1
|
Afonso LG, Silva-Aguiar RP, Teixeira DE, Alves SAS, Schmaier AH, Pinheiro AAS, Peruchetti DB, Caruso-Neves C. The angiotensin II/type 1 angiotensin II receptor pathway is implicated in the dysfunction of albumin endocytosis in renal proximal tubule epithelial cells induced by high glucose levels. Biochim Biophys Acta Gen Subj 2024; 1868:130684. [PMID: 39084330 DOI: 10.1016/j.bbagen.2024.130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.
Collapse
Affiliation(s)
- Liz G Afonso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Cell Therapy, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleaveland, USA
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanofarmacêutica, INCT-NANOBiofar, CNPq/MCTI, Belo Horizonte, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, CNPq/MCTI, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Gironacci MM, Bruna-Haupt E. Unraveling the crosstalk between renin-angiotensin system receptors. Acta Physiol (Oxf) 2024; 240:e14134. [PMID: 38488216 DOI: 10.1111/apha.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024]
Abstract
The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Bruna-Haupt
- INTEQUI (CONICET), Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
3
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
4
|
Johnstone EKM, Ayoub MA, Hertzman RJ, See HB, Abhayawardana RS, Seeber RM, Pfleger KDG. Novel Pharmacology Following Heteromerization of the Angiotensin II Type 2 Receptor and the Bradykinin Type 2 Receptor. Front Endocrinol (Lausanne) 2022; 13:848816. [PMID: 35721749 PMCID: PMC9204302 DOI: 10.3389/fendo.2022.848816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023] Open
Abstract
The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and β-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and β-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/β-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| | - Mohammed Akli Ayoub
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rebecca J. Hertzman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Heng B. See
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Ruth M. Seeber
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| |
Collapse
|
5
|
Rivas-Santisteban R, Lillo J, Muñoz A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. Novel Interactions Involving the Mas Receptor Show Potential of the Renin-Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia. Neurotherapeutics 2021; 18:998-1016. [PMID: 33474655 PMCID: PMC7817140 DOI: 10.1007/s13311-020-00986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
The renin-angiotensin system (RAS) not only plays an important role in controlling blood pressure but also participates in almost every process to maintain homeostasis in mammals. Interest has recently increased because SARS viruses use one RAS component (ACE2) as a target-cell receptor. The occurrence of RAS in the basal ganglia suggests that the system may be targeted to improve the therapy of neurodegenerative diseases. RAS-related data led to the hypothesis that RAS receptors may interact with each other. The aim of this paper was to find heteromers formed by Mas and angiotensin receptors and to address their functionality in neurons and microglia. Novel interactions were discovered by using resonance energy transfer techniques. The functionality of individual and interacting receptors was assayed by measuring levels of the second messengers cAMP and Ca2+ in transfected human embryonic kidney cells (HEK-293T) and primary cultures of striatal cells. Receptor complex expression was assayed by in situ proximity ligation assay. Functionality and expression were assayed in parallel in primary cultures of microglia treated or not with lipopolysaccharide and interferon-γ (IFN-γ). The proximity ligation assay was used to assess heteromer expression in parkinsonian and dyskinetic conditions. Complexes formed by Mas and the angiotensin AT1 or AT2 receptors were identified in both a heterologous expression system and in neural primary cultures. In the heterologous system, we showed that the three receptors-MasR, AT1R, and AT2R-can interact to form heterotrimers. The expression of receptor dimers (AT1R-MasR or AT2R-MasR) was higher in microglia than in neurons and was differentially affected upon microglial activation with lipopolysaccharide and IFN-γ. In all cases, agonist-induced signaling was reduced upon coactivation, and in some cases just by coexpression. Also, the blockade of signaling of two receptors in a complex by the action of a given (selective) receptor antagonist (cross-antagonism) was often observed. Differential expression of the complexes was observed in the striatum under parkinsonian conditions and especially in animals rendered dyskinetic by levodopa treatment. The negative modulation of calcium mobilization (mediated by AT1R activation), the multiplicity of possibilities on RAS affecting the MAPK pathway, and the disbalanced expression of heteromers in dyskinesia yield new insight into the operation of the RAS system, how it becomes unbalanced, and how a disbalanced RAS can be rebalanced. Furthermore, RAS components in activated microglia warrant attention in drug-development approaches to address neurodegeneration.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dyskinesia, Drug-Induced/metabolism
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Oxidopamine/toxicity
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/metabolism
- Proto-Oncogene Mas/agonists
- Proto-Oncogene Mas/metabolism
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Ana Muñoz
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Luís Labandeira-García
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain.
| |
Collapse
|
6
|
Protein kinase C-mediated calcium signaling as the basis for cardiomyocyte plasticity. Arch Biochem Biophys 2021; 701:108817. [PMID: 33626379 DOI: 10.1016/j.abb.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023]
Abstract
Protein kinase C is the superfamily of intracellular effector molecules which control crucial cellular functions. Here, we for the first time did the percentage estimation of all known PKC and PKC-related isozymes at the individual cadiomyocyte level. Broad spectrum of PKC transcripts is expressed in the left ventricular myocytes. In addition to the well-known 'heart-specific' PKCα, cardiomyocytes have the high expression levels of PKCN1, PKCδ, PKCD2, PKCε. In general, we detected all PKC isoforms excluding PKCη. In cardiomyocytes PKC activity tonically regulates voltage-gated Ca2+-currents, intracellular Ca2+ level and nitric oxide (NO) production. Imidazoline receptor of the first type (I1R)-mediated induction of the PKC activity positively modulates Ca2+ release through ryanodine receptor (RyR), increasing the Ca2+ leakage in the cytosol. In cardiomyocytes with the Ca2+-overloaded regions of > 9-10 μm size, the local PKC-induced Ca2+ signaling is transformed to global accompanied by spontaneous Ca2+ waves propagation across the entire cell perimeter. Such switching of Ca2+ signaling in cardiac cells can be important for the development of several cardiovascular pathologies and/or myocardial plasticity at the cardiomyocyte level.
Collapse
|
7
|
Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021; 22:1082. [PMID: 33499147 PMCID: PMC7866079 DOI: 10.3390/ijms22031082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Heng B. See
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Rekhati S. Abhayawardana
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Angela Song
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - Stephen J. Hill
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Midlands NG7 2UH, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
- Dimerix Limited, Nedlands, WA 6009, Australia
| |
Collapse
|
8
|
Patel S, Hussain T. Synergism between Angiotensin receptors ligands: Role of Angiotensin-(1-7) in modulating AT 2 R agonist response on nitric oxide in kidney cells. Pharmacol Res Perspect 2020; 8:e00667. [PMID: 33197136 PMCID: PMC7668194 DOI: 10.1002/prp2.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-(1-7), an endogenous agonist for the MasR, has been shown to interact with ang-II AT1 R and AT2 R. Earlier we showed a physical and functional interaction between MasR and AT2 R in response to their respective agonists ang-(1-7) and C21. Moreover, ang-(1-7) is cardio-protective via AT1 R and alters ang-II function. Such complex nature of ang-(1-7) function is not clearly understood, particularly in relation to its functional interaction with these receptors. We tested how ang-(1-7) affects AT2 R function by utilizing HK-2 cells. The HK-2 cells were treated with a wide range of concentrations of angiotensin receptor agonists. The generation of NO• in response to agonists was determined as a readout and subjected to Bliss definition (δ score) to assess the nature of functional interaction between these receptors. Preincubation with ang-(1-7) followed by incubation with endogenous AT1 R/AT2 R agonist ang-II (δ = 162) or selective AT2 R agonist C21 (δ = 304) synergized NO• formation. The synergism was also observed when the order of incubation with ang-(1-7)/C21 was reversed (δ = 484), but not when the cells were simultaneously incubated with a mixture of ang-(1-7) and C21 (δ = 76). The synergism with nonpeptidic MasR agonist AVE0991 followed by C21 (δ = 45) was minimal. Ligand binding experiment suggested the binding of ang-(1-7) with these three receptors. However, the synergism observed with ang-(1-7) and ang-II/C21 was sensitive to the antagonists of AT2 R (PD123319) and AT1 R (candesartan), but not MasR (A779). Ang-(1-7) at lower concentrations synergies the AT2 R function in an AT1 R-dependent but MasR-independent manner. This phenomenon may have a physiological significance.
Collapse
Affiliation(s)
- Sanket Patel
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| |
Collapse
|
9
|
Luzes R, Crisóstomo T, Silva PA, Iack R, de Abreu VG, Francischetti EA, Vieyra A. Angiotensin-(3-4) normalizes blood pressure, decreases Na + and energy intake, but preserves urinary Na + excretion in overweight hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166012. [PMID: 33212189 DOI: 10.1016/j.bbadis.2020.166012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 01/13/2023]
Abstract
Hypertension, one of the most common and severe comorbidities of obesity and overweight, is a worldwide epidemic affecting over 30% of the population. We induced overweight in young male rats (aged 58 days) by exposure to a hypercaloric high lipid (HL) diet in which 70% of the calories originated from fat. The HL diet also contained 33 or 57% higher Na+ than the control (CTR) diet. Over the following weeks the HL rats gradually became overweight (490 ± 12 g vs 427 ± 7 g in the CTR group after 15 weeks) with high visceral fat. They developed elevated systolic blood pressure (SBP) (141 ± 1.9 mmHg), which was fully restored to CTR values (128 ± 1.1 mmHg) by oral administration of Ang-(3-4) (Val-Tyr), the shortest renin-angiotensin-derived peptide. The overweight rats had lower plasma Na+ concentration that augmented to CTR values by Ang-(3-4) treatment. Na+ ingestion was depressed by 40% as result of the Ang-(3-4) treatment, whereas the urinary excretion of Na+ (UNaV) remained unmodified. The preservation of UNaV after Ang-(3-4) treatment - despite the sharp decrease in the dietary Na+ intake - can be ascribed to the normalization of renal type 1 angiotensin II receptors and Na+-transporting ATPases, both up-regulated in overweight rats. These renal effects complete a counterregulatory action on elevated renin-angiotensin activity that allows the high SBP to be normalized and body Na+ homeostasis to be restored concomitantly in overweight rats.
Collapse
Affiliation(s)
- Rafael Luzes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Thuany Crisóstomo
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Silva
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Roxane Iack
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | | | - Emílio A Francischetti
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
11
|
Rivas-Santisteban R, Rodriguez-Perez AI, Muñoz A, Reyes-Resina I, Labandeira-García JL, Navarro G, Franco R. Angiotensin AT 1 and AT 2 receptor heteromer expression in the hemilesioned rat model of Parkinson's disease that increases with levodopa-induced dyskinesia. J Neuroinflammation 2020; 17:243. [PMID: 32807174 PMCID: PMC7430099 DOI: 10.1186/s12974-020-01908-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS The renin-angiotensin system (RAS) is altered in Parkinson's disease (PD), a disease due to substantia nigra neurodegeneration and whose dopamine-replacement therapy, using the precursor levodopa, leads to dyskinesias as the main side effect. Angiotensin AT1 and AT2 receptors, mainly known for their role in regulating water homeostasis and blood pressure and able to form heterodimers (AT1/2Hets), are present in the central nervous system. We assessed the functionality and expression of AT1/2Hets in Parkinson disease (PD). METHODS Immunocytochemistry was used to analyze the colocalization between angiotensin receptors; bioluminescence resonance energy transfer was used to detect AT1/2Hets. Calcium and cAMP determination, MAPK activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify receptor expression in mouse primary cultures and in rat striatal sections. RESULTS We confirmed that AT1 and AT2 receptors form AT1/2Hets that are expressed in cells of the central nervous system. AT1/2Hets are novel functional units with particular signaling properties. Importantly, the coactivation of the two receptors in the heteromer reduces the signaling output of angiotensin. Remarkably, AT1/2Hets that are expressed in both striatal neurons and microglia make possible that candesartan, the antagonist of AT1, increases the effect of AT2 receptor agonists. In addition, the level of striatal expression increased in the unilateral 6-OH-dopamine lesioned rat PD model and was markedly higher in parkinsonian-like animals that did not become dyskinetic upon levodopa chronic administration if compared with expression in those that became dyskinetic. CONCLUSION The results indicate that boosting the action of neuroprotective AT2 receptors using an AT1 receptor antagonist constitutes a promising therapeutic strategy in PD.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Rodriguez-Perez
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Muñoz
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Current adress: RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - José Luis Labandeira-García
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain. .,School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Cabral EV, Vieira LD, Sant'Helena BRM, Ribeiro VS, Farias JS, Aires RS, Paz ST, Muzi‐Filho H, Paixão AD, Vieyra A. Alpha‐Tocopherol during lactation and after weaning alters the programming effect of prenatal high salt intake on cardiac and renal functions of adult male offspring. Clin Exp Pharmacol Physiol 2019; 46:1151-1165. [DOI: 10.1111/1440-1681.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Edjair V. Cabral
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Leucio D. Vieira
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdilene S. Ribeiro
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Juliane S. Farias
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Regina S. Aires
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Silvania T. Paz
- Department of Pathology Federal University of Pernambuco Recife Brazil
| | - Humberto Muzi‐Filho
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
| | - Ana D. Paixão
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
- Graduate Program in Translational Biomedicine/BIOTRANS Grande Rio University Duque de Caxias Brazil
| |
Collapse
|
13
|
Taveira-da-Silva R, da Silva Sampaio L, Vieyra A, Einicker-Lamas M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press Res 2019; 44:1-11. [PMID: 30808844 DOI: 10.1159/000497806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.
Collapse
Affiliation(s)
| | - Luzia da Silva Sampaio
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bio Imaging (CENABIO), Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine (REGENERA), Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil,
| |
Collapse
|
14
|
Yan F, Yuan Z, Wang N, Carey RM, Aylor KW, Chen L, Zhou X, Liu Z. Direct Activation of Angiotensin II Type 2 Receptors Enhances Muscle Microvascular Perfusion, Oxygenation, and Insulin Delivery in Male Rats. Endocrinology 2018; 159:685-695. [PMID: 29186390 PMCID: PMC5774251 DOI: 10.1210/en.2017-00585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023]
Abstract
Angiotensin II receptors regulate muscle microvascular recruitment and the delivery of nutrients, oxygen, and insulin to muscle. Although angiotensin type 1 receptor antagonism increases muscle microvascular perfusion and insulin action, angiotensin type 2 receptor blockade markedly restricts muscle microvascular blood volume and decreases muscle delivery of insulin. To examine the effects of direct type 2 receptor stimulation using Compound 21 (C21) on microvascular perfusion, insulin delivery and action, and tissue oxygenation in muscle, overnight-fasted adult male rats were infused with C21 systemically. C21 potently increased microvascular blood volume without altering microvascular flow velocity or blood pressure, resulting in a net increase in microvascular blood flow in muscle. This was associated with a substantial increase in muscle interstitial oxygen saturation and insulin delivery into the skeletal and cardiac muscle. These effects were neutralized by coinfusion of the type 2 receptor antagonist or nitric oxide synthase inhibitor. Superimposing C21 infusion on insulin infusion increased insulin-mediated whole body glucose disposal by 50%. C21 significantly relaxed the preconstricted distal saphenous artery ex vivo. We have concluded that direct type 2 receptor stimulation markedly increases muscle microvascular perfusion through nitric oxide biosynthesis and enhances insulin delivery and action in muscle. These findings provide a physiologic mechanistic insight into type 2 receptor modulation of insulin action and suggest that type 2 receptor agonists might have therapeutic potential in the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- Fei Yan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Endocrinology, Shandong University Qilu Hospital, Jinan, Shandong 250000, China
| | - Zhaoshun Yuan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Endocrinology, Shantou University First Affiliated Hospital, Shantou, Guangdong 515041, China
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| | - Li Chen
- Department of Endocrinology, Shandong University Qilu Hospital, Jinan, Shandong 250000, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| |
Collapse
|
15
|
Ferrão FM, Cardoso LHD, Drummond HA, Li XC, Zhuo JL, Gomes DS, Lara LS, Vieyra A, Lowe J. Luminal ANG II is internalized as a complex with AT 1R/AT 2R heterodimers to target endoplasmic reticulum in LLC-PK 1 cells. Am J Physiol Renal Physiol 2017; 313:F440-F449. [PMID: 28468964 DOI: 10.1152/ajprenal.00261.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/28/2022] Open
Abstract
ANG II has many biological effects in renal physiology, particularly in Ca2+ handling in the regulation of fluid and solute reabsorption. It involves the systemic endocrine renin-angiotensin system (RAS), but tissue and intracrine ANG II are also known. We have shown that ANG II induces heterodimerization of its AT1 and AT2 receptors (AT1R and AT2R) to stimulate sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity. Thus, we investigated whether ANG II-AT1R/AT2R complex is formed and internalized, and also examined the intracellular localization of this complex to determine how its effect might be exerted on renal intracrine RAS. Living cell imaging of LLC-PK1 cells, quantification of extracellular ANG II, and use of the receptor antagonists, losartan and PD123319, showed that ANG II is internalized with AT1R/AT2R heterodimers as a complex in a microtubule-dependent and clathrin-independent manner, since colchicine-but not Pitstop2-blocked this process. This result was confirmed by an increase of β-arrestin phosphorylation after ANG II treatment, clathrin-mediated endocytosis being dependent on dephosphorylation of β-arrestin. Internalized ANG II colocalized with an endoplasmic reticulum (ER) marker and increased levels of AT1R, AT2R, and PKCα in ER-enriched membrane fractions. This novel evidence suggests the internalization of an ANG II-AT1/AT2 complex to target ER, where it might trigger intracellular Ca2+ responses.
Collapse
Affiliation(s)
- Fernanda M Ferrão
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza H D Cardoso
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heather A Drummond
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiao C Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dayene S Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jennifer Lowe
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; .,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| |
Collapse
|
16
|
Ali Q, Dhande I, Samuel P, Hussain T. Angiotensin type 2 receptor null mice express reduced levels of renal angiotensin II type 2 receptor/angiotensin (1-7)/Mas receptor and exhibit greater high-fat diet-induced kidney injury. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316661871. [PMID: 27496559 PMCID: PMC5843939 DOI: 10.1177/1470320316661871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/03/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction: Renin–angiotensin system (RAS) components exert diverse physiological functions and have been sub-grouped into deleterious angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin type 1 receptor (AT1R) and protective ACE2/angiotensin (1-7) (Ang-(1-7))/Mas receptor (MasR) axes. We have reported that chronic activation of angiotensin type 2 receptor (AT2R) alters RAS components and provides protection against obesity-related kidney injury. Materials and methods: We utilized AT2R knockout (AT2KO) mice in this study and evaluated the renal expression of various RAS components and examined the renal injury after placing these mice on high fat diet (HFD) for 16 weeks. Results: The cortical ACE2 activity and MasR expression were significantly decreased in AT2KO mice compared to wild type (WT) mice. LC/MS analysis revealed an increase in renal Ang II levels and a decrease in Ang-(1-7) levels in AT2KO mice. Cortical expression of ACE and AT1R was increased but renin activity remained unchanged in AT2KO compared with WT mice. WT mice fed HFD exhibited increased systolic blood pressure, higher indices of kidney injury, mesangial matrix expansion score, and microalbuminuria, which were further increased in AT2KO mice. Conclusion: This study suggests that deletion of AT2R decreases the expression of the beneficial ACE2/Ang-(1-7)/MasR and increases the deleterious ACE/Ang II/AT1R axis of the renal RAS in mice. Further, AT2KO mice are more susceptible to HFD-induced renal injury.
Collapse
Affiliation(s)
- Quaisar Ali
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, USA
| | - Isha Dhande
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, USA
| | - Preethi Samuel
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, USA
| |
Collapse
|
17
|
Inuzuka T, Fujioka Y, Tsuda M, Fujioka M, Satoh AO, Horiuchi K, Nishide S, Nanbo A, Tanaka S, Ohba Y. Attenuation of ligand-induced activation of angiotensin II type 1 receptor signaling by the type 2 receptor via protein kinase C. Sci Rep 2016; 6:21613. [PMID: 26857745 PMCID: PMC4746669 DOI: 10.1038/srep21613] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
Angiotensin II (AII) type 2 receptor (AT2R) negatively regulates type 1 receptor (AT1R) signaling. However, the precise molecular mechanism of AT2R-mediated AT1R inhibition remains poorly understood. Here, we characterized the local and functional interaction of AT2R with AT1R. AT2R colocalized and formed a complex with AT1R at the plasma membrane, even in the absence of AII. Upon AII stimulation, the spatial arrangement of the complex was modulated, as confirmed by Förster resonance energy transfer (FRET) analysis, followed by AT2R internalization along with AT1R. AT2R internalization was specifically observed only in the presence of AT1R; AT2R alone could not be internalized. The AT1R-specific inhibitor losartan completely inhibited both the conformational change and the internalization of AT2R with AT1R, whereas the AT2R-specific inhibitor PD123319 partially hindered these phenomena, demonstrating that the activation of both receptors was indispensable for these effects. In addition, treatment with the protein kinase C (PKC) inhibitors inhibited the ligand-dependent accumulation of AT2R but not that of AT1R in the endosomes. A mutation in the putative phosphorylation sites of AT2R also abrogated the co-internalization of ATR2 with AT1R and the inhibitory effect of ATR2 on AT1R. These data suggest that AT2R inhibits ligand-induced AT1R signaling through the PKC-dependent pathway.
Collapse
Affiliation(s)
- Takayuki Inuzuka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Mari Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Aya O Satoh
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kosui Horiuchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shinya Nishide
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Asuka Nanbo
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
18
|
Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol 2014; 3:64-76. [PMID: 25332897 PMCID: PMC4202493 DOI: 10.5527/wjn.v3.i3.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases.
Collapse
|
19
|
Dias J, Ferrão FM, Axelband F, Carmona AK, Lara LS, Vieyra A. ANG-(3-4) inhibits renal Na+-ATPase in hypertensive rats through a mechanism that involves dissociation of ANG II receptors, heterodimers, and PKA. Am J Physiol Renal Physiol 2014; 306:F855-63. [PMID: 24523384 DOI: 10.1152/ajprenal.00488.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological roles of ANG-(3-4) (Val-Tyr), a potent ANG II-derived peptide, remain largely unknown. The present study 1)investigates whether ANG-(3-4) modulates ouabain-resistant Na(+)-ATPase resident in proximal tubule cells and 2) verifies whether its possible action on pumping activity, considered the fine tuner of Na(+) reabsorption in this nephron segment, depends on blood pressure. ANG-(3-4) inhibited Na(+)-ATPase activity in membranes of spontaneously hypertensive rats (SHR) at nanomolar concentrations, with no effect in Wistar-Kyoto (WKY) rats or on Na(+)-K(+)-ATPase. PD123319 (10(-7) M) and PKA(5-24) (10(-6) M), an AT2 receptor (AT2R) antagonist and a specific PKA inhibitor, respectively, abrogated this inhibition, indicating that AT2R and PKA are central in this pathway. Despite the lack of effect of ANG-(3-4) when assayed alone in WKY rats, the peptide (10(-8) M) completely blocked stimulation of Na(+)-ATPase induced by 10(-10) M ANG II in normotensive rats through a mechanism that also involves AT2R and PKA. Tubular membranes from WKY rats had higher levels of AT2R/AT1R heterodimers, which remain associated in 10(-10) M ANG II and dissociate to a very low dimerization state upon addition of 10(-8) M ANG-(3-4). This lower level of heterodimers was that found in SHR, and heterodimers did not dissociate when the same concentration of ANG-(3-4) was present. Oral administration of ANG-(3-4) (50 mg/kg body mass) increased urinary Na(+) concentration and urinary Na(+) excretion with a simultaneous decrease in systolic arterial pressure in SHR, but not in WKY rats. Thus the influence of ANG-(3-4) on Na(+) transport and its hypotensive action depend on receptor association and on blood pressure.
Collapse
Affiliation(s)
- Juliana Dias
- Carlos Chagas Filho Institute of Biophysics, Federal Univ. of Rio de Janeiro and National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro 21941-902, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Nistala R, Sowers JR. Hypertension: Synergy of antihypertensives in elderly patients with CKD. Nat Rev Nephrol 2012. [PMID: 23183840 DOI: 10.1038/nrneph.2012.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ravi Nistala
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | | |
Collapse
|