1
|
Martinez SA, Karel IZ, Silvaroli JA, Ahmed E, Kim JY, Stayton A, Patel PS, Afjal MA, Horton T, Bohmer M, Vanichapol T, Sander V, Andrade GM, Allison CV, Mondal M, Thorson VC, Partey A, Nimkar K, Williams V, Quimby J, Ganesan L, Madhavan SM, Davidson AJ, Peterson BR, Adebiyi A, Rao R, Sweet DH, Singh P, Bennett KM, Zepeda-Orozco D, Mallipattu SK, Eisenmann ED, Sparreboom A, Rovin BH, Bajwa A, Pabla NS. Resazurin dye is an in vivo sensor of kidney tubular function. Kidney Int 2025; 107:508-520. [PMID: 39733791 PMCID: PMC11845305 DOI: 10.1016/j.kint.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Glomerular filtration rate (GFR) is the main functional index of kidney health and disease. Currently, no methods are available to directly measure tubular mass and function. Here, we report a serendipitous finding that the in vitro cell viability dye resazurin can be used in mice as an exogenous sensor of tubular function. Intravenously injected resazurin exhibited significant plasma protein binding and was found to mainly undergo tubular secretion. Mechanistic studies showed that the blue-colored, weakly fluorescent resazurin is taken up by tubular cells through organic anion transporters, followed by conversion to a highly fluorescent, pink-colored resorufin by mitochondrial and cytosolic reductases, converted to an orange-colored β-d-glucuronide with subsequent efflux into the urine. Here we report a simple method in which the intravenous injection of resazurin is followed by the measurement of fluorescent metabolites in the urine, providing a sensitive readout of tubular function. Three mouse models of acute kidney injury (rhabdomyolysis, bilateral ischemia-reperfusion injury, and cisplatin nephrotoxicity) were tested and the resazurin-based method was able to sensitively detect the loss of tubular function much earlier than the increase in serum creatinine levels. Strikingly, in mice with unilateral ischemia-reperfusion injury and genetic mutation-linked kidney hypoplasia (oligosyndactylism, a genetic model for congenital kidney hypoplasia), the resazurin-based method was able to detect loss of tubular mass and function despite normal GFR levels. Collectively, our findings establish the preclinical utility of resazurin as a sensitive exogenous marker of tubular function and support future examination in larger animals for potential clinical translation.
Collapse
Affiliation(s)
- Shirely Acosta Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Isaac Z Karel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Stayton
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prisha S Patel
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohammad Amir Afjal
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thomas Horton
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Margaret Bohmer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Gabriel Mayoral Andrade
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Corynne Vermillion Allison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Milon Mondal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Victoria C Thorson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexandra Partey
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kartik Nimkar
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Victoria Williams
- Division of Clinical Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, Columbus, Ohio, USA
| | - Latha Ganesan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sethu M Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Douglas H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Kevin M Bennett
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, USA
| | - Diana Zepeda-Orozco
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport VA Medical Center, Northport, New York, USA
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amandeep Bajwa
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
3
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Beamish JA, Watts JA, Dressler GR. Gene regulation in regeneration after acute kidney injury. J Biol Chem 2024; 300:107520. [PMID: 38950862 PMCID: PMC11325799 DOI: 10.1016/j.jbc.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Silvaroli JA, Bisunke B, Kim JY, Stayton A, Jayne LA, Martinez SA, Nguyen C, Patel PS, Vanichapol T, Verma V, Akhter J, Bolisetty S, Madhavan SM, Kuscu C, Coss CC, Zepeda-Orozco D, Parikh SV, Satoskar AA, Davidson AJ, Eason JD, Szeto HH, Pabla NS, Bajwa A. Genome-Wide CRISPR Screen Identifies Phospholipid Scramblase 3 as the Biological Target of Mitoprotective Drug SS-31. J Am Soc Nephrol 2024; 35:681-695. [PMID: 38530359 PMCID: PMC11164119 DOI: 10.1681/asn.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Key Points Szeto–Schiller-31–mediated mitoprotection is phospholipid scramblase 3–dependent. Phospholipid scramblase 3 is required for recovery after AKI. Background The synthetic tetrapeptide Szeto–Schiller (SS)-31 shows promise in alleviating mitochondrial dysfunction associated with common diseases. However, the precise pharmacological basis of its mitoprotective effects remains unknown. Methods To uncover the biological targets of SS-31, we performed a genome-scale clustered regularly interspaced short palindromic repeats screen in human kidney-2, a cell culture model where SS-31 mitigates cisplatin-associated cell death and mitochondrial dysfunction. The identified hit candidate gene was functionally validated using knockout cell lines, small interfering RNA-mediated downregulation, and tubular epithelial–specific conditional knockout mice. Biochemical interaction studies were also performed to examine the interaction of SS-31 with the identified target protein. Results Our primary screen and validation studies in hexokinase 2 and primary murine tubular epithelial cells showed that phospholipid scramblase 3 (PLSCR3), an understudied inner mitochondrial membrane protein, was essential for the protective effects of SS-31. For in vivo validation, we generated tubular epithelial–specific knockout mice and found that Plscr3 gene ablation did not influence kidney function under normal conditions or affect the severity of cisplatin and rhabdomyolysis-associated AKI. However, Plscr3 gene deletion completely abrogated the protective effects of SS-31 during cisplatin and rhabdomyolysis-associated AKI. Biochemical studies showed that SS-31 directly binds to a previously uncharacterized N -terminal domain and stimulates PLSCR3 scramblase activity. Finally, PLSCR3 protein expression was found to be increased in the kidneys of patients with AKI. Conclusions PLSCR3 was identified as the essential biological target that facilitated the mitoprotective effects of SS-31 in vitro and in vivo .
Collapse
Affiliation(s)
- Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amanda Stayton
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Laura A. Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shirely A. Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher Nguyen
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Prisha S. Patel
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Vivek Verma
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Juheb Akhter
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | | | - Sethu M. Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Cem Kuscu
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Diana Zepeda-Orozco
- Department of Pediatrics, The Ohio State University College of Medicine and Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Samir V. Parikh
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Anjali A. Satoskar
- Division of Renal and Transplant Pathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - James D. Eason
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hazel H. Szeto
- Social Profit Network Research Lab, Menlo Park, California
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
6
|
Rauckhorst AJ, Vasquez Martinez G, Mayoral Andrade G, Wen H, Kim JY, Simoni A, Robles-Planells C, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular mitochondrial pyruvate carrier disruption elicits redox adaptations that protect from acute kidney injury. Mol Metab 2024; 79:101849. [PMID: 38056691 PMCID: PMC10733108 DOI: 10.1016/j.molmet.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Claudia Robles-Planells
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA.
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris RC, Gewin L, Brooks CR, Davidson AJ, de Caestecker M. Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury. JCI Insight 2023; 8:e173144. [PMID: 37698919 PMCID: PMC10619506 DOI: 10.1172/jci.insight.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Collapse
Affiliation(s)
- Min Yang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren N. Lopez
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Delgado
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Clouthier
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuantee Zhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie Gewin
- Washington University in St. Louis School of Medicine and the St. Louis Veterans Affairs Hospital, St. Louis, Missouri, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
9
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
10
|
Kim JY, Silvaroli JA, Martinez GV, Bisunke B, Luna Ramirez AV, Jayne LA, Feng MJHH, Girotra B, Acosta Martinez SM, Vermillion CR, Karel IZ, Ferrell N, Weisleder N, Chung S, Christman JW, Brooks CR, Madhavan SM, Hoyt KR, Cianciolo RE, Satoskar AA, Zepeda-Orozco D, Sullivan JC, Davidson AJ, Bajwa A, Pabla NS. Zinc finger protein 24-dependent transcription factor SOX9 up-regulation protects tubular epithelial cells during acute kidney injury. Kidney Int 2023; 103:1093-1104. [PMID: 36921719 PMCID: PMC10200760 DOI: 10.1016/j.kint.2023.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA; Division of Nephrology and Hypertension, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alanys V Luna Ramirez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Laura A Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Bhavya Girotra
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Shirely M Acosta Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Corynne R Vermillion
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Isaac Z Karel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Craig R Brooks
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sethu M Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Anjali A Satoskar
- Division of Renal and Transplant Pathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA; Division of Nephrology and Hypertension, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
12
|
Rauckhorst AJ, Martinez GV, Andrade GM, Wen H, Kim JY, Simoni A, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular Mitochondrial Pyruvate Carrier Disruption Elicits Redox Adaptations that Protect from Acute Kidney Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526492. [PMID: 36778297 PMCID: PMC9915694 DOI: 10.1101/2023.01.31.526492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed. To test the functional consequences of MPC downregulation, we generated novel tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice. 13C-glucose tracing, steady-state metabolomic profiling, and enzymatic activity assays revealed that MPC TubKO coordinately increased activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, MPC TubKO decreased markers of kidney injury and oxidative damage and strikingly increased survival. Our findings suggest that decreased mitochondrial pyruvate uptake is a central adaptive response following AKI and raise the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R. Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Kha M, Krawczyk K, Choong OK, De Luca F, Altiparmak G, Källberg E, Nilsson H, Leandersson K, Swärd K, Johansson ME. The injury-induced transcription factor SOX9 alters the expression of LBR, HMGA2, and HIPK3 in the human kidney. Am J Physiol Renal Physiol 2023; 324:F75-F90. [PMID: 36454702 DOI: 10.1152/ajprenal.00196.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krzysztof Krawczyk
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oi Kuan Choong
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco De Luca
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Diniz LRL, Elshabrawy HA, Souza MTS, Duarte ABS, Madhav N, de Sousa DP. Renoprotective Effects of Luteolin: Therapeutic Potential for COVID-19-Associated Acute Kidney Injuries. Biomolecules 2022; 12:1544. [PMID: 36358895 PMCID: PMC9687696 DOI: 10.3390/biom12111544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Acute kidney injury (AKI) has been increasingly reported in critically-ill COVID-19 patients. Moreover, there was significant positive correlation between COVID-19 deaths and renal disorders in hospitalized COVID-19 patients with underlying comorbidities who required renal replacement therapy. It has suggested that death in COVID-19 patients with AKI is 3-fold higher than in COVID-19 patients without AKI. The pathophysiology of COVID-19-associated AKI could be attributed to unspecific mechanisms, as well as COVID-19-specific mechanisms such as direct cellular injury, an imbalanced renin-angiotensin-aldosterone system, pro-inflammatory cytokines elicited by the viral infection and thrombotic events. To date, there is no specific treatment for COVID-19 and its associated AKI. Luteolin is a natural compound with multiple pharmacological activities, including anticoronavirus, as well as renoprotective activities against kidney injury induced by sepsis, renal ischemia and diverse nephrotoxic agents. Therefore, in this review, we mechanistically discuss the anti-SARS-CoV-2 and renoprotective activities of luteolin, which highlight its therapeutic potential in COVID-19-AKI patients.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | | | | - Nikhil Madhav
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | |
Collapse
|
15
|
Agarwal N, Zhou Q, Arya D, Rinaldetti S, Duex J, LaBarbera DV, Theodorescu D. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci 2022; 23:ijms231810819. [PMID: 36142729 PMCID: PMC9501578 DOI: 10.3390/ijms231810819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the promoter of the human Telomerase Reverse Transcriptase (hTERT) gene are common and associated with its elevated expression in bladder cancer, melanoma, and glioblastoma. Though these mutations and TERT overexpression are associated with aggressive disease and poor outcome, an incomplete understanding of mutant TERT regulation limits treatment options directed at this gene. Herein, we unravel a signaling pathway that leads to upregulated hTERT expression resulting from the −124 bp promoter mutation, the most frequent variant across human cancer. We employed engineered bladder cancer cells that harbor a GFP insertion at the TSS region on −124 hTERT promoter for high-content screening drug discovery using a focused library of ~800 kinase inhibitors. Studies using in vitro and in vivo models prioritized AST-487, an inhibitor of the wild-type, and mutant RET (rearranged during transfection) proto-oncogene as a novel drug inhibitor of both wild-type and mutant promoter-driven hTERT expression. We also identified the RET kinase pathway, targeted by AST-487, as a novel regulator of mutant hTERT promoter-driven transcription in bladder cancer cells. Collectively, our work provides new potential precision medicine approaches for cancer patients with upregulated hTERT expression, perhaps, especially those harboring mutations in both the RET gene and the hTERT promoter, such as in thyroid cancer.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Deepak Arya
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Sébastien Rinaldetti
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Jason Duex
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: (D.V.L.); (D.T.); Tel.: +1-310-423-8431 (D.T.)
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: (D.V.L.); (D.T.); Tel.: +1-310-423-8431 (D.T.)
| |
Collapse
|
16
|
Zhuang M, Scholz A, Walz G, Yakulov TA. Histone Deacetylases Cooperate with NF-κB to Support the Immediate Migratory Response after Zebrafish Pronephros Injury. Int J Mol Sci 2022; 23:ijms23179582. [PMID: 36076983 PMCID: PMC9455417 DOI: 10.3390/ijms23179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is commonly associated with severe human diseases, and often worsens the outcome in hospitalized patients. The mammalian kidney has the ability to recover spontaneously from AKI; however, little progress has been made in the development of supportive treatments. Increasing evidence suggest that histone deacetylases (HDAC) and NF-κB promote the pathogenesis of AKI, and inhibition of Hdac activity has a protective effect in murine models of AKI. However, the role of HDAC at the early stages of recovery is unknown. We used the zebrafish pronephros model to study the role of epigenetic modifiers in the immediate repair response after injury to the tubular epithelium. Using specific inhibitors, we found that the histone deacetylase Hdac2, Hdac6, and Hdac8 activities are required for the repair via collective cell migration. We found that hdac6, hdac8, and nfkbiaa expression levels were upregulated in the repairing epithelial cells shortly after injury. Depletion of hdac6, hdac8, or nfkbiaa with morpholino oligonucleotides impaired the repair process, whereas the combined depletion of all three genes synergistically suppressed the recovery process. Furthermore, time-lapse video microscopy revealed that the lamellipodia and filopodia formation in the flanking cells was strongly reduced in hdac6-depleted embryos. Our findings suggest that Hdac activity and NF-κB are synergistically required for the immediate repair response in the zebrafish pronephros model of AKI, and the timing of HDAC inhibition might be important in developing supportive protocols in the human disease.
Collapse
Affiliation(s)
- Mingyue Zhuang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Alexander Scholz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| | - Toma Antonov Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- Correspondence:
| |
Collapse
|
17
|
de Caestecker M. CDKL5: a promising new therapeutic target for acute kidney injury? Am J Physiol Renal Physiol 2020; 319:F865-F867. [PMID: 33073588 DOI: 10.1152/ajprenal.00535.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|