1
|
Veiga AC, Silva-Aguiar RP, Milanez MIO, Aires RS, Moraes YAC, Campos RR, Bergamaschi CT, Caruso-Neves C, Nishi EE. Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats. Hypertens Res 2025; 48:1491-1502. [PMID: 39820068 DOI: 10.1038/s41440-025-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Proteinuria, especially albuminuria, serves as an independent risk factor for progression in cardiovascular and renal diseases. Clinical and experimental studies have demonstrated that renal nerves contribute to renal dysfunction in arterial hypertension (AH). This study hypothesizes that renal nerves mediate the mechanisms of protein endocytosis by proximal tubule epithelial cells (PTEC) and glomerular function; with dysregulation of the renal nerves contributing to proteinuria in Wistar rats with renovascular hypertension (2-kidney, 1-clip model, 2K-1C). Reduced albumin uptake and increased internalization of endocytic receptor megalin in PTEC were found in both the clipped and contralateral kidneys of 2K-1C rats. Renal denervation (DNx) or hydralazine treatment restored these parameters. Moreover, DNx, but not hydralazine, reduced serum creatinine and recovered podocyte numbers in the contralateral kidney of 2K-1C rats. Thus, our data suggest that renal nerves and high arterial pressure contribute to decreased albumin reabsorption by cellular redistribution of megalin in PTEC, while renal nerves remarkably drive glomerular dysfunction in renovascular hypertension, independently of their effect on blood pressure. Created with BioRender.com.
Collapse
Affiliation(s)
- A C Veiga
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M I O Milanez
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R S Aires
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Y A C Moraes
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R R Campos
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - C T Bergamaschi
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - C Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E E Nishi
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Yang K, Zhang P, Ding X, Yu G, Liu J, Yang Y, Fang J, Liu Q, Zhang L, Li J, Wu F. Integrating bioinformatics and metabolomics to identify potential biomarkers of hypertensive nephropathy. Sci Rep 2025; 15:7437. [PMID: 40032896 PMCID: PMC11876634 DOI: 10.1038/s41598-025-89601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Hypertensive nephropathy (HN), caused by long-term poorly controlled hypertension, is the second common cause of end-stage renal disease after diabetes mellitus, but the pathogenesis of HN is unclear. The purpose of this study was to identify the biological pathways involved in the progression of HN and bile acid (BA)-related biomarkers, and to analyze the role of bile acids in HN. Download gene microarray data from Gene Expression Omnibus. Differentially expressed genes (DEGs) associated with HN were identified, and then DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. A protein-protein interaction (PPI) network was established using DEGs to identify BA-related hub genes in combination with bile acid identical targets. An animal model of early hypertensive nephropathy was established using SHR and the concentrations of 39 bile acids were measured quantitatively in the renal cortex to screen for significantly different concentrations and to analyze the correlation between bile acid concentrations and blood pressure. A total of 398 DEGs were screened. The results of enrichment analysis identified multiple biological pathways associated with hypertension, nephropathy and bile acids. Combining PPI network and bile acid-related targets, three BA-related hub genes (APOE, ALB, SERPINA1) were identified. Quantitative analysis of bile acids revealed significant differences in the concentrations of seven bile acids (DCA, CDCA, UDCA, UCA, CA, TDCA, TCDCA). The concentrations of these bile acids showed a positive correlation with blood pressure values in SHR, with CA, DCA and TDCA showing a stronger correlation and specificity with blood pressure in SHR. Three BA-related hub genes (APOE, ALB, SERPINA1) may be involved in the early stages of HN. The concentrations of multiple bile acids were significantly elevated in the early stages of HN, with CA, DCA and TDCA being more correlated and specific with blood pressure and having higher diagnostic value. These BA-related hub genes and BAs may be involved in disease progression in the early stages of HN.
Collapse
Affiliation(s)
- Kezhen Yang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Pingna Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gong Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jipeng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lu Zhang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Fangchao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
3
|
Yunker L, Harwig MC, Kriegel AJ. A novel automated method for comprehensive renal cast quantification from rat kidney sections using QuPath. Am J Physiol Renal Physiol 2025; 328:F230-F238. [PMID: 39716935 DOI: 10.1152/ajprenal.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024] Open
Abstract
The presence of tubular casts within the kidney serves as an important feature when assessing the degree of renal injury. Quantification of renal tubular casts has been historically difficult due to varying cast morphologies, protein composition, and stain uptake properties, even within the same kidney. Color thresholding remains one of the most common methods of quantification in the laboratory when assessing the percentage of renal casting; however, this method is unable to account for tubule casts stained a variety of colors. We have developed a novel method of automated cast quantification using the machine learning pixel classification tool within QuPath, an open-source software designed for digital pathology. We demonstrated the usability of this method in male and female Dahl salt-sensitive rats fed either low or high salt for 2 wk and male Sprague-Dawley rats treated with podotoxin puromycin aminonucleoside (PAN). Briefly, the pixel classifier was trained to identify kidney tissue, various cast color types, and slide backgrounds. Following the development of the pixel classifier, we applied it to the sample population and compared the results with those of other methods of cast quantification, including color thresholding and manual quantification. We found that the automated pixel classifier designed in QuPath was able to comprehensively quantify metachromatic tubular casts compared with color thresholding. This novel method of cast quantification provides researchers with the ability to reliably automate cast quantification that is both comprehensive and efficient.NEW & NOTEWORTHY We developed a method of automated renal tubule cast quantification using a machine learning-based pixel classifier within QuPath, an open-source image analysis software. The advantages of this approach are demonstrated by rigorous comparison of quantification methods on a set of Masson's trichrome-stained kidney sections from high- and low-salt fed salt-sensitive Dahl rats. Researchers are provided with step-by-step instructions for creating and training a pixel classifier in QuPath for application to image analysis.
Collapse
Affiliation(s)
- Lauren Yunker
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan Cleland Harwig
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Wang Y, Wu Y, Ren J, Wang Y, Perwaiz I, Su H, Li J, Qu P. Pharmacological inhibition of the NLRP3 inflammasome attenuates kidney apoptosis, fibrosis, and injury in Dahl salt-sensitive rats. Clin Exp Nephrol 2025; 29:113-122. [PMID: 39576390 PMCID: PMC11807026 DOI: 10.1007/s10157-024-02567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear. METHODS Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13BN (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues. RESULTS Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys. CONCLUSIONS The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Yuhang Wu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jiayu Ren
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Imran Perwaiz
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Hongtong Su
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jing Li
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
6
|
Cortinovis M, Perico N, Remuzzi G. Tubulointerstitial injury in proteinuric chronic kidney diseases. Front Med (Lausanne) 2024; 11:1478697. [PMID: 39529801 PMCID: PMC11550959 DOI: 10.3389/fmed.2024.1478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Proteinuria is an independent risk factor for chronic kidney disease progression and cardiovascular diseases. Apart from its prognostic role, the load of proteins that pass across the disrupted glomerular capillary wall trigger multiple pathophysiologic processes. These include, among others, intratubular complement activation and excessive proximal tubular reabsorption of filtered proteins, especially albumin and albumin-bound free fatty acids, which can set off several pathways of cellular damage. The activation of these pathways can cause apoptosis of proximal tubular cells and paracrine effects that incite the development of interstitial inflammation and fibrosis, ultimately leading to irreversible kidney injury. In this review, we provide a comprehensive overview of the current understanding on the mechanisms underlying the tubular toxicity of ultrafiltered proteins in the setting of proteinuric chronic kidney diseases. The acquired knowledge is expected to be instrumental for the development of novel therapeutic classes of medications to be tested on top of standard of care with optimized renin-angiotensin-aldosterone blockade and sodium-glucose cotransporter-2 inhibition, in order to further improve the clinical outcomes of patients with proteinuric chronic kidney diseases.
Collapse
Affiliation(s)
- Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
7
|
Dissanayake LV, Palygin O, Staruschenko A. Lysine and salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2024; 33:441-446. [PMID: 38639736 DOI: 10.1097/mnh.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
PURPOSE OF REVIEW Salt-sensitive (SS) hypertension and its associated kidney damage have been extensively studied, yet proper therapeutic strategies are lacking. The interest in altering the metabolome to affect renal and cardiovascular disease has been emerging. Here, we discuss the effect and potential mechanism behind the protective effect of lysine, an essential amino acid, on the progression of SS hypertension. RECENT FINDINGS We have recently demonstrated that administering lysine in an SS rodent model can control the progression of hypertension. Both the animal and pilot human studies showed that lysine can efficiently inhibit tubular reabsorption of albumin and protect the kidneys from further damage. In addition, we conducted multilevel omics studies that showed increased lysine conjugation and excretion, leading to the depletion of harmful metabolites and an increase in useful ones. SUMMARY Lysine's twofold action involves both mechanically flushing protein from proximal tubules to shield the kidneys and initiating metabolic adaptations in the kidneys. This results in a net positive impact on SS hypertension. While further research is necessary to apply the current findings in clinical settings, this study offers some evidence suggesting that lysine supplementation holds promise as a therapeutic approach for hypertensive kidney disease.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander Staruschenko
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| |
Collapse
|
8
|
Wu G, Liu F, Cui Q, Zhang T, Bao J, Hao J. Quercetin Prevents Hypertension in Dahl Salt-sensitive Rats F ed a High-salt Diet Through Balancing Endothelial Nitric Oxide Synthase and Sirtuin 1. Comb Chem High Throughput Screen 2024; 27:2446-2453. [PMID: 38415447 DOI: 10.2174/0113862073284196240214082904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND A high-salt diet is a leading dietary risk factor for elevated blood pressure and cardiovascular disease. Quercetin reportedly exhibits cardioprotective and antihypertensive therapeutic effects. OBJECTIVES The objective of this study is to examine the effect of quercetin on high-salt dietinduced elevated blood pressure in Dahl salt-sensitive (SS) rats and determine the underlying molecular mechanism. MATERIALS AND METHODS Rats of the Dahl SS and control SS-13 BN strains were separated into five groups, SS-13 BN rats fed a low-salt diet (BL group), SS-13 BN rats fed a high-salt diet (BH group), Dahl SS rats fed a low-salt diet (SL group), Dahl SS rats fed a high-salt diet (SH group), and SH rats treated with quercetin (SHQ group). Blood pressure was checked three weeks into the course of treatment, and biochemical markers in the urine and serum were examined. Additionally, western blot was done to evaluate the sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) expression levels. Immunohistochemical analysis was performed to verify SIRT1 levels. RESULTS We demonstrated that a high-salt diet elevated blood pressure in both SS-13 BN and Dahl SS rats, and quercetin supplementation alleviated the altered blood pressure. Compared with the SH group, quercetin significantly elevated the protein expression of SIRT1 and eNOS. Immunohistochemistry results further confirmed that quercetin could improve the protein expression of SIRT1. CONCLUSION Quercetin reduced blood pressure by enhancing the expression of SIRT1 and eNOS in Dahl SS rats fed a high-salt diet.
Collapse
Affiliation(s)
- Guanji Wu
- Department of Cardiology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
- Department of Cardiology, Xi'an Central Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Fuqiang Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qing Cui
- Department of Cardiology, Xi'an Central Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhang
- Department of Cardiology, Xi'an Central Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jianjun Bao
- Department of Cardiology, Xi'an Central Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Junjun Hao
- Department of Cardiovascular Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Peng Z, Wang H, Zheng J, Wang J, Xiang Y, Liu C, Ji M, Liu H, Pan L, Qin X, Qu X. Is the proximal tubule the focus of tubulointerstitial fibrosis? Heliyon 2023; 9:e13508. [PMID: 36846656 PMCID: PMC9950842 DOI: 10.1016/j.heliyon.2023.e13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF), a common end result of almost all progressive chronic kidney diseases (CKD), is also the best predictor of kidney survival. Almost all cells in the kidney are involved in the progression of TIF. Myofibroblasts, the primary producers of extracellular matrix, have previously received a great deal of attention; however, a large body of emerging evidence reveals that proximal tubule (PT) plays a central role in TIF progression. In response to injury, renal tubular epithelial cells (TECs) transform into inflammatory and fibroblastic cells, producing various bioactive molecules that drive interstitial inflammation and fibrosis. Here we reviewed the increasing evidence for the key role of the PT in promoting TIF in tubulointerstitial and glomerular injury and discussed the therapeutic targets and carrier systems involving the PT that holds particular promise for treating patients with fibrotic nephropathy.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
10
|
Rinschen MM, Palygin O, El-Meanawy A, Domingo-Almenara X, Palermo A, Dissanayake LV, Golosova D, Schafroth MA, Guijas C, Demir F, Jaegers J, Gliozzi ML, Xue J, Hoehne M, Benzing T, Kok BP, Saez E, Bleich M, Himmerkus N, Weisz OA, Cravatt BF, Krüger M, Benton HP, Siuzdak G, Staruschenko A. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun 2022; 13:4099. [PMID: 35835746 PMCID: PMC9283537 DOI: 10.1038/s41467-022-31670-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/27/2022] [Indexed: 01/07/2023] Open
Abstract
Hypertension and kidney disease have been repeatedly associated with genomic variants and alterations of lysine metabolism. Here, we combined stable isotope labeling with untargeted metabolomics to investigate lysine's metabolic fate in vivo. Dietary 13C6 labeled lysine was tracked to lysine metabolites across various organs. Globally, lysine reacts rapidly with molecules of the central carbon metabolism, but incorporates slowly into proteins and acylcarnitines. Lysine metabolism is accelerated in a rat model of hypertension and kidney damage, chiefly through N-alpha-mediated degradation. Lysine administration diminished development of hypertension and kidney injury. Protective mechanisms include diuresis, further acceleration of lysine conjugate formation, and inhibition of tubular albumin uptake. Lysine also conjugates with malonyl-CoA to form a novel metabolite Nε-malonyl-lysine to deplete malonyl-CoA from fatty acid synthesis. Through conjugate formation and excretion as fructoselysine, saccharopine, and Nε-acetyllysine, lysine lead to depletion of central carbon metabolites from the organism and kidney. Consistently, lysine administration to patients at risk for hypertension and kidney disease inhibited tubular albumin uptake, increased lysine conjugate formation, and reduced tricarboxylic acid (TCA) cycle metabolites, compared to kidney-healthy volunteers. In conclusion, lysine isotope tracing mapped an accelerated metabolism in hypertension, and lysine administration could protect kidneys in hypertensive kidney disease.
Collapse
Affiliation(s)
- Markus M Rinschen
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III. Medical Clinic, University Hospital Hamburg Eppendorf, Hamburg, Germany.
- AIAS, Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
- Omics Sciences Unit, EURECAT, Technology Centre of Catalonia, Reus, Catalonia, Spain
| | - Amelia Palermo
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33602, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Megan L Gliozzi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jingchuan Xue
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Martin Hoehne
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
- Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
- Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Bernard P Kok
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Enrique Saez
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Markus Bleich
- Institute of Physiology, University Kiel, Kiel, Germany
| | | | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | | | - Marcus Krüger
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - H Paul Benton
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA.
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33602, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA.
| |
Collapse
|
11
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
12
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
13
|
Dunn KW, Molitoris BA, Dagher PC. The Indiana O'Brien Center for Advanced Renal Microscopic Analysis. Am J Physiol Renal Physiol 2021; 320:F671-F682. [PMID: 33682441 DOI: 10.1152/ajprenal.00007.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry. The advanced imaging capabilities of the center are made available to renal researchers worldwide via collaborations and a unique fellowship program. Center outreach is accomplished through an enrichment core that oversees a seminar series, an informational website, and a biennial workshop featuring hands-on training from members of the Indiana O'Brien Center and imaging experts from around the world.
Collapse
Affiliation(s)
- Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Gohar EY, Almutlaq RN, Daugherty EM, Butt MK, Jin C, Pollock JS, Pollock DM, De Miguel C. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R297-R306. [PMID: 33407017 PMCID: PMC7988769 DOI: 10.1152/ajpregu.00267.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Recent evidence indicates a crucial role for G protein-coupled estrogen receptor 1 (GPER1) in the maintenance of cardiovascular and kidney health in females. The current study tested whether GPER1 activation ameliorates hypertension and kidney damage in female Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. Adult female rats were implanted with telemetry transmitters for monitoring blood pressure and osmotic minipumps releasing G1 (selective GPER1 agonist, 400 μg/kg/day ip) or vehicle. Two weeks after pump implantation, rats were shifted from a normal-salt (NS) diet (0.4% NaCl) to a matched HS diet (4.0% NaCl) for 2 wk. Twenty-four hour urine samples were collected during both diet periods and urinary markers of kidney injury were assessed. Histological assessment of kidney injury was conducted after the 2-wk HS diet period. Compared with values during the NS diet, 24-h mean arterial pressure markedly increased in response to HS, reaching similar values in vehicle-treated and G1-treated rats. HS also significantly increased urinary excretion of protein, albumin, nephrin (podocyte damage marker), and KIM-1 (proximal tubule injury marker) in vehicle-treated rats. Importantly, G1 treatment prevented the HS-induced proteinuria, albuminuria, and increase in KIM-1 excretion but not nephrinuria. Histological analysis revealed that HS-induced glomerular damage did not differ between groups. However, G1 treatment preserved proximal tubule brush-border integrity in HS-fed rats. Collectively, our data suggest that GPER1 activation protects against HS-induced proteinuria and albuminuria in female Dahl SS rats by preserving proximal tubule brush-border integrity in a blood pressure-independent manner.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rawan N Almutlaq
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth M Daugherty
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maryam K Butt
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Nalin N, Al Dhanhani A, AlBawardi A, Sharma C, Chandran S, Yasin J, Bakoush O. Effect of angiotensin II on diabetic glomerular hyperpermeability: an in vivo permeability study in rats. Am J Physiol Renal Physiol 2020; 319:F833-F838. [PMID: 33017190 DOI: 10.1152/ajprenal.00259.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiotensin II drives the pathogenesis of diabetic kidney disease, and its systemic administration induces glomerular hyperpermeability in normal rats. However, the response of diabetic glomerular permeability to angiotensin II is largely unknown. In the present study, we investigated the impact of extended systemic administration of angiotensin II on the glomerular permeability of streptozotocin (STZ)-induced late diabetes in rats. We examined the changes in the glomerular permeability after subcutaneous infusion of angiotensin II at 200 ng·kg-1·min-1 for 7 days in male Wistar diabetic rats with 3 mo of STZ-induced diabetes (i.e., blood glucose of ∼20 mmol/L). We also compared these changes with the effects on nondiabetic rats. The sieving coefficients (θ) for inert polydisperse Ficoll molecules, which had a radius of 10-90 Å (Ficoll70-90 Å), were measured in vivo. The θ for large Ficoll molecules was selectively enhanced after infusion of extended angiotensin II in both diabetic (θ for Ficoll70-90 Å = 0.00244 vs. 0.00079, P < 0.001) and nondiabetic animals (θ for Ficoll70-90 Å = 0.00029 vs. 0.00006, P < 0.001). These changes were compatible with the more than twofold increase in the macromolecular glomerular transport through the large-pore pathways after infusion of angiotensin II in both diabetic and nondiabetic animals. Angiotensin II infusion enhanced the large shunt-like glomerular transport pathway of STZ-induced late diabetes. Such defects can account for the large-molecular-weight IgM-uria that is observed in severe diabetic kidney disease.
Collapse
Affiliation(s)
- Nima Nalin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Al Dhanhani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alia AlBawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanjana Chandran
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omran Bakoush
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2020; 17:128-144. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, in particular immunofluorescence microscopy, has been used extensively for the assessment of kidney function and pathology for both research and diagnostic purposes. The development of confocal microscopy in the 1950s enabled imaging of live cells and intravital imaging of the kidney; however, confocal microscopy is limited by its maximal spatial resolution and depth. More recent advances in fluorescence microscopy techniques have enabled increasingly detailed assessment of kidney structure and provided extraordinary insights into kidney function. For example, nanoscale precise imaging by rapid beam oscillation (nSPIRO) is a super-resolution microscopy technique that was originally developed for functional imaging of kidney microvilli and enables detection of dynamic physiological events in the kidney. A variety of techniques such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) enable assessment of interaction between proteins. The emergence of other super-resolution techniques, including super-resolution stimulated emission depletion (STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM), has enabled functional imaging of cellular and subcellular organelles at ≤50 nm resolution. The deep imaging via emission recovery (DIVER) detector allows deep, label-free and high-sensitivity imaging of second harmonics, enabling assessment of processes such as fibrosis, whereas fluorescence lifetime imaging microscopy (FLIM) enables assessment of metabolic processes.
Collapse
Affiliation(s)
- Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA. .,Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
17
|
Nosalski R, Siedlinski M, Denby L, McGinnigle E, Nowak M, Cat AND, Medina-Ruiz L, Cantini M, Skiba D, Wilk G, Osmenda G, Rodor J, Salmeron-Sanchez M, Graham G, Maffia P, Graham D, Baker AH, Guzik TJ. T-Cell-Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circ Res 2020; 126:988-1003. [PMID: 32065054 PMCID: PMC7147427 DOI: 10.1161/circresaha.119.315428] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. OBJECTIVES To study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. METHODS AND RESULTS Out of 381 miRs screened in the perivascular tissues in response to Ang II (angiotensin II)-mediated hypertension, miR-214 showed the highest induction (8-fold, P=0.0001). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in perivascular adipose tissue adipocytes. Global deletion of miR-214-/- prevented Ang II-induced periaortic fibrosis, Col1a1, Col3a1, Col5a1, and Tgfb1 expression, hydroxyproline accumulation, and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214-/- mice were protected against endothelial dysfunction, oxidative stress, and increased Nox2, all of which were induced by Ang II in WT mice. Ang II-induced recruitment of T cells into perivascular adipose tissue was abolished in miR-214-/- mice. Adoptive transfer of miR-214-/- T cells into RAG1-/- mice resulted in reduced perivascular fibrosis compared with the effect of WT T cells. Ang II induced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214-/-. T cell activation, proliferation and chemotaxis pathways were differentially affected. MiR-214-/- prevented Ang II-induction of profibrotic T cell cytokines (IL-17, TNF-α, IL-9, and IFN-γ) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of patients with hypertension and is directly correlated to pulse wave velocity as a measure of vascular stiffness. CONCLUSIONS T-cell-derived miR-214 controls pathological perivascular fibrosis in hypertension mediated by T cell recruitment and local profibrotic cytokine release.
Collapse
Affiliation(s)
- Ryszard Nosalski
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Mateusz Siedlinski
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, United Kingdom (L.D., J.R., A.H.B.)
| | - Eilidh McGinnigle
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.)
| | - Michal Nowak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Aurelie Nguyen Dinh Cat
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.)
| | - Laura Medina-Ruiz
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom (L.M.-R., G.G., P.M.)
| | - Marco Cantini
- Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, United Kingdom (M.C., M.S.-S.)
| | - Dominik Skiba
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Grzegorz Wilk
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Grzegorz Osmenda
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| | - Julie Rodor
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, United Kingdom (L.D., J.R., A.H.B.)
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, United Kingdom (M.C., M.S.-S.)
| | - Gerard Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom (L.M.-R., G.G., P.M.)
| | - Pasquale Maffia
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.).,Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom (L.M.-R., G.G., P.M.).,Department of Pharmacy, University of Naples Federico II, Italy (P.M.)
| | - Delyth Graham
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.)
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, United Kingdom (L.D., J.R., A.H.B.)
| | - Tomasz J Guzik
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.N., E.M., A.N.D.C., D.S., P.M., D.G., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (R.N., M.S., M.N., D.S., G.W., G.O., T.J.G.)
| |
Collapse
|
18
|
Domondon M, Polina I, Nikiforova AB, Sultanova RF, Kruger C, Vasileva VY, Fomin MV, Beeson GC, Nieminen AL, Smythe N, Maldonado EN, Stadler K, Ilatovskaya DV. Renal Glomerular Mitochondria Function in Salt-Sensitive Hypertension. Front Physiol 2020; 10:1588. [PMID: 32116733 PMCID: PMC7010849 DOI: 10.3389/fphys.2019.01588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Salt-sensitive (SS) hypertension is accompanied with an early onset of proteinuria, which results from the loss of glomerular podocytes. Here, we hypothesized that glomerular damage in the SS hypertension occurs in part due to mitochondria dysfunction, and we used a unique model of freshly isolated glomeruli to test this hypothesis. In order to mimic SS hypertension, we used Dahl SS rats, an established animal model. Animals were fed a 0.4% NaCl (normal salt, NS) diet or challenged with a high salt (HS) 4% NaCl diet for 21 days to induce an increase in blood pressure (BP). Similar to previous studies, we found that HS diet caused renal hypertrophy, increased BP, glomerulosclerosis, and renal lesions such as fibrosis and protein casts. We did not observe changes in mitochondrial biogenesis in the renal cortex or isolated glomeruli fractions. However, Seahorse assay performed on freshly isolated glomeruli revealed that basal mitochondrial respiration, maximal respiration, and spare respiratory capacity were lower in the HS compared to the NS group. Using confocal imaging and staining for mitochondrial H2O2 using mitoPY1, we detected an intensified response to an acute H2O2 application in the podocytes of the glomeruli isolated from the HS diet fed group. TEM analysis showed that glomerular mitochondria from the HS diet fed group have structural abnormalities (swelling, enlargement, less defined cristae). Therefore, we report that glomerular mitochondria in SS hypertension are functionally and structurally defective, and this impairment could eventually lead to loss of podocytes and proteinuria. Thus, the glomerular–mitochondria axis can be targeted in novel treatment strategies for hypertensive glomerulosclerosis.
Collapse
Affiliation(s)
- Mark Domondon
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States
| | - Iuliia Polina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States
| | - Anna B Nikiforova
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States.,Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | - Regina F Sultanova
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States.,Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Claudia Kruger
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Valeriia Y Vasileva
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States.,Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - Mikhail V Fomin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States
| | - Gyda C Beeson
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Anna-Liisa Nieminen
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nancy Smythe
- Department of Pathology, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Daria V Ilatovskaya
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Dér B, Peti-Peterdi J. Advances in Renal Cell Imaging. Semin Nephrol 2019; 38:52-62. [PMID: 29291762 DOI: 10.1016/j.semnephrol.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A great variety of cell imaging technologies are used routinely every day for the investigation of kidney cell types in applications ranging from basic science research to drug development and pharmacology, clinical nephrology, and pathology. Quantitative visualization of the identity, density, and fate of both resident and nonresident cells in the kidney, and imaging-based analysis of their altered function, (patho)biology, metabolism, and signaling in disease conditions, can help to better define pathomechanism-based disease subgroups, identify critical cells and structures that play a role in the pathogenesis, critically needed biomarkers of disease progression, and cell and molecular pathways as targets for novel therapies. Overall, renal cell imaging has great potential for improving the precision of diagnostic and treatment paradigms for individual acute kidney injury or chronic kidney disease patients or patient populations. This review highlights and provides examples for some of the recently developed renal cell optical imaging approaches, mainly intravital multiphoton fluorescence microscopy, and the new knowledge they provide for our better understanding of renal pathologies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ju-Young Moon
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Korea
| | - James L Burford
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Young-Kwon Hong
- Department of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bálint Dér
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
20
|
Sandoval RM, Molitoris BA, Palygin O. Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. Methods Mol Biol 2019; 2018:151-175. [PMID: 31228156 PMCID: PMC6693343 DOI: 10.1007/978-1-4939-9581-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rat is a favored model organism to study physiological function in vivo. This is largely due to the fact that it has been used for decades and is often more comparable to corresponding human conditions (both normal and pathologic) than mice. Although the development of genetic manipulations in rats has been slower than in mice, recent advances of new genomic editing tools allow for the generation of targeted global and specific cell type mutations in different rat strains. The rat is an ideal model for advancing imaging techniques like intravital multi-photon microscopy or IVMPM. Multi-photon excitation microscopy can be applied to visualize real-time physiologic events in multiple organs including the kidney. This imaging modality can generate four-dimensional high resolution images that are inherently confocal due to the fact that the photon density needed to excite fluorescence only occurs at the objective focal plane, not above or below. Additionally, longer excitation wavelengths allow for deeper penetration into tissue, improved excitation, and are inherently less phototoxic than shorter excitation wavelengths. Applying imaging tools to study physiology in rats has become a valuable scientific technique due to the relatively simple surgical procedures, improved quality of reagents, and reproducibility of established assays. In this chapter, the authors provide an example of the application of fluorescent techniques to study cardio-renal functions in rat models. Use of experimental procedures described here, together with multiple available genetically modified animal models, provide new prospective for the further application of multi-photon microscopy in basic and translational research.
Collapse
Affiliation(s)
- Ruben M Sandoval
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Bruce A Molitoris
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018; 68-69:248-262. [PMID: 29425694 PMCID: PMC6015527 DOI: 10.1016/j.matbio.2018.02.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is the hallmark of chronic kidney disease and best predictor of renal survival. Many different cell types contribute to TIF progression including tubular epithelial cells, myofibroblasts, endothelia, and inflammatory cells. Previously, most of the attention has centered on myofibroblasts given their central importance in extracellular matrix production. However, emerging data focuses on how the response of the proximal tubule, a specialized epithelial segment vulnerable to injury, plays a central role in TIF progression. Several proximal tubular responses such as de-differentiation, cell cycle changes, autophagy, and metabolic changes may be adaptive initially, but can lead to maladaptive responses that promote TIF both through autocrine and paracrine effects. This review discusses the current paradigm of TIF progression and the increasingly important role of the proximal tubule in promoting TIF both in tubulointerstitial and glomerular injuries. A better understanding and appreciation of the role of the proximal tubule in TIF has important implications for therapeutic strategies to halt chronic kidney disease progression.
Collapse
Affiliation(s)
- Leslie S Gewin
- The Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
22
|
Palygin O, Ilatovskaya DV, Levchenko V, Endres BT, Geurts AM, Staruschenko A. Nitric oxide production by glomerular podocytes. Nitric Oxide 2017; 72:24-31. [PMID: 29128399 DOI: 10.1016/j.niox.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/27/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
Nitric Oxide (NO), a potent vasodilator and vital signaling molecule, has been shown to contribute to the regulation of glomerular ultrafiltration. However, whether changes in NO occur in podocytes during the pathogenesis of salt-sensitive hypertension has not yet been thoroughly examined. We showed here that podocytes produce NO, and further hypothesized that hypertensive animals would exhibit reduced NO production in these cells in response to various paracrine factors, which might contribute to the damage of glomeruli filtration barrier and development of proteinuria. To test this, we isolated glomeruli from the kidneys of Dahl salt-sensitive (SS) rats fed a low salt (LS; 0.4% NaCl) or high salt (HS; 4% NaCl, 3 weeks) diets and loaded podocytes with either a combination of NO and Ca2+ fluorophores (DAF-FM and Fura Red, respectively) or DAF-FM alone. Changes in fluorescence were observed with confocal microscopy in response to adenosine triphosphate (ATP), angiotensin II (Ang II), and hydrogen peroxide (H2O2). Application of Ang II resulted in activation of both NO and intracellular calcium ([Ca2+]i) transients. In contrast, ATP promoted [Ca2+]i transients, but did not have any effects on NO production. SS rats fed a HS diet for 3 weeks demonstrated impaired NO production: the response to Ang II or H2O2 in podocytes of glomeruli isolated from SS rats fed a HS diet was significantly reduced compared to rats fed a LS diet. Therefore, glomerular podocytes from hypertensive rats showed a diminished NO release in response to Ang II or oxidative stress, suggesting that podocytic NO signaling is dysfunctional in this condition and likely contributes to the development of kidney injury.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
23
|
Sandoval RM, Molitoris BA. Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods 2017; 128:20-32. [PMID: 28733090 DOI: 10.1016/j.ymeth.2017.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Abstract
The kidney is a complex and dynamic organ with over 40 cell types, and tremendous structural and functional diversity. Intravital multi-photon microscopy, development of fluorescent probes and innovative software, have rapidly advanced the study of intracellular and intercellular processes within the kidney. Researchers can quantify the distribution, behavior, and dynamic interactions of up to four labeled chemical probes and proteins simultaneously and repeatedly in four dimensions (time), with subcellular resolution in near real time. Thus, multi-photon microscopy has greatly extended our ability to investigate cell biology intravitally, at cellular and subcellular resolutions. Therefore, the purpose of the chapter is to demonstrate how the use in intravital multi-photon microscopy has advanced the understanding of both the physiology and pathophysiology of the kidney.
Collapse
Affiliation(s)
- Ruben M Sandoval
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - Bruce A Molitoris
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA.
| |
Collapse
|