1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Garnier AS, Laubacher H, Briet M. Drug-induced glomerular diseases. Therapie 2024; 79:271-281. [PMID: 37973491 DOI: 10.1016/j.therap.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Drug-induced kidney diseases represent a wide range of diseases that are responsible for a significant proportion of all acute kidney injuries and chronic kidney diseases. In the present review, we focused on drug-induced glomerular diseases, more precisely podocytopathies - minimal change diseases (MCD), focal segmental glomerulosclerosis (FSGS) - and membranous nephropathies (MN), from a physiological and a pharmacological point of view. The glomerular filtration barrier is composed of podocytes that form foot processes tightly connected and directly in contact with the basal membrane and surrounding capillaries. The common clinical feature of these diseases is represented by the loss of the ability of the filtration barrier to retain large proteins, leading to massive proteinuria and nephrotic syndrome. Drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), D-penicillamine, tiopronin, trace elements, bisphosphonate, and interferons have been historically associated with the occurrence of MCD, FSGS, and MN. In the last ten years, the development of new anti-cancer agents, including tyrosine kinase inhibitors and immune checkpoint inhibitors, and research into their renal adverse effects highlighted these issues and have improved our comprehension of these diseases.
Collapse
Affiliation(s)
- Anne-Sophie Garnier
- Service de néphrologie-dialyse-transplantation, CHU d'Angers, 49000 Angers, France; UFR Santé, université d'Angers, 49000 Angers, France; Université d'Angers, UMR CNRS 6015, Inserm U1083, unité MitoVasc, Team Carme, SFR ICAT, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France
| | - Hélène Laubacher
- UFR Santé, université d'Angers, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France
| | - Marie Briet
- UFR Santé, université d'Angers, 49000 Angers, France; Université d'Angers, UMR CNRS 6015, Inserm U1083, unité MitoVasc, Team Carme, SFR ICAT, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France; Service de pharmacologie - toxicologie et pharmacovigilance, CHU d'Angers, 49000 Angers, France.
| |
Collapse
|
3
|
Abstract
Kidney function decreases with age and may soon limit millions of lives as the proportion of the population over 70 years of age increases. Glycogen synthase kinase 3β (GSK3β) is involved with metabolism and may have a role in kidney senescence, positioning it as a target for complications from chronic kidney disease. However, different studies suggest GSK3 has contrasting effects. In this issue of the JCI, Fang et al. explored the function of GSK3β and the interplay with lithium using human tissue and mouse models. Notably, GSK3β was overexpressed and activated in aging mice, and depleting GSK3β reduced senescence and glomerular aging. In this Commentary, we explore the similarities and differences between Fang et al. and previous findings by Hurcombe et al. These findings should prompt further study of lithium and other GSK3β inhibitors as a means of extending glomerular function in individuals with chronic kidney disease.
Collapse
|
4
|
Ricciardi CA, Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021; 124:154890. [PMID: 34560098 DOI: 10.1016/j.metabol.2021.154890] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Metabolic and haemodynamic perturbations and their interaction drive the development of diabetic kidney disease (DKD) and its progression towards end stage renal disease (ESRD). Increased mitochondrial oxidative stress has been proposed as the central mechanism in the pathophysiology of DKD, but other mechanisms have been implicated. In parallel to increased oxidative stress, inflammation, cell apoptosis and tissue fibrosis drive the relentless progressive loss of kidney function affecting both the glomerular filtration barrier and the renal tubulointerstitium. Alteration of glomerular capillary autoregulation is at the basis of glomerular hypertension, an important pathogenetic mechanism for DKD. Clinical presentation of DKD can vary. Its classical presentation, often seen in patients with type 1 diabetes (T1DM), features hyperfiltration and albuminuria followed by progressive fall in renal function. Patients can often also present with atypical features characterised by progressive reduction in renal function without albuminuria, others in conjunction with non-diabetes related pathologies making the diagnosis, at times, challenging. Metabolic, lipid and blood pressure control with lifestyle interventions are crucial in reducing the progressive renal function decline seen in DKD. The prevention and management of DKD (and parallel cardiovascular disease) is a huge global challenge and therapies that target haemodynamic perturbations, such as inhibitors of the renin-angiotensin-aldosterone system (RAAS) and SGLT2 inhibitors, have been most successful.
Collapse
Affiliation(s)
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Science, King's College London, London, UK.
| |
Collapse
|
5
|
Hernandez-Diaz I, Pan J, Ricciardi CA, Bai X, Ke J, White KE, Flaquer M, Fouli GE, Argunhan F, Hayward AE, Hou FF, Mann GE, Miao RQ, Long DA, Gnudi L. Overexpression of Circulating Soluble Nogo-B Improves Diabetic Kidney Disease by Protecting the Vasculature. Diabetes 2019; 68:1841-1852. [PMID: 31217174 PMCID: PMC6706276 DOI: 10.2337/db19-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3β phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ivan Hernandez-Diaz
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Jiaqi Pan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Carlo Alberto Ricciardi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Xiaoyan Bai
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianting Ke
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Kathryn E White
- Electron Microscopy Unit, Newcastle University, Newcastle upon Tyne, U.K
| | - Maria Flaquer
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Georgia E Fouli
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fulye Argunhan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Anthea E Hayward
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fan Fan Hou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Giovanni E Mann
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | | | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, U.K
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K.
| |
Collapse
|
6
|
Hurcombe JA, Hartley P, Lay AC, Ni L, Bedford JJ, Leader JP, Singh S, Murphy A, Scudamore CL, Marquez E, Barrington AF, Pinto V, Marchetti M, Wong LF, Uney J, Saleem MA, Mathieson PW, Patel S, Walker RJ, Woodgett JR, Quaggin SE, Welsh GI, Coward RJM. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat Commun 2019; 10:403. [PMID: 30679422 PMCID: PMC6345761 DOI: 10.1038/s41467-018-08235-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023] Open
Abstract
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
Collapse
Affiliation(s)
- J A Hurcombe
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P Hartley
- Bournemouth University, Bournemouth, BH12 5BB, UK
| | - A C Lay
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L Ni
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - J J Bedford
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J P Leader
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - S Singh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A Murphy
- Department of Pathology, Southern General Hospital, Glasgow, G51 4TF, UK
| | - C L Scudamore
- Mary Lyon Centre, MRC Harwell, Didcot, Oxford, OX11 0RD, UK
| | - E Marquez
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A F Barrington
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - V Pinto
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - M Marchetti
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L-F Wong
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - J Uney
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - M A Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P W Mathieson
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
- The University of Hong Kong, Pokfulam, Hong Kong
| | - S Patel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R J Walker
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - G I Welsh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - R J M Coward
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
7
|
Solanki AK, Arif E, Morinelli T, Wilson RC, Hardiman G, Deng P, Arthur JM, Velez JC, Nihalani D, Janech MG, Budisavljevic MN. A Novel CLCN5 Mutation Associated With Focal Segmental Glomerulosclerosis and Podocyte Injury. Kidney Int Rep 2018; 3:1443-1453. [PMID: 30426109 PMCID: PMC6224352 DOI: 10.1016/j.ekir.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Tubular dysfunction is characteristic of Dent’s disease; however, focal segmental glomerulosclerosis (FSGS) can also be present. Glomerulosclerosis could be secondary to tubular injury, but it remains uncertain whether the CLCN5 gene, which encodes an endosomal chloride and/or hydrogen exchanger, plays a role in podocyte biology. Here, we implicate a role for CLCN5 in podocyte function and pathophysiology. Methods Whole exome capture and sequencing of the proband and 5 maternally-related family members was conducted to identify X-linked mutations associated with biopsy-proven FSGS. Human podocyte cultures were used to characterize the mutant phenotype on podocyte function. Results We identified a novel mutation (L521F) in CLCN5 in 2 members of a Hispanic family who presented with a histologic diagnosis of FSGS and low-molecular-weight proteinuria without hypercalciuria. Presence of CLCN5 was confirmed in cultured human podocytes. Podocytes transfected with the wild-type or the mutant (L521F) CLCN5 constructs showed differential localization. CLCN5 knockdown in podocytes resulted in defective transferrin endocytosis and was associated with decreased cell proliferation and increased cell migration, which are hallmarks of podocyte injury. Conclusions The CLCN5 mutation, which causes Dent’s disease, may be associated with FSGS without hyercalcuria and nepthrolithiasis. The present findings supported the hypothesis that CLCN5 participates in protein trafficking in podocytes and plays a critical role in organizing the components of the podocyte slit diaphragm to help maintain normal cell physiology and a functional filtration barrier. In addition to tubular dysfunction, mutations in CLCN5 may also lead to podocyte dysfunction, which results in a histologic picture of FSGS that may be a primary event and not a consequence of tubular damage.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Morinelli
- Division of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peifeng Deng
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John M Arthur
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juan Cq Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael G Janech
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Fernandes-Silva G, Ivani de Paula M, Rangel ÉB. mTOR inhibitors in pancreas transplant: adverse effects and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:367-385. [DOI: 10.1080/17425255.2017.1239708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gabriel Fernandes-Silva
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
| | - Mayara Ivani de Paula
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
| | - Érika B. Rangel
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Agam G, Azab AN. Whether lithium inhibits glycogen synthase kinase (GSK)-3β activity in vivo in humans is still an open question. Bipolar Disord 2016; 18:464-7. [PMID: 27440170 DOI: 10.1111/bdi.12414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School for Community Health Professions, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 2016; 44:8272-91. [PMID: 27365048 PMCID: PMC5041470 DOI: 10.1093/nar/gkw573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation.
Collapse
Affiliation(s)
- Mugdha Kulashreshtha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Ishita S Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Pradeep Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
11
|
Pullen N, Fornoni A. Drug discovery in focal and segmental glomerulosclerosis. Kidney Int 2016; 89:1211-20. [PMID: 27165834 PMCID: PMC4875964 DOI: 10.1016/j.kint.2015.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Despite the high medical burden experienced by patients with focal segmental glomerulosclerosis, the etiology of the condition remains largely unknown. Focal segmental glomerulosclerosis is highly heterogeneous in clinical and morphologic manifestations. While this presents challenges for the development of new treatments, research investments over the last 2 decades have yielded a surfeit of potential avenues for therapeutic intervention. The development of many of those ideas and concepts into new therapies, however, has been very disappointing. Here, we describe some of the factors that have potentially contributed to the poor translational performance from this research investment, including the confidence we ascribe to a target, the conduct of experimental studies, and the availability of selective reagents to test hypotheses. We will discuss the significance of genetic and systems traits as well as other methods for reducing bias. We will analyze the limitations of a successful drug development. We will use specific examples hoping that these will guide a consensus for investment and drive greater translational quality. We hope that this substrate will serve to exemplify the tremendous opportunity for intervention as well as facilitate greater collaborative effort between industry, academia, and private foundations in promoting appropriate validation of these targets. Only then will we have achieved our goal for curative therapies for this devastating disease.
Collapse
Affiliation(s)
- Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts, USA.
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
12
|
Ivanova EA, Arcolino FO, Elmonem MA, Rastaldi MP, Giardino L, Cornelissen EM, van den Heuvel LP, Levtchenko EN. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility. Kidney Int 2016; 89:1037-1048. [PMID: 27083281 DOI: 10.1016/j.kint.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
The involvement of the glomerulus in the pathogenesis of cystinosis, caused by loss-of-function mutations in cystinosin (CTNS, 17p13), is a matter of controversy. Although patients with cystinosis demonstrate glomerular lesions and high-molecular-weight proteinuria starting from an early age, a mouse model of cystinosis develops only signs of proximal tubular dysfunction. Here we studied podocyte damage in patients with cystinosis by analyzing urinary podocyte excretion and by in vitro studies of podocytes deficient in cystinosin. Urine from patients with cystinosis presented a significantly higher amount of podocytes compared with controls. In culture, cystinotic podocytes accumulated cystine compatible with cystinosin deficiency. The expression of podocyte specific genes CD2AP, podocalyxin, and synaptopodin and of the WT1 protein was evident in all cell lines. Conditionally immortalized podocyte lines of 2 patients with different CTNS mutations had altered cytoskeleton, impaired cell adhesion sites, and increased individual cell motility. Moreover, these cells showed enhanced phosphorylation of both Akt1 and Akt2 (isoforms of protein kinase B). Inhibition of Akt by a specific inhibitor (Akti inhibitor 1/2) resulted in normalization of the hypermotile phenotype. Thus, our study extends the list of genetic disorders causing podocyte damage and provides the evidence of altered cell signaling cascades resulting in impaired cell adhesion and enhanced cell motility in cystinosis.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fanny O Arcolino
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohamed A Elmonem
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maria P Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Fondazione D'Amico, Milano, Italy
| | - Laura Giardino
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Fondazione D'Amico, Milano, Italy
| | - Elisabeth M Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lambertus P van den Heuvel
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elena N Levtchenko
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Wicks SE, Nguyen TT, Breaux C, Kruger C, Stadler K. Diet-induced obesity and kidney disease - In search of a susceptible mouse model. Biochimie 2015; 124:65-73. [PMID: 26248309 DOI: 10.1016/j.biochi.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/02/2015] [Indexed: 01/09/2023]
Abstract
Obesity and metabolic syndrome are independent risk factors for chronic kidney disease, even without diabetes or hyperglycemia. Here, we compare two mouse models that are susceptible to diet-induced obesity: the relatively renal injury resistant C57BL/6J strain and the DBA2/J strain which is more sensitive to renal injury. Our studies focused on characterizing the effects of high fat diet feeding on renal oxidative stress, albuminuria, fibrosis and podocyte loss/insulin resistance. While the C57BL/6J strain does not develop significant pathological changes in the kidney, at least on lard based diets within the time frame investigated, it does show increased renal iNOS and nitrotyrosine levels and elevated mitochondrial respiration which may be indicative of mitochondrial lipid overfueling. Restricting the high fat diet to decrease adiposity decreased the levels of cellular oxidative stress markers, indicating that adiposity-related proinflammatory changes such as increased iNOS levels may trigger similar responses in the kidney. Mitochondrial respiration remained higher, suggesting that eating excess lipids, despite normal adiposity may still lead to renal mitochondrial overfueling. In comparison, DBA/2J mice developed albuminuria on similar diets, signs of fibrosis, oxidative stress, early signs of podocyte loss (evaluated by the markers podocin and WT-1) and podocyte insulin resistance (unable to phosphorylate their glomerular Akt when insulin was given). To summarize, while the C57BL/6J strain is not particularly susceptible to renal disease, changes in its mitochondrial lipid handling combined with the easy availability of transgenic technology may be an advantage to design new knockout models related to mitochondrial lipid metabolism. The DBA/2J model could serve as a basis for studying podocyte insulin resistance and identifying early renal markers in obesity before more severe kidney disease develops. Based on our observations, we encourage further critical evaluation of mouse models for obesity related chronic kidney disease.
Collapse
Affiliation(s)
- Shawna E Wicks
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Trang-Tiffany Nguyen
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Chelsea Breaux
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Claudia Kruger
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, USA.
| |
Collapse
|
14
|
Fine-tuning of NFκB by glycogen synthase kinase 3β directs the fate of glomerular podocytes upon injury. Kidney Int 2015; 87:1176-90. [PMID: 25629551 PMCID: PMC4449834 DOI: 10.1038/ki.2014.428] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/28/2022]
Abstract
NFκB is regulated by a myriad of signaling cascades including glycogen synthase kinase (GSK) 3β and plays a Janus role in podocyte injury. In vitro, lipopolysaccharide or adriamycin elicited podocyte injury and cytoskeletal disruption, associated with NFκB activation and induced expression of NFκB target molecules, including pro-survival Bcl-xL and podocytopathic mediators like MCP-1, cathepsin L and B7-1. Broad range inhibition of NFκB diminished the expression of all NFκB target genes, restored cytoskeleton integrity, but potentiated apoptosis. In contrast, blockade of GSK3β by lithium or TDZD-8, mitigated the expression of podocytopathic mediators, ameliorated podocyte injury, but barely affected Bcl-xL expression or sensitized apoptosis. Mechanistically, GSK3β was sufficient and essential for RelA/p65 phosphorylation specifically at serine 467, which specifies the expression of selective NFκB target molecules, including podocytopathic mediators, but not Bcl-xL. In vivo, lithium or TDZD-8 therapy improved podocyte injury and proteinuria in mice treated with lipopolysaccharide or adriamycin, concomitant with suppression of podocytopathic mediators but retained Bcl-xL in glomerulus. Broad range inhibition of NFκB conferred similar but much weakened antiproteinuric and podoprotective effects accompanied with a blunted glomerular expression of Bcl-xL and marked podocyte apoptosis. Thus, the GSK3β dictated fine-tuning of NFκB may serve as a novel therapeutic target for podocytopathy.
Collapse
|
15
|
Paeng J, Chang JH, Lee SH, Nam BY, Kang HY, Kim S, Oh HJ, Park JT, Han SH, Yoo TH, Kang SW. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions. Apoptosis 2014; 19:1678-90. [DOI: 10.1007/s10495-014-1037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Zhang X, Zhao F, Si Y, Huang Y, Yu C, Luo C, Zhang N, Li Q, Gao X. GSK3β regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules 2014; 19:9435-52. [PMID: 24995926 PMCID: PMC6271057 DOI: 10.3390/molecules19079435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase, whose activity is inhibited by AKT phosphorylation. This inhibitory phosphorylation of GSK3β can in turn play a regulatory role through phosphorylation of several proteins (such as mTOR, elF2B) to promote protein synthesis. mTOR is a key regulator in protein synthesis and cell proliferation, and recent studies have shown that both GSK3β and mTORC1 can regulate SREBP1 to promote fat synthesis. Thus far, however, the cross talk between GSK3β and the mTOR pathway in the regulation of milk synthesis and associated cell proliferation is not well understood. In this study the interrelationship between GSK3β and the mTOR/S6K1 signaling pathway leading to milk synthesis and proliferation of dairy cow mammary epithelial cells (DCMECs) was analyzed using techniques including GSK3β overexpression by transfection, GSK3β inhibition, mTOR inhibition and methionine stimulation. The analyses revealed that GSK3β represses the mTOR/S6K1 pathway leading to milk synthesis and cell proliferation of DCMECs, whereas GSK3β phosphorylation enhances this pathway. Conversely, the activated mTOR/S6K1 signaling pathway downregulates GSK3β expression but enhances GSK3β phosphorylation to increase milk synthesis and cell proliferation, whereas inhibition of mTOR leads to upregulation of GSK3β and repression of GSK3β phosphorylation, which in turn decreases milk synthesis, and cell proliferation. These findings indicate that GSK3β and phosphorylated GSK3β regulate milk synthesis and proliferation of DCMECs via the mTOR/S6K1 signaling pathway. These findings provide new insight into the mechanisms of milk synthesis.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Feng Zhao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Si
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yuling Huang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Yu
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Chaochao Luo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Na Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Fakhri H, Pathare G, Fajol A, Zhang B, Bock T, Kandolf R, Schleicher E, Biber J, Föller M, Lang UE, Lang F. Regulation of mineral metabolism by lithium. Pflugers Arch 2014; 466:467-475. [PMID: 24013758 DOI: 10.1007/s00424-013-1340-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
Abstract
Lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), is widely used for the treatment of mood disorders. Side effects of lithium include nephrogenic diabetes insipidus, leading to renal water loss. Dehydration has in turn been shown to downregulate Klotho, which is required as co-receptor for the downregulation of 1,25(OH)2D3 formation by fibroblast growth factor 23 (FGF23). FGF23 decreases and 1,25(OH)2D3 stimulates renal tubular phosphate reabsorption. The present study explored whether lithium influences renal Klotho expression, FGF23 serum levels, 1,25(OH)2D3 formation, and renal phosphate excretion. To this end, mice were analyzed after a 14-day period of sham treatment or of treatment with lithium (200 mg/kg/day subcutaneously). Serum antidiuretic hormone (ADH), FGF23, and 1,25(OH)2D3 concentrations were determined by ELISA or EIA, renal Klotho protein abundance and GSK3 phosphorylation were analyzed by Western blotting, and serum phosphate and calcium concentration by photometry. Lithium treatment significantly increased renal GSK3 phosphorylation, enhanced serum ADH and FGF23 concentrations, downregulated renal Klotho expression, stimulated renal calcium and phosphate excretion, and decreased serum 1,25(OH)2D3 and phosphate concentrations. In conclusion, lithium treatment upregulates FGF23 formation, an effect paralleled by substantial decrease of serum 1,25(OH)2D3, and phosphate concentrations and thus possibly affecting tissue calcification.
Collapse
Affiliation(s)
- Hajar Fakhri
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schulze U, Vollenbröker B, Braun DA, Van Le T, Granado D, Kremerskothen J, Fränzel B, Klosowski R, Barth J, Fufezan C, Wolters DA, Pavenstädt H, Weide T. The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway. Mol Cell Proteomics 2014; 13:1397-411. [PMID: 24578385 DOI: 10.1074/mcp.m113.034108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.
Collapse
Affiliation(s)
- Ulf Schulze
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Beate Vollenbröker
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniela A Braun
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Truc Van Le
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniel Granado
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Joachim Kremerskothen
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Benjamin Fränzel
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Rafael Klosowski
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Johannes Barth
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Christian Fufezan
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Dirk A Wolters
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Hermann Pavenstädt
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| | - Thomas Weide
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| |
Collapse
|
19
|
Khoury CC, Khayat MF, Yeo TK, Pyagay PE, Wang A, Asuncion AM, Sharma K, Yu W, Chen S. Visualizing the mouse podocyte with multiphoton microscopy. Biochem Biophys Res Commun 2012; 427:525-30. [PMID: 23022193 DOI: 10.1016/j.bbrc.2012.09.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/14/2012] [Indexed: 01/05/2023]
Abstract
The podocyte is a highly specialized kidney glomerular epithelial cell that plays an essential role in glomerular filtration and is believed to be the target of numerous glomerular diseases leading to proteinuria. Despite the leaps in our understanding of podocyte biology, new methodologies are needed to facilitate research into the cell. Multiphoton microscopy (MPM) was used to image the nephrin knockout/green fluorescent protein (GFP) knock-in heterozygote (Nphs1(tm1Rkl)/J) mouse. The nephrin promoter restricts GFP expression to the podocytes that fluoresce green under excitation. From the exterior of an intact kidney, MPM can peer into the renal parenchyma and visualize the podocytes that outline the globular shape of the glomeruli. Details as fine as the podocyte's secondary processes can be resolved. In contrast, podocytes exhibit no fluorescence in the wildtype mouse and are invisible to MPM. Phenotypically, there are no significant differences between wildtype and Nphs1(tm1Rkl)/J mice in body weight, urinary albumin excretion, creatinine clearance, or glomerular depth. Interestingly, the glomeruli are closer to the kidney capsule in female mice, making the gender the preferred choice for MPM. For the first time, green fluorescent podocytes in a mouse model free of confounding phenotypes can be visualized unequivocally and in the "positive" by MPM, facilitating intravital studies of the podocyte.
Collapse
Affiliation(s)
- Charbel C Khoury
- Division of Nephrology/Hypertension, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|