1
|
Mimura I, Chen Z, Natarajan R. Epigenetic alterations and memory: key players in the development/progression of chronic kidney disease promoted by acute kidney injury and diabetes. Kidney Int 2025; 107:434-456. [PMID: 39725223 DOI: 10.1016/j.kint.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney disease (CKD) is a highly prevalent global public health issue and can progress to kidney failure. Survivors of acute kidney injury (AKI) have an increased risk of progressing to CKD by 8.8-fold and kidney failure by 3.1-fold. Further, 20% to 40% of individuals with diabetes will develop CKD, also known as diabetic kidney disease (DKD). Thus, preventing these kidney diseases can positively impact quality-of-life and life-expectancy outcomes for affected individuals. Frequent episodes of hyperglycemia and renal hypoxia are implicated in the pathophysiology of CKD. Prior periods of hyperglycemia/uncontrolled diabetes can result in development/progression of DKD even after achieving normoglycemia, a phenomenon known as metabolic memory or legacy effect. Similarly, in AKI, hypoxic memory is stored in renal cells even after recovery from the initial AKI episode and can transition to CKD. Epigenetic mechanisms involving DNA methylation, chromatin histone post-translational modifications, and noncoding RNAs are implicated in both metabolic and hypoxic memory, collectively known as "epigenetic memory." This epigenetic memory is generally reversible and provides a therapeutic avenue to ameliorate persistent disease progression due to hyperglycemia and hypoxia and prevent/ameliorate CKD progression. Indeed, therapeutic strategies targeting epigenetic memory are effective at preventing CKD development/progression in experimental models of AKI and DKD. Here, we review the latest in-depth evidence for epigenetic features in DKD and AKI, and in epigenetic memories of AKI-to-CKD transition or DKD development and progression, followed by translational and clinical implications of these epigenetic changes for the treatment of these widespread kidney disorders.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo Japan.
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
2
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Hu W. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction in lipopolysaccharide-induced tubular epithelial cells. Ren Fail 2024; 46:2369342. [PMID: 39230047 PMCID: PMC11376309 DOI: 10.1080/0886022x.2024.2369342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.
Collapse
Affiliation(s)
- Weike Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Liu M, Chen X. Human Umbilical Cord-Derived Mesenchymal Stem Cells-Exosomes-Delivered miR-375 Targets HDAC4 to Promote Autophagy and Suppress T Cell Apoptosis in Sepsis-Associated Acute Kidney Injury. Appl Biochem Biotechnol 2024; 196:7954-7973. [PMID: 38668845 DOI: 10.1007/s12010-024-04963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study sought to elucidate the mechanism of human umbilical cord-derived mesenchymal stem cells (HUCMSCs)-exosomes (Exos) in sepsis-associated acute kidney injury (SAKI). Exos were isolated from HUCMSCs and co-cultured with CD4+ T cells exposed to lipopolysaccharide to detect the effects of HUCMSCs-Exos on CD4+ T cell apoptosis and autophagy. miR-375 expression in CD4+ T cells and HUCMSCs-Exos was examined. The relationship between miR-375 and HDAC4 was analyzed. A mouse model of SAKI was established and injected with HUCMSCs-Exos to verify the function of HUCMSCs-Exos in vivo. HUCMSCs-Exos inhibited lipopolysaccharide-induced apoptosis of CD4+ T cells and promoted autophagy. miR-375 expression was noted to be elevated in the HUCMSCs-Exos. Importantly, HUCMSCs-Exos could deliver miR-375 into CD4+ T cells where miR-375 targeted HDAC4 and negatively regulated its expression. By this mechanism, HUCMSCs-Exos decreased CD4+ T cell apoptosis and augmented autophagy. This finding was further confirmed in an in vivo SAKI model. Collectively, HUCMSCs-Exos can protect against SAKI via delivering miR-375 that promotes autophagy and arrests T cell apoptosis through HDAC4 downregulation. These findings suggest a promising therapeutic potential for HUCMSCs-Exos in the context of SAKI.
Collapse
Affiliation(s)
- Min Liu
- Department of Intensive Care, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China
| | - Xiyun Chen
- Department of Gynecology, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
5
|
Nan S, Che Y, Gong T, Zhang Z, Fu Y. Renal-Targeted Drug Delivery by Chitosan Oligosaccharide Micelles with HSA-Enriched Protein Corona for the Treatment of Ischemia/Reperfusion-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49913-49925. [PMID: 39240782 DOI: 10.1021/acsami.4c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Renal-specific nanoparticulate drug delivery systems have shown great potential in reducing systemic side effects and improving the safety and efficacy of treatments for renal diseases. Here, stearic acid-grafted chitosan oligosaccharide (COS-SA) was synthesized as a renal-targeted carrier due to the high affinity of the 2-glucosamine moiety on COS to the megalin receptor expressed on renal proximal tubular epithelial cells. Specifically, COS-SA/CLT micelles were prepared by encapsulating celastrol (CLT) with COS-SA, and different proportions of human serum albumin (HSA) were then adsorbed onto its surface to explore the interaction between the protein corona and cationic polymeric micelles. Our results showed that a multilayered protein corona, consisting of an inner "hard" corona and an outer "soft" corona, was formed on the surface of COS-SA/CLT@HSA8, which was beneficial in preventing its recognition and phagocytosis by macrophages. The formation of HSA protein corona on COS-SA/CLT micelles also increased its accumulation in the renal tubules. Furthermore, the electropositivity of COS-SA/CLT micelles affected the conformation of adsorbed proteins to various degrees. During the adsorption process, the protein corona on the surface of COS-SA/CLT@HSA1 was partially denatured. Overall, COS-SA/CLT and COS-SA/CLT@HSA micelles demonstrated sufficient safety with renal targeting potential, providing a viable strategy for the management of ischemia/reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Simin Nan
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujie Che
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Song L, Jiang W, Lin H, Yu J, Liu K, Zheng R. Post-translational modifications in sepsis-induced organ dysfunction: mechanisms and implications. Front Immunol 2024; 15:1461051. [PMID: 39234245 PMCID: PMC11371574 DOI: 10.3389/fimmu.2024.1461051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
As a grave and highly lethal clinical challenge, sepsis, along with its consequent multiorgan dysfunction, affects millions of people worldwide. Sepsis is a complex syndrome caused by a dysregulated host response to infection, leading to fatal organ dysfunction. An increasing body of evidence suggests that the pathogenesis of sepsis is both intricate and rapid and involves various cellular responses and signal transductions mediated by post-translational modifications (PTMs). Hence, a comprehensive understanding of the mechanisms and functions of PTMs within regulatory networks is imperative for understanding the pathological processes, diagnosis, progression, and treatment of sepsis. In this review, we provide an exhaustive and comprehensive summary of the relationship between PTMs and sepsis-induced organ dysfunction. Furthermore, we explored the potential applications of PTMs in the treatment of sepsis, offering a forward-looking perspective on the understanding of infectious diseases.
Collapse
Affiliation(s)
- Lin Song
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wei Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hua Lin
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiangquan Yu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Ke Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruiqiang Zheng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
7
|
Fiorentino M, Philippe R, Palumbo CA, Prenna S, Cantaluppi V, Rosa SD. Epigenetic Mechanisms in Sepsis-Associated Acute Kidney Injury. Semin Respir Crit Care Med 2024; 45:491-502. [PMID: 39208853 DOI: 10.1055/s-0044-1789240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sepsis, the dysregulated immune response of the host to infections, leads to numerous complications, including multiple organ dysfunction with sepsis-associated acute kidney injury (SA-AKI) being a frequent complication associated with increased risk of mortality and the progression toward chronic kidney disease (CKD). Several mechanisms have been widely investigated in understanding the complex pathophysiology of SA-AKI, including hemodynamic alterations, inflammation, oxidative stress, and direct cellular injury driven by pathogens or cell-derived products (pathogen-associated molecular patterns and damage-associated molecular patterns). Despite advancements in the management of septic patients, the prognosis of SA-AKI patients remains significantly poor and is associated with high in-hospital mortality and adverse long-term outcomes. Therefore, recent research has focused on the early identification of specific SA-AKI endotypes and subphenotypes through epigenetic analysis and the use of potential biomarkers, either alone or in combination with clinical data, to improve prognosis. Epigenetic regulation, such as DNA methylation, histone modifications, and noncoding RNA modulation, is crucial in modulating gene expression in response to stress and renal injury in SA-AKI. At the same time, these modifications are dynamic and reversible processes that can alter gene expression in several pathways implicated in the context of SA-AKI, including inflammation, immune response, and tolerance status. In addition, specific epigenetic modifications may exacerbate renal damage by causing persistent inflammation or cellular metabolic reprogramming, leading to progression toward CKD. This review aims to provide a comprehensive understanding of the epigenetic characteristics that define SA-AKI, also exploring targeted therapies that can improve patient outcomes and limit the chronic progression of this syndrome.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Reginald Philippe
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - Carmen A Palumbo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Stefania Prenna
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carità" University Hospital, Novara, Italy
| | - Silva De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
8
|
Li X, Yu Y, Zhang Q, Luo X, Yu L, Zhao Z. Effect of HDAC9 on the differentiation of chicken embryonic stem cells into male germ cells. Anim Reprod 2024; 21:e20240011. [PMID: 39021502 PMCID: PMC11253783 DOI: 10.1590/1984-3143-ar2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
Histone deacetylase 9 (HDAC9) is a histone deacetylase (HDAC) subtype IIa protein that deacetylates histone 3 (H3), histone 4 (H4), and nonhistone proteins in vivo to alter chromosomal shape and regulate gene transcription. There have been few studies on the regulatory influence of the HDAC9 gene on the differentiation of chicken embryonic stem cells (cESCs) into male germ cells, and the significance of HDAC9 is still unknown. Therefore, we explored the specific role of HDAC9 during differentiation of the cESCs of Jilin Luhua chickens through inhibition or overexpression. In medium supplemented with 10-5 mol/L retinoic acid (RA), cESCs were stimulated to develop into germ cells. HDAC9 and germline marker gene mRNA and protein levels were measured using qRT‒PCR and western blotting. During the differentiation of cESCs into male germ cells, overexpression of the HDAC9 gene greatly increased the mRNA and protein expression levels of the germline marker genes Stra8, Dazl, c-kit, and integrin ɑ6. The HDAC9 inhibitor TMP195 significantly decreased the mRNA and protein expression levels of the above markers. In summary, HDAC9 positively regulates the differentiation of cESCs.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, Jilin, China
| | - Yongsheng Yu
- Animal Husbandry Station, Gong Zhu Ling, Jilin, China
| | - Qi Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, Jilin, China
| | - Xiaotong Luo
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, Jilin, China
| | - Li Yu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, Jilin, China
- Animal Husbandry Station, Gong Zhu Ling, Jilin, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, Jilin, China
| |
Collapse
|
9
|
Chen X, Li C, Zhao J, Liu Y, Zhao Z, Wang Z, Li Y, Wang Y, Guo L, Li L, Chen C, Bai B, Wang S. mPPTMP195 nanoparticles enhance fracture recovery through HDAC4 nuclear translocation inhibition. J Nanobiotechnology 2024; 22:261. [PMID: 38760744 PMCID: PMC11100250 DOI: 10.1186/s12951-024-02436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024] Open
Abstract
Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.
Collapse
Affiliation(s)
- Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yunxiang Liu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhizhong Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yue Li
- Department of Biochemistry, Shanxi Medical University, Basic Medical College, Taiyuan, 030001, PR China
| | - Yunfei Wang
- Department of Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
10
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
11
|
Fu Y, Xiang Y, Zha J, Chen G, Dong Z. Enhanced STAT3/PIK3R1/mTOR signaling triggers tubular cell inflammation and apoptosis in septic-induced acute kidney injury: implications for therapeutic intervention. Clin Sci (Lond) 2024; 138:351-369. [PMID: 38411015 DOI: 10.1042/cs20240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Septic acute kidney injury (AKI) is a severe form of renal dysfunction associated with high morbidity and mortality rates. However, the pathophysiological mechanisms underlying septic AKI remain incompletely understood. Herein, we investigated the signaling pathways involved in septic AKI using the mouse models of lipopolysaccharide (LPS) treatment and cecal ligation and puncture (CLP). In these models, renal inflammation and tubular cell apoptosis were accompanied by the aberrant activation of the mechanistic target of rapamycin (mTOR) and the signal transducer and activator of transcription 3 (STAT3) signaling pathways. Pharmacological inhibition of either mTOR or STAT3 significantly improved renal function and reduced apoptosis and inflammation. Interestingly, inhibition of STAT3 with pharmacological inhibitors or small interfering RNA blocked LPS-induced mTOR activation in renal tubular cells, indicating a role of STAT3 in mTOR activation. Moreover, knockdown of STAT3 reduced the expression of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1/p85α), a key subunit of the phosphatidylinositol 3-kinase for AKT and mTOR activation. Chromatin immunoprecipitation assay also proved the binding of STAT3 to PIK3R1 gene promoter in LPS-treated kidney tubular cells. In addition, knockdown of PIK3R1 suppressed mTOR activation during LPS treatment. These findings highlight the dysregulation of mTOR and STAT3 pathways as critical mechanisms underlying the inflammatory and apoptotic phenotypes observed in renal tubular cells during septic AKI, suggesting the STAT3/ PIK3R1/mTOR pathway as a therapeutic target of septic AKI.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
12
|
Liu M, Zhang Y, Zhan P, Sun W, Dong C, Liu X, Yang Y, Wang X, Xie Y, Gao C, Hu H, Shi B, Wang Z, Guo C, Yi F. Histone deacetylase 9 exacerbates podocyte injury in hyperhomocysteinemia through epigenetic repression of Klotho. Pharmacol Res 2023; 198:107009. [PMID: 37995896 DOI: 10.1016/j.phrs.2023.107009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Although hyperhomocysteinemia (hHcys) has been recognized as an important independent risk factor in the progression of end-stage renal disease and the development of cardiovascular complications related to end-stage renal disease, the mechanisms triggering pathogenic actions of hHcys are not fully understood. The present study was mainly designed to investigate the role of HDACs in renal injury induced by hHcys. Firstly, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC9 was preferentially upregulated in the kidney from mice with hHcys. Deficiency or pharmacological inhibition of HDAC9 ameliorated renal injury in mice with hHcys. Moreover, podocyte-specific deletion of HDAC9 significantly attenuated podocyte injury and proteinuria. In vitro, gene silencing of HDAC9 attenuated podocyte injury by inhibiting apoptosis, reducing oxidative stress and maintaining the expressions of podocyte slit diaphragm proteins. Mechanically, we proved for the first time that HDAC9 reduced the acetylation level of H3K9 in the promoter of Klotho, then inhibited gene transcription of Klotho, finally aggravating podocyte injury in hHcys. In conclusion, our results indicated that targeting of HDAC9 might be an attractive therapeutic strategy for the treatment of renal injury induced by hHcys.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ping Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Wenjuan Sun
- Department of Obstetrics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chuanqiao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaohan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yujie Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Chengjiang Gao
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Chun Guo
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
13
|
郭 淑, 张 择, 赵 晋, 袁 进, 孙 世. [Role of Histone Modifications in Acute Kidney Injury Progressing to Chronic Kidney Disease]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1080-1084. [PMID: 38162077 PMCID: PMC10752784 DOI: 10.12182/20231160506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 01/03/2024]
Abstract
Acute kidney injury (AKI), a clinical syndrome caused by various factors, is characterized by a rapid decline in kidney function in a short period of time. AKI affects the short-term prognosis of patients and may also induce chronic kidney disease (CKD). However, the current treatment options for AKI mainly focus on symptom management. Specific therapeutic measures available for the prevention of transition from AKI to CKD are very limited in number. Histones are basic proteins that intricately bind the DNA in chromosomes. After translation, histones undergo various modifications on their amino-terminal tails, such as methylation, acetylation, phosphorylation, ubiquitination, and lactylation, collectively forming the "histone code", which affects the expression of genes mainly by regulating the elastic structure of chromatin or recruiting specific proteins. Extensive research conducted in recent years on histone post-translational modifications (PTMs) has also sparked continuous interest in their association with the AKI-to-CKD transition. Therefore, this paper highlights the significant role of PTMs in the process of AKI developing and progressing to CKD, with a view to finding new approaches to preventing the progression of AKI to CKD.
Collapse
Affiliation(s)
- 淑娴 郭
- 空军军医大学第一附属医院 肾脏内科 (西安 710032)Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - 择阳 张
- 空军军医大学第一附属医院 肾脏内科 (西安 710032)Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - 晋 赵
- 空军军医大学第一附属医院 肾脏内科 (西安 710032)Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - 进国 袁
- 空军军医大学第一附属医院 肾脏内科 (西安 710032)Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - 世仁 孙
- 空军军医大学第一附属医院 肾脏内科 (西安 710032)Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
14
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
16
|
Li C, Ma QY, Liu XQ, Li HD, Yu MJ, Xie SS, Ma WX, Chen Y, Wang JN, He RB, Bian HG, He Y, Gao L, Deng SS, Zang HM, Gong Q, Wen JG, Liu MM, Yang C, Chen HY, Li J, Lan HY, Jin J, Yao RS, Meng XM. Genetic and pharmacological inhibition of GRPR protects against acute kidney injury via attenuating renal inflammation and necroptosis. Mol Ther 2023; 31:2734-2754. [PMID: 37415332 PMCID: PMC10492025 DOI: 10.1016/j.ymthe.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Ying Ma
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei 230012, China
| | - Xue-Qi Liu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Jun Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - He-Ge Bian
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li Gao
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sheng-Song Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Yang
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Road, Zhanjiang 524001, China
| | - Hai-Yong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Shenzhen 518009, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Liu Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Yang L, Wu C, Cui Y, Dong S. Knockdown of histone deacetylase 9 attenuates sepsis-induced myocardial injury and inflammatory response. Exp Anim 2023; 72:356-366. [PMID: 36927982 PMCID: PMC10435362 DOI: 10.1538/expanim.22-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
Myocardial cell damage is associated with apoptosis and excessive inflammatory response in sepsis. Histone deacetylases (HDACs) are implicated in the progression of heart diseases. This study aims to explore the role of histone deacetylase 9 (HDAC9) in sepsis-induced myocardial injury. Lipopolysaccharide (LPS)-induced Sprague Dawley rats and cardiomyocyte line H9C2 were used as models in vivo and in vitro. The results showed that HDAC9 was significantly upregulated after LPS stimulation, and HDAC9 knockdown remarkably improved cardiac function, as evidenced by decreased left ventricular internal diameter end diastole (LVEDD) and left ventricular internal diameter end systole (LVESD), and increased fractional shortening (FS)% and ejection fraction (EF)%. In addition, HDAC9 silencing alleviated release of inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-6 and IL-1β) and cardiomyocyte apoptosis in vivo and in vitro. Furthermore, HDAC9 inhibition was proved to suppress nuclear factor-kappa B (NF-κB) activation with reducing the levels of p-IκBα and p-p65, and p65 nuclear translocation. Additionally, interaction between miR-214-3p and HDAC9 was determined through bioinformatics analysis, RT-qPCR, western blot and dual luciferase reporter assay. Our data revealed that miR-214-3p directly targeted the 3'UTR of HDAC9. Our findings demonstrate that HDAC9 suppression ameliorates LPS-induced cardiac dysfunction by inhibiting the NF-κB signaling pathway and presents a promising therapeutic agent for the treatment of LPS-stimulated myocardial injury.
Collapse
Affiliation(s)
- Long Yang
- Teaching and Research Section of Emergency Medicine, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, P.R. China
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Chunxue Wu
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Ying Cui
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Shimin Dong
- Teaching and Research Section of Emergency Medicine, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, P.R. China
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, P.R. China
| |
Collapse
|
18
|
Wang J, Shen F, Liu F, Zhuang S. Histone Modifications in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:466-477. [PMID: 36590679 PMCID: PMC9798838 DOI: 10.1159/000527799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
Abstract
Background Acute kidney injury (AKI) is a serious clinical problem associated with high morbidity and mortality worldwide. The pathophysiology and pathogenesis of AKI is complex and multifactorial. In recent years, epigenetics has emerged as an important regulatory mechanism in AKI. Summary There are several types of histone modification, including methylation, acetylation, phosphorylation, crotonylation, citrullination, and sumoylation. Histone modifications are associated with the transcription of many genes and activation of multiple signaling pathways that contribute to the pathogenesis of AKI. Thus, targeting histone modification may offer novel strategies to protect kidneys from AKI and enhance kidney repair and recovery. In this review, we summarize recent advances on the modification, regulation, and implication of histone modifications in AKI. Key Messages Histone modifications contribute to the pathogenesis of AKI. Understanding of epigenetic regulation in AKI will aid in establishing the utility of pharmacologic targeting of histone modification as a potential novel therapy for AKI.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
19
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
20
|
Ye J, Zhong S, Deng Y, Yao X, Liu Q, Wang JZ, Xiao S. HDAC7 Activates IKK/NF-κB Signaling to Regulate Astrocyte-Mediated Inflammation. Mol Neurobiol 2022; 59:6141-6157. [PMID: 35871708 PMCID: PMC9309093 DOI: 10.1007/s12035-022-02965-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jinwang Ye
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Suyue Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Yunsong Deng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Xuanbao Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- Shenzhen Bay Laboratory, Shenzhen, 518055 Guangdong China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- Shenzhen Bay Laboratory, Shenzhen, 518055 Guangdong China
| |
Collapse
|
21
|
Li J, Yu C, Shen F, Cui B, Liu N, Zhuang S. Class IIa histone deacetylase inhibition ameliorates acute kidney injury by suppressing renal tubular cell apoptosis and enhancing autophagy and proliferation. Front Pharmacol 2022; 13:946192. [PMID: 35935816 PMCID: PMC9354984 DOI: 10.3389/fphar.2022.946192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Expression and function of histone deacetylases (HDACs) vary with cell types and pathological conditions. Our recent studies showed that pharmacological targeting class IIa HDACs attenuated renal fibrosis, but the effect of class IIa HDAC inhibition on acute kidney injury (AKI) remains unknown. In this study, we found that four class IIa HDACs (4, 5, 7, 9) were highly expressed in the kidney of folic acid (FA) and ischemia/reperfusion (I/R)-induced AKI in mice. Administration of TMP269, a potent and selective class IIa HDAC inhibitor, improved renal function and reduced tubular cell injury and apoptosis, with concomitant suppression of HDAC4 and elevation of acetyl-histone H3. Mechanistical studies showed that TMP269 treatment inhibited FA and I/R-induced caspase-3 cleavage, Bax expression and p53 phosphorylation. Conversely, TMP269 administration preserved expression of E-cadherin, BMP7, Klotho and Bcl-2 in injured kidneys. Moreover, TMP269 was effective in promoting cellular autophagy as indicated by increased expression of Atg7, beclin-1, and LC3II, and promoted renal tubular cell proliferation as shown by increased number of proliferating cell nuclear antigen-positive cells and expression of cyclin E. Finally, blocking class IIa HDACs inhibited FA-and I/R-induced phosphorylation of extracellular signal-regulated kinases 1 and 2, and p38, two signaling pathways associated with the pathogenesis of AKI. Collectively, these results suggest that pharmacological inhibition of class IIa HDACs protects against AKI through ameliorating apoptosis, enhancing autophagy and promoting proliferation of renal tubular cells by targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Qiao J, Cui L. Multi-Omics Techniques Make it Possible to Analyze Sepsis-Associated Acute Kidney Injury Comprehensively. Front Immunol 2022; 13:905601. [PMID: 35874763 PMCID: PMC9300837 DOI: 10.3389/fimmu.2022.905601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. SA-AKI varies considerably in disease presentation, progression, and response to treatment, highlighting the heterogeneity of the underlying biological mechanisms. In this review, we briefly describe the pathophysiology of SA-AKI, biomarkers, reference databases, and available omics techniques. Advances in omics technology allow for comprehensive analysis of SA-AKI, and the integration of multiple omics provides an opportunity to understand the information flow behind the disease. These approaches will drive a shift in current paradigms for the prevention, diagnosis, and staging and provide the renal community with significant advances in precision medicine in SA-AKI analysis.
Collapse
Affiliation(s)
- Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Liyan Cui,
| |
Collapse
|
23
|
He X, Sun T, Zhang P, Xia Z, Gao C, Ren H, Ji D. Selective Inhibition of Histone Deacetylase Class IIa With MC1568 Ameliorates Podocyte Injury. Front Med (Lausanne) 2022; 9:848938. [PMID: 35492337 PMCID: PMC9046702 DOI: 10.3389/fmed.2022.848938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Histone deacetylases (HDACs) inhibitors are promising therapeutic agents against proteinuric kidney diseases, here, we investigated the effect of MC1568, a selective inhibitor of HDAC class IIa, on the development and progression of nephrotic syndrome in a murine model induced by Adriamycin (ADR). In kidney tissues of FSGS patients, all four members of HDAC IIa were significantly upregulated in podocytes. In ADR-treated cultured human podocyte, expression of HDAC IIa were induced, meanwhile inhibition of HDAC IIa with MC1568 restored cytoskeleton structure and suppressed expression of desmin and α-SMA. In mice, administration of MC1568 at 14 days after ADR ameliorated proteinuria and podocyte injury, also decreased expression of Fibronectin and α-SMA. Mechanistically, MC1568 inhibited ADR induced β-catenin activation in vitro and in vivo. Together, these finding demonstrate that HDAC IIa inhibition ameliorates podocyte injury and proteinuria, which provide a possibility that MC1568 may be used in nephrotic syndrome.
Collapse
Affiliation(s)
- Xu He
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Sun
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Pei Zhang
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Hongqi Ren
- Department of Nephrology, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hongqi Ren,
| | - Daxi Ji
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Daxi Ji,
| |
Collapse
|
24
|
Role of Glucocorticoid Signaling and HDAC4 Activation in Diaphragm and Gastrocnemius Proteolytic Activity in Septic Rats. Int J Mol Sci 2022; 23:ijms23073641. [PMID: 35408999 PMCID: PMC8998191 DOI: 10.3390/ijms23073641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis increases glucocorticoid and decreases IGF-1, leading to skeletal muscle wasting and cachexia. Muscle atrophy mainly takes place in locomotor muscles rather than in respiratory ones. Our study aimed to elucidate the mechanism responsible for this difference in muscle proteolysis, focusing on local inflammation and IGF-1 as well as on their glucocorticoid response and HDAC4-myogenin activation. Sepsis was induced in adult male rats by lipopolysaccharide (LPS) injection (10 mg/kg), and 24 h afterwards, rats were euthanized. LPS increased TNFα and IL-10 expression in both muscles studied, the diaphragm and gastrocnemius, whereas IL-6 and SOCS3 mRNA increased only in diaphragm. In comparison with gastrocnemius, diaphragm showed a lower increase in proteolytic marker expression (atrogin-1 and LC3b) and in LC3b protein lipidation after LPS administration. LPS increased the expression of glucocorticoid induced factors, KLF15 and REDD1, and decreased that of IGF-1 in gastrocnemius but not in the diaphragm. In addition, an increase in HDAC4 and myogenin expression was induced by LPS in gastrocnemius, but not in the diaphragm. In conclusion, the lower activation of both glucocorticoid signaling and HDAC4-myogenin pathways by sepsis can be one of the causes of lower sepsis-induced proteolysis in the diaphragm compared to gastrocnemius.
Collapse
|
25
|
Wu M, Huang Z, Huang W, Lin M, Liu W, Liu K, Li C. microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1α axis. Cell Death Dis 2022; 8:40. [PMID: 35091534 PMCID: PMC8799658 DOI: 10.1038/s41420-021-00763-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Sepsis-induced cardiac dysfunction can lead to death in sepsis. In this case, we targeted to explore in detail the relative mechanism of microRNA (miR)-124-3p in sepsis-induced myocardial injury via the specific protein 1/histone deacetylase 4/hypoxia-inducing factor 1α (SP1/HDAC4/HIF-1α) axis. Septic rats were modeled by cecal ligation puncture while in vitro septic cardiomyocyte H9C2 were induced by lipopolysaccharide (LPS). miR-124-3p/SP1/HDAC4/HIF-1α expression levels in myocardial tissues of septic rats and LPS-treated H9C2 cells were measured. miR-124-3p overexpression and SP1 silencing assays were implemented on LPS-treated H9C2 cells to explore theirs actions in inflammation, oxidative stress and cell apoptosis. The interactions of miR-124-3p, SP1, and HDAC4 were testified. miR-124-3p was lowly expressed while SP1, HDAC4, and HIF-1α were highly expressed in sepsis. Upregulation of miR-124-3p ameliorated inflammation, oxidative stress, and apoptosis of LPS-treated H9C2 cells. Silencing SP1 improved LPS-induced damage to cardiomyocytes. miR-124-3p targeted SP1 and HDAC4 interacted with SP1. SP1 overexpression antagonized miR-124-3p upregulation-induced improvements in LPS-induced cardiomyocyte damage. This study illustrates that miR-124-3p improves myocardial injury in septic rats through targeted regulation of SP1 to mediate HDAC4/HIF-1α.
Collapse
|
26
|
Tanemoto F, Mimura I. Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals (Basel) 2022; 15:ph15020123. [PMID: 35215236 PMCID: PMC8877070 DOI: 10.3390/ph15020123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) was previously thought to be a merely transient event; however, recent epidemiological evidence supports the existence of a causal relationship between AKI episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysiology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be largely involved in the pathophysiology as a “memory” of the initial injury that can persist and predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications in clinical practice. This review elaborates on the latest knowledge of each mechanism and the currently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of AKI-to-CKD transition.
Collapse
|
27
|
Epigenetic restoration of endogenous Klotho expression alleviates acute kidney injury-diabetes comorbidity. Life Sci 2022; 288:120194. [PMID: 34864061 DOI: 10.1016/j.lfs.2021.120194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
AIMS The present study aimed at exploring the mechanisms behind Klotho regulation in hyperglycemia augmented AKI. In addition, epigenetic ways to restore the Klotho expression in AKI-diabetes comorbidity have been evaluated. MAIN METHODS Bilateral ischemia-reperfusion injury (IRI) and chemical hypoxia-reperfusion injury (HRI) were developed in diabetic rats and, NRK52E cells under high glucose conditions respectively, to mimic the AKI condition. Plasma, urine, tubular lysate of the kidney and NRK52E cell lysate were used for biochemical, ELISA, histology, immunoblotting, RT-PCR and RNA interference studies. KEY FINDINGS Hyperglycemia significantly aggravated IRI/HRI induced AKI as evidenced by biochemical and histological results. We also observed a significant increase in expressions of kidney specific histone deacetylases (HDACs), apoptotic and inflammatory proteins, and decrease in levels of endogenous Klotho, H3K9Ac and H3K27Ac proteins in hyperglycemic IRI/HRI groups. SIGNIFICANCE Diabetes comorbidity exaggerates AKI, where endogenous Klotho loss could be a potential connecting link. However, kidney-specific HDACs inhibition showed reno-protection via restoring the endogenous Klotho loss and thus prevention of inflammation and apoptosis, which could prove to be a potential therapeutic strategy against diabetes-AKI comorbidity.
Collapse
|
28
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
30
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
31
|
Zhou X, Chen H, Shi Y, Ma X, Zhuang S, Liu N. The Role and Mechanism of Histone Deacetylases in Acute Kidney Injury. Front Pharmacol 2021; 12:695237. [PMID: 34220520 PMCID: PMC8242167 DOI: 10.3389/fphar.2021.695237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical complication with an incidence of up to 8-18% in hospitalized patients. AKI is also a complication of COVID-19 patients and is associated with an increased risk of death. In recent years, numerous studies have suggested that epigenetic regulation is critically involved in the pathophysiological process and prognosis of AKI. Histone acetylation, one of the epigenetic regulations, is negatively regulated by histone deacetylases (HDACs). Increasing evidence indicates that HDACs play an important role in the pathophysiological development of AKI by regulation of apoptosis, inflammation, oxidative stress, fibrosis, cell survival, autophagy, ATP production, and mitochondrial biogenesis (MB). In this review, we summarize and discuss the role and mechanism of HDACs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
33
|
Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J Pers Med 2021; 11:336. [PMID: 33922725 PMCID: PMC8145108 DOI: 10.3390/jpm11050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R. Harker
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - David F. Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|