1
|
Takahashi K, Yu A, Otsuka T, Pasic L, Narui C, He L, Ellinger P, Grundmann M, Harris RC, Takahashi T. CD148 agonistic antibody alleviates renal injury induced by chronic angiotensin II infusion in mice. BMC Nephrol 2025; 26:165. [PMID: 40165104 PMCID: PMC11959730 DOI: 10.1186/s12882-025-04070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Angiotensin II (Ang II) plays a critical role in the progression of kidney disease. In addition to its direct signaling events, Ang II transactivates epidermal growth factor receptor (EGFR) and causes renal injury. CD148 is a transmembrane protein tyrosine phosphatase that dephosphorylates EGFR and strongly inhibits its activity. In this study, we have asked if CD148 agonistic antibody 18E1 mAb attenuates renal injury induced by chronic Ang II infusion to explore its therapeutic application. METHODS Hypertensive nephropathy was induced in mice subjected to unilateral nephrectomy (UNx) by infusing Ang II (1.4 mg/kg per day) for 6 weeks using an osmotic minipump. The 18E1 mAb or isotype control IgG were intraperitoneally injected (15 mg/kg, three times per week) to the UNx + Ang II mice for 6 weeks, and their renal phenotype was investigated. RESULTS Chronic Ang II infusion induced evident hypertension and renal injury that is indicated by elevation of plasma creatinine, urinary albumin excretion, renal hypertrophy, podocyte injury, macrophage infiltration, and the expression of alpha smooth muscle actin and collagen deposition. As compared with isotype control antibody, 18E1 mAb significantly reduced these renal changes, while it showed no effects on blood pressure. Furthermore, phospho-EGFR immunohistochemistry and immunoblotting demonstrated renal EGFR is activated in the mice that were subjected to UNx and Ang II infusion and 18E1 mAb significantly reduces EGFR phosphorylation in these kidneys as compared with isotype control treatment. CONCLUSION Agonistic CD148 antibody attenuates UNx + Ang II-induced renal injury, in part by reducing EGFR activity.
Collapse
Affiliation(s)
- Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Alina Yu
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Lejla Pasic
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chikage Narui
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, 42113, Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, 42113, Wuppertal, Germany
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
3
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
5
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
6
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
7
|
Yi L, Ai K, Li H, Qiu S, Li Y, Wang Y, Li X, Zheng P, Chen J, Wu D, Xiang X, Chai X, Yuan Y, Zhang D. CircRNA_30032 promotes renal fibrosis in UUO model mice via miRNA-96-5p/HBEGF/KRAS axis. Aging (Albany NY) 2021; 13:12780-12799. [PMID: 33973871 PMCID: PMC8148471 DOI: 10.18632/aging.202947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the role of circular RNA_30032 (circRNA_30032) in renal fibrosis and the underlying mechanisms. The study was carried out using TGF-β1-induced BUMPT cells and unilateral ureteral obstruction (UUO)-induced mice, respectively, as in vitro and in vivo models. CircRNA_30032 expression was significantly increased by 9.15- and 16.6-fold on days 3 and 7, respectively, in the renal tissues of UUO model mice. In TGF-β1-treated BUMPT cells, circRNA_30032 expression was induced by activation of the p38 mitogen-activated protein kinase signaling pathway. Quantitative real-time PCR, western blotting and dual luciferase reporter assays showed that circRNA_30032 mediated TGF-β1-induced and UUO-induced renal fibrosis by sponging miR-96-5p and increasing the expression of profibrotic proteins, including HBEGF, KRAS, collagen I, collagen III and fibronectin. CircRNA_30032 silencing significantly reduced renal fibrosis in UUO model mice by increasing miR-96-5p levels and decreasing levels of HBEGF and KRAS. These results demonstrate that circRNA_30032 promotes renal fibrosis via the miR-96-5p/HBEGF/KRAS axis and suggest that circRNA_30032 is a potential therapeutic target for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yijian Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunchang Yuan
- Department of Chest Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The aim of this study was to summarize recent findings about the role of the epidermal growth factor receptor (EGFR) in acute kidney injury and in progression of chronic kidney injury. RECENT FINDINGS There is increasing evidence that EGFR activation occurs as a response to either ischemic or toxic kidney injury and EGFR signalling plays an important role in recovery of epithelial integrity. However, with incomplete recovery or in conditions predisposing to progressive glomerular and tubulointerstitial injury, aberrant persistent EGFR signalling is a causal mediator of progressive fibrotic injury. New studies have implicated activation of HIPPO/YAP signalling as a component of EGFR's actions in the kidney. There is also new evidence for sex disparities in kidney EGFR expression and activation after injury, with a male predominance that is mediated by androgens. SUMMARY There is increasing evidence for an important role for EGFR signalling in mediation of kidney injury, raising the possibility that interruption of the signalling cascade could limit progression of development of progressive kidney fibrosis.
Collapse
Affiliation(s)
- Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine
- Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Chiusa M, Hu W, Zienkiewicz J, Chen X, Zhang MZ, Harris RC, Vanacore RM, Bentz JA, Remuzzi G, Benigni A, Fogo AB, Luo W, Mili S, Wilson MH, Zent R, Hawiger J, Pozzi A. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J Cell Biol 2021; 219:151955. [PMID: 32678881 PMCID: PMC7480104 DOI: 10.1083/jcb.202001120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive accumulation of collagen leads to fibrosis. Integrin α1β1 (Itgα1β1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1β1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.
Collapse
Affiliation(s)
- Manuel Chiusa
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Wen Hu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Jozef Zienkiewicz
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Raymond C Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | | | - Giuseppe Remuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Agnes B Fogo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Jacek Hawiger
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
10
|
Abdelzaher WY, Rofaeil RR, Abdel-Hafez SMN, Atta M, Bahaa El-Deen MA, Ali DM. Ameliorating effect of leukotriene receptor antagonist in multi-organ toxicity induced in rat offspring, a possible role for epidermal growth factor. Immunopharmacol Immunotoxicol 2021; 43:183-191. [PMID: 33504223 DOI: 10.1080/08923973.2021.1878213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: Nowadays, there is a dramatic increase in the interest of potential impact of consumer-relevant engineered nanoparticles on pregnancy.Materials and methods: This study investigated the possible protective effect of montelukast in neonatal organ toxicity induced by maternal exposure to silver nanoparticles (AgNPs) in rats.Results: It was noticed that montelukast reduced serum urea, creatinine, renal caspase-3 immunoreactivity and IL-1β and increased total antioxidant capacity, as compared to AgNPs. In kidney and bone tissue, montelukast reduced oxidative stress parameters and TNF-α level that was increased with AgNPs. Surprisingly, montelukast administration increased epidermal growth factor (EGF) in bone and reduced it in kidney. Furthermore, as compared to AgNPs, montelukast improved histopathological picture of kidney and bone.Conclusions: In conclusion, montelukast antagonized the biochemical and histopathological changes occurred in kidneys and bones of rat offspring by maternal exposure to AgNPs, mostly by anti-oxidant, anti-apoptotic and anti-inflammatory actions with a possible role for EGF.
Collapse
Affiliation(s)
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, El Minia, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | | | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, El Minia, Egypt
| | | | - Dalia Mohamed Ali
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Minia University, El Minia, Egypt
| |
Collapse
|
11
|
Gonçalves JG, Canale D, de Bragança AC, Seguro AC, Shimizu MHM, Volpini RA. The Blockade of TACE-Dependent EGF Receptor Activation by Losartan-Erlotinib Combination Attenuates Renal Fibrosis Formation in 5/6-Nephrectomized Rats Under Vitamin D Deficiency. Front Med (Lausanne) 2021; 7:609158. [PMID: 33469545 PMCID: PMC7813781 DOI: 10.3389/fmed.2020.609158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
Chronic kidney disease (CKD) has been considered a major public health issue. In addition to cardiovascular diseases and infections, hypovitaminosis D has been considered a non-traditional aggravating factor for CKD progression. Interstitial fibrosis is a hallmark of CKD strongly correlated with deterioration of renal function. Transforming growth factor β (TGF-β) is the major regulatory profibrotic cytokine in CKD. Many injurious stimuli converge on the TGF-β pathway, which has context-dependent pleiotropic effects and interacts with several related renal fibrosis formation (RFF) pathways. Epidermal growth factor receptor (EGFR) is critically involved in CKD progression, exerting a pathogenic role in RFF associated with TGF-β-related fibrogenesis. Among others, EGFR pathway can be activated by a disintegrin and a metalloproteinase known as tumor necrosis factor α-converting enzyme (TACE). Currently no effective therapy is available to completely arrest RFF and slow the progression of CKD. Therefore, we investigated the effects of a double treatment with losartan potassium (L), an AT1R antagonist, and the tyrosine kinase inhibitor erlotinib (E) on the alternative pathway of RFF related to TACE-dependent EGFR activation in 5/6-nephrectomized rats under vitamin D deficiency (D). During the 90-day protocol, male Wistar rats under D, were submitted to 5/6 nephrectomy (N) on day 30 and randomized into four groups: N+D, no treatment; N+D+L, received losartan (50 mg/kg/day); N+D+E, received erlotinib (6 mg/kg/day); N+D+L+E received losartan+erlotinib treatment. N+D+L+E data demonstrated that the double treatment with losartan+erlotinib not only blocked the TACE-dependent EGF receptor activation but also prevented the expression of TGF-β, protecting against RFF. This renoprotection by losartan+erlotinib was corroborated by a lower expression of ECM proteins and markers of phenotypic alteration as well as a lesser inflammatory cell infiltrate. Although erlotinib alone has been emerging as a renoprotective drug, its association with losartan should be considered as a potential therapeutic strategy on the modulation of RFF.
Collapse
Affiliation(s)
- Janaína Garcia Gonçalves
- Laboratorio de Investigacao Medica 12, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Canale
- Laboratorio de Investigacao Medica 12, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Bragança
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Carlos Seguro
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rildo Aparecido Volpini
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Wang ZJ, Chang LL, Wu J, Pan HM, Zhang QY, Wang MJ, Xin XM, Luo SS, Chen JA, Gu XF, Guo W, Zhu YZ. A Novel Rhynchophylline Analog, Y396, Inhibits Endothelial Dysfunction Induced by Oxidative Stress in Diabetes Through Epidermal Growth Factor Receptor. Antioxid Redox Signal 2020; 32:743-765. [PMID: 31892280 DOI: 10.1089/ars.2018.7721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aims: Endothelial dysfunction appears in early diabetes mellitus partially because of epidermal growth factor receptor (EGFR) abnormal activation and downstream oxidative stress. The aim of this study was to determine whether Y396, a synthesized analog of rhynchophylline, could protect against endothelial dysfunction in diabetes and the underlying molecular mechanism. Results: Y396 could directly target the EGFR and inhibit its phosphorylation induced by high glucose and EGF, downstream translocation to the nucleus of E2F1, and its transcriptional activity and expression of Nox4. Diabetes-induced endothelium malfunction was ameliorated by Y396 treatment through EGFR inhibition. Downstream oxidative stress was decreased by Y396 in the aortas of type 1 diabetes mellitus mice and primary rat aorta endothelial cells (RAECs). Y396 could also ameliorate tunicamycin-induced oxidative stress in the aorta and RAECs. In addition, we again determined the protective effects of Y396 on high-fat diet/streptozotocin-induced type 2 diabetes mellitus. Innovation: This is the first study to demonstrate that Y396, a novel rhynchophylline analog, suppressed high-glucose-induced endothelial malfunction both in vivo and in vitro by inhibiting abnormal phosphorylation of EGFR. Our work uncovered EGFR as a novel therapeutic target and Y396 as a potential therapy against diabetes-induced complication. Conclusion: Y396 could directly bind with EGFR, and inhibit its phosphorylation and downstream E2F1 transcriptional activity. It could also preserve tunicamycin-evoked endothelial dysfunction and oxidative stress. It could protect against diabetes-induced endothelium malfunction in vivo through EGFR inhibition and downstream oxidative stress. Antioxid. Redox Signal. 32, 743-765.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ling-Ling Chang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-Ming Pan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Qiu-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, China
| | - Min-Jun Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Ming Xin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Shan-Shan Luo
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Ji-An Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Xian-Feng Gu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Wei Guo
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
13
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Zhang MZ, Sasaki K, Li Y, Li Z, Pan Y, Jin GN, Wang Y, Niu A, Wang S, Fan X, Chen JC, Borza C, Yang H, Pozzi A, Fogo AB, Harris RC. The Role of the EGF Receptor in Sex Differences in Kidney Injury. J Am Soc Nephrol 2019; 30:1659-1673. [PMID: 31292196 PMCID: PMC6727256 DOI: 10.1681/asn.2018121244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/13/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury. METHODS To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines. RESULTS In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells. CONCLUSIONS These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine,
- Vanderbilt Center for Kidney Disease
| | - Kensuke Sasaki
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Yan Li
- Division of Nephrology and Hypertension, Department of Medicine
| | - Zhilian Li
- Division of Nephrology and Hypertension, Department of Medicine
| | - Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Guan-Nan Jin
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Jian Chun Chen
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Corina Borza
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Agnes B Fogo
- Vanderbilt Center for Kidney Disease
- Department of Pathology, and
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine,
- Vanderbilt Center for Kidney Disease
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
15
|
Meng XM. Inflammatory Mediators and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:381-406. [PMID: 31399975 DOI: 10.1007/978-981-13-8871-2_18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal inflammation is the initial, healthy response to renal injury. However, prolonged inflammation promotes the fibrosis process, which leads to chronic pathology and eventually end-stage kidney disease. There are two major sources of inflammatory cells: first, bone marrow-derived leukocytes that include neutrophils, macrophages, fibrocytes and mast cells, and second, locally activated kidney cells such as mesangial cells, podocytes, tubular epithelial cells, endothelial cells and fibroblasts. These activated cells produce many profibrotic cytokines and growth factors that cause accumulation and activation of myofibroblasts, and enhance the production of the extracellular matrix. In particular, activated macrophages are key mediators that drive acute inflammation into chronic kidney disease. They produce large amounts of profibrotic factors and modify the microenvironment via a paracrine effect, and they also transdifferentiate to myofibroblasts directly, although the origin of myofibroblasts in the fibrosing kidney remains controversial. Collectively, understanding inflammatory cell functions and mechanisms during renal fibrosis is paramount to improving diagnosis and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
17
|
Zhu L, Luu T, Emfinger CH, Parks BA, Shi J, Trefts E, Zeng F, Kuklenyik Z, Harris RC, Wasserman DH, Fazio S, Stafford JM. CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes 2018; 67:2494-2506. [PMID: 30213825 PMCID: PMC6245220 DOI: 10.2337/db18-0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
In clinical trials, inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels but does not robustly improve cardiovascular outcomes. Approximately two-thirds of trial participants are obese. Lower plasma CETP activity is associated with increased cardiovascular risk in human studies, and protective aspects of CETP have been observed in mice fed a high-fat diet (HFD) with regard to metabolic outcomes. To define whether CETP inhibition has different effects depending on the presence of obesity, we performed short-term anacetrapib treatment in chow- and HFD-fed CETP transgenic mice. Anacetrapib raised HDL cholesterol and improved aspects of HDL functionality, including reverse cholesterol transport, and HDL's antioxidative capacity in HFD-fed mice was better than in chow-fed mice. Anacetrapib worsened the anti-inflammatory capacity of HDL in HFD-fed mice. The HDL proteome was markedly different with anacetrapib treatment in HFD- versus chow-fed mice. Despite benefits on HDL, anacetrapib led to liver triglyceride accumulation and insulin resistance in HFD-fed mice. Overall, our results support a physiologic importance of CETP in protecting from fatty liver and demonstrate context selectivity of CETP inhibition that might be important in obese subjects.
Collapse
Affiliation(s)
- Lin Zhu
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Thao Luu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Christopher H Emfinger
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Bryan A Parks
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jeanne Shi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
- Trinity College of Art and Science, Duke University, Durham, NC
| | - Elijah Trefts
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Fenghua Zeng
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sergio Fazio
- The Center for Preventive Cardiology at the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - John M Stafford
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
18
|
Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs JJ, Farber G, Issuree PD, Donlin L, Mcllwain DR, Mak TW, Blobel CP, Salmon JE. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling. J Clin Invest 2018; 128:1397-1412. [PMID: 29369823 DOI: 10.1172/jci97650] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.
Collapse
Affiliation(s)
| | - Yurii Chinenov
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | | | - Michael Madaio
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Joris Jth Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gregory Farber
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA
| | - Priya D Issuree
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Laura Donlin
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - David R Mcllwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Institute for Advanced Study, Technical University Munich, Munich, Germany.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jane E Salmon
- Program in Inflammation and Autoimmunity, and.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
19
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
20
|
Overstreet JM, Wang Y, Wang X, Niu A, Gewin LS, Yao B, Harris RC, Zhang MZ. Selective activation of epidermal growth factor receptor in renal proximal tubule induces tubulointerstitial fibrosis. FASEB J 2017. [PMID: 28626027 DOI: 10.1096/fj.201601359rr] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) has been implicated in the pathogenesis of diabetic nephropathy and renal fibrosis; however, the causative role of sustained EGFR activation is unclear. Here, we generated a novel kidney fibrotic mouse model of persistent EGFR activation by selectively expressing the EGFR ligand, human heparin-binding EGF-like growth factor (hHB-EGF), in renal proximal tubule epithelium. hHB-EGF expression increased tyrosine kinase phosphorylation of EGFR and the subsequent activation of downstream signaling pathways, including ERK and AKT, as well as the profibrotic TGF-β1/SMAD pathway. Epithelial-specific activation of EGFR was sufficient to promote spontaneous and progressive renal tubulointerstitial fibrosis, as characterized by increased collagen deposition, immune cell infiltration, and α-smooth muscle actin (α-SMA)-positive myofibroblasts. Tubule-specific EGFR activation promoted epithelial dedifferentiation and cell-cycle arrest. Furthermore, EGFR activation in epithelial cells promoted the proliferation of α-SMA+ myofibroblasts in a paracrine manner. Genetic or pharmacologic inhibition of EGFR tyrosine kinase activity or downstream MEK activity attenuated the fibrotic phenotype. This study provides definitive evidence that sustained activation of EGFR in proximal epithelia is sufficient to cause spontaneous, progressive renal tubulointerstitial fibrosis, evident by epithelial dedifferentiation, increased myofibroblasts, immune cell infiltration, and increased matrix deposition.-Overstreet, J. M., Wang, Y., Wang, X., Niu, A., Gewin, L. S., Yao, B., Harris, R. C., Zhang, M.-Z. Selective activation of epidermal growth factor receptor in renal proximal tubule induces tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Jessica M Overstreet
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yinqiu Wang
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xin Wang
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aolei Niu
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Leslie S Gewin
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Nephrology, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Bing Yao
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raymond C Harris
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; .,Department of Nephrology, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Loria AS. Can we fight chronic kidney disease by targeting endothelial HB-EGF? Am J Physiol Renal Physiol 2016; 311:F406-8. [PMID: 27335378 DOI: 10.1152/ajprenal.00345.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
Abstract
The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases.
Collapse
|