6158626 DOI: 10.3389/fphys.2018.01310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes is one of the major health care problems worldwide leading to huge suffering and burden to patients and society. Diabetes is also considered as a cardiovascular disorder because of the correlation between diabetes and an increased incidence of cardiovascular disease. Vascular endothelial cell dysfunction is a major mediator of diabetic vascular complications. It has been established that diabetes contributes to significant alteration of the gene expression profile of vascular endothelial cells. Post-transcriptional regulation by RNA binding proteins (RBPs) plays an important role in the alteration of gene expression profile under diabetic conditions. The review focuses on the roles and mechanisms of critical RBPs toward diabetic vascular endothelial dysfunction. Deeper understanding of the post- transcriptional regulation by RBPs could lead to new therapeutic strategies against diabetic manifestation in the future.
Collapse
Affiliation(s)
- Chunbo Yang
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Fang W, Wang Z, Li Q, Wang X, Zhang Y, Sun Y, Tang W, Ma C, Sun J, Li N, Yi F. Gpr97 Exacerbates AKI by Mediating Sema3A Signaling. J Am Soc Nephrol 2018. [PMID: 29531097 DOI: 10.1681/asn.2017080932] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) participate in a variety of physiologic functions, and several GPCRs have critical physiologic and pathophysiologic roles in the regulation of renal function. We investigated the role of Gpr97, a newly identified member of the adhesion GPCR family, in AKI.Methods AKI was induced by ischemia-reperfusion or cisplatin treatment in Gpr97-deficient mice. We assessed renal injury in these models and in patients with acute tubular necrosis by histologic examination, and we conducted microarray analysis and in vitro assays to determine the molecular mechanisms of Gpr97 function.Results Gpr97 was upregulated in the kidneys from mice with AKI and patients with biopsy-proven acute tubular necrosis compared with healthy controls. In AKI models, Gpr97-deficient mice had significantly less renal injury and inflammation than wild-type mice. Gpr97 deficiency also attenuated the AKI-induced expression of semaphorin 3A (Sema3A), a potential early diagnostic biomarker of renal injury. In NRK-52E cells subjected to oxygen-glucose deprivation, siRNA-mediated knockdown of Gpr97 further increased the expression of survivin and phosphorylated STAT3 and reduced toll-like receptor 4 expression. Cotreatment with recombinant murine Sema3A protein counteracted these effects. Finally, additional in vivo and in vitro studies, including electrophoretic mobility shift assays and luciferase reporter assays, showed that Gpr97 deficiency attenuates ischemia-reperfusion-induced expression of the RNA-binding protein human antigen R, which post-transcriptionally regulates Sema3A expression.Conclusions Gpr97 is an important mediator of AKI, and pharmacologic targeting of Gpr97-mediated Sema3A signaling at multiple levels may provide a novel approach for the treatment of AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Sun
- Departments of Pharmacology
| | | | | | - Jinpeng Sun
- Biochemistry and Molecular Biology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, and
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Fan Yi
- Departments of Pharmacology, .,The State Key Laboratory of Microbial Technology, Shandong University, Jinan, China; and
| |
Collapse
|
12
|
Investigating Ornithine Decarboxylase Posttranscriptional Regulation Via a Pulldown Assay Using Biotinylated Transcripts. Methods Mol Biol 2017. [PMID: 29080175 DOI: 10.1007/978-1-4939-7398-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in the polyamine biosynthetic pathway. It has been well documented that ODC is tightly regulated at the levels of transcription, posttranscriptional changes in RNA, and protein degradation during normal conditions and that these processes are dysregulated during tumorigenesis. Moreover, it has been recently shown that ODC is posttranscriptionally regulated by RNA binding proteins (RBPs) which can bind to the ODC mRNA transcript and alter its stability and translation. Using a mouse skin cancer model, we show that the RBP human antigen R (HuR) is able to bind to synthetic mRNA transcripts through a pulldown assay which utilizes a biotin-labeled ODC 3'-untranslated region (UTR). The details of this method are described here. A better understanding of the mechanism(s) which regulates ODC is critical for targeting ODC in chemoprevention.
Collapse
|
13
|
Yan J, Du F, Li SD, Yuan Y, Jiang JY, Li S, Li XY, Du ZX. AUF1 modulates TGF-β signal in renal tubular epithelial cells via post-transcriptional regulation of Nedd4L expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:48-56. [PMID: 28986222 DOI: 10.1016/j.bbamcr.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation process plays important roles in renal disease pathogenesis. AU-rich element RNA-binding protein (AUF1) interacts with and destabilizes mRNAs containing AU-rich elements (AREs) in their 3'UTR. The current study demonstrated that AUF1 was increased in unilateral ureteral obstruction (UUO) animal models. While proliferation and migration of HK2 cells was unaltered by AUF1 downregulation under normal condition, proliferative inhibition and migratory promotion mediated by TGF-β was significantly compromised. Mechanically, AUF1 downregulation decreased phosphorylated Smad2/3 via increasing their E3 ligase Nedd4L at the posttranscriptional level. In addition, the current study identified Nedd4L as a previously unreported target of AUF1. AUF1 regulates Nedd4L expression at the posttranscriptional level by interaction with AREs in the 3'UTR of the Nedd4L mRNA. Collectively, the current study indicates that AUF1 might be a potential player in renal tubulointerstitial fibrosis through modulation of TGF-β signal transduction via posttranscriptional regulation of Nedd4L.
Collapse
Affiliation(s)
- Jing Yan
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China; Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Feng Du
- Department of Nephrology, Sheng Jing Hospital, China Medical University, Shenyang 110005, China
| | - Sheng-Dong Li
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Si Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Xin-Yu Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
14
|
Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:753-763. [PMID: 28910975 DOI: 10.1093/abbs/gmx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Human antigen R (HuR) is a member of the embryonic lethal abnormal vision (ELAV) family which can bind to the A/U rich elements in 3' un-translated region of mRNA and regulate mRNA splicing, transportation, and stability. Unlike other members of the ELAV family, HuR is ubiquitously expressed. Early studies mainly focused on HuR function in malignant diseases. As researches proceed, more and more proofs demonstrate its relationship with inflammation. Since most kidney diseases involve pathological changes of inflammation, HuR is now suggested to play a pivotal role in glomerular nephropathy, tubular ischemia-reperfusion damage, renal fibrosis and even renal tumors. By regulating the mRNAs of target genes, HuR is causally linked to the onset and progression of kidney diseases. Reports on this topic are steadily increasing, however, the detailed function and mechanism of action of HuR are still not well understood. The aim of this review article is to summarize the present understanding of the role of HuR in inflammation in kidney diseases, and we anticipate that future research will ultimately elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jin Shang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhanzheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1. Sci Rep 2016; 6:22141. [PMID: 26912347 PMCID: PMC4766441 DOI: 10.1038/srep22141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/08/2016] [Indexed: 11/08/2022] Open
Abstract
RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.
Collapse
|
16
|
de Bruin RG, van der Veer EP, Prins J, Lee DH, Dane MJC, Zhang H, Roeten MK, Bijkerk R, de Boer HC, Rabelink TJ, van Zonneveld AJ, van Gils JM. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci Rep 2016; 6:21643. [PMID: 26905650 PMCID: PMC4764852 DOI: 10.1038/srep21643] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 01/12/2023] Open
Abstract
Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.
Collapse
Affiliation(s)
- Ruben G de Bruin
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jurriën Prins
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Dae Hyun Lee
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J C Dane
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Huayu Zhang
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Marko K Roeten
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C de Boer
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Affiliation(s)
- Yunfeng Zhou
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Zhang
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Youfei Guan
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
18
|
Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int 2015; 87:918-29. [DOI: 10.1038/ki.2014.403] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023]
|
19
|
Shang J, Wan Q, Wang X, Duan Y, Wang Z, Wei X, Zhang Y, Wang H, Wang R, Yi F. Identification of NOD2 as a novel target of RNA-binding protein HuR: evidence from NADPH oxidase-mediated HuR signaling in diabetic nephropathy. Free Radic Biol Med 2015; 79:217-27. [PMID: 25528059 DOI: 10.1016/j.freeradbiomed.2014.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Although our recent studies have demonstrated that NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation in diabetic nephropathy (DN), the regulatory mechanisms for NOD2 expression under hyperglycemia have not yet been elucidated. Considering that NOD2 mRNA from different species bears a long 3'-UTR with various AU-rich elements, the present study was designed to investigate the potential contribution of the RNA-binding protein human antigen R (HuR) on the posttranscriptional regulation of NOD2 expression. In this study, we first found upregulation of HuR in the kidney from DN subjects, which was correlated with proteinuria, indicating a role for HuR in the pathogenesis of DN. In vitro, high glucose (HG) induced a distinct increase in cytoplasmic HuR in rat glomerular mesangial cells. By RNA EMSA, we found that HuR bound to the 3'-UTR of NOD2, and HuR silencing reduced HG-induced NOD2 expression and mRNA stability. Mechanistically, we further found that NADPH oxidase-mediated redox signaling contributed to the expression and translocation of HuR and NOD2 mRNA stability. Finally, we evaluated the role of HuR showing that in vivo gene silencing of HuR by intrarenal lentiviral gene delivery ameliorated renal injury as well as reducing NOD2 expression in diabetic rats. Collectively, our studies demonstrate that HuR acts as a key posttranscriptional regulator of NOD2 expression, suggesting that targeting of HuR-NOD2 signaling might be crucial for the treatment of DN.
Collapse
Affiliation(s)
- Jin Shang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Qiang Wan
- Department of Nephrology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan 250021, China
| | - Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Yiqi Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Ziying Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Hui Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan 250021, China.
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
20
|
Xin H, Deng K, Fu M. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction. SCIENCE CHINA. LIFE SCIENCES 2014; 57:836-44. [PMID: 25104457 PMCID: PMC7089175 DOI: 10.1007/s11427-014-4703-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative and migratory capacity of endothelial cells, as well as control of leukocyte trafficking. Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis, diabetic vascular complications, sepsis-induced or severe virus infection-induced organ injuries. The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli, such as modified lipids, smoking, advanced glycation end products and bacteria toxin, significantly contribute to the development of endothelial dysfunction. The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied. However, the regulation of those gene expressions at post-transcriptional level is emerging. RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners. This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases.
Collapse
Affiliation(s)
- HongBo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| | - KeYu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| | - MinGui Fu
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
21
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|