1
|
Wang S, Pang X, Cai Y, Tian X, Bai J, Xi M, Cao J, Jin L, Wang X, Wang T, Li D, Li M, Fan X. Acute heat stress upregulates Akr1b3 through Nrf-2 to increase endogenous fructose leading to kidney injury. J Biol Chem 2025; 301:108121. [PMID: 39710324 PMCID: PMC11834071 DOI: 10.1016/j.jbc.2024.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
In recent years, the prevalence of extremely high-temperature climates has led to an increase in cases of acute heat stress (HS), which has been identified as a contributing factor to various kidney diseases. Fructose, the end product of the polyol pathway, has been linked to kidney conditions such as kidney stones, chronic kidney disease, and acute kidney injury. However, the relationship between acute HS and kidney injury caused by endogenous fructose remains unclear. The study found that acute HS triggers the production of reactive oxygen species, which in turn activate the Nrf-2 and Akr1b3 leading to an increase in endogenous fructose levels in kidney cells. It was further demonstrated that the elevated levels of endogenous fructose play a crucial role in causing damage to kidney cells. Moreover, inhibiting Nrf-2 effectively mitigated kidney damage induced by acute HS by reducing endogenous fructose levels. These findings underscore the detrimental impact of excessive fructose resulting from acute stress on kidney function, offering a novel perspective for future research on the prevention and treatment of acute HS-induced kidney injury.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xuan Pang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yujuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xue Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mingchuan Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lignier MJ, Hess HW, Freemas JA, Johnson BD, Hostler D, Schlader ZJ. The effect of consuming a sucrose-containing sports drink on acute kidney injury risk during a 4 h simulated occupational heat stress. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39405582 DOI: 10.1139/apnm-2024-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Occupational heat stress increases acute kidney injury risk. Drinking a soft drink sweetened with high fructose corn syrup further elevates this acute kidney injury risk. However, the impact of sucrose, another fructose-containing sweetener, on acute kidney injury risk remains unexplored. We tested the hypothesis that drinking a sucrose-containing sports drink increases acute kidney injury risk when compared to drinking a sugar-free sports drink during 4 h of simulated occupational heat stress. Ten healthy adults consumed a sucrose-containing or sugar-free sport drink ad libitum during 4 h exposures to wet bulb globe temperatures of ∼28 °C. Thirty min of work and 30 min of rest were completed each hour. Work involved treadmill walking at a fixed rate of metabolic heat production (sucrose-containing: 6.0 ± 1.2 W/kg, sugar-free: 5.5 ± 0.9 W/kg, p = 0.267). The product of urinary insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2, normalized to urine specific gravity ([IGFBP7·TIMP-2]USG), provided an acute kidney injury risk index. Mean core (intestinal: n = 13, rectal: n = 7) temperature (sucrose-containing: 37.5 ± 0.1 °C, sugar-free: 37.5 ± 0.3 °C; p = 0.914), peak core temperature (sucrose-containing: 37.8 ± 0.2 °C, sugar-free: 37.9 ± 0.3 °C; p = 0.398), and percent changes in body mass (sucrose-containing: -0.5 ± 0.4%, sugar-free: -0.3 ± 0.6%; p = 0.386) did not differ between groups. [IGFBP7∙TIMP-2]USG increased in both groups (time effect: p = 0.025) with no drink (p = 0.675) or interaction (p = 0.715) effects. Peak change [IGFBP7∙TIMP-2]USG did not differ between sucrose-containing (median 0.0116 [-0.0012, 0.1760] (ng/mL)2/1000) and sugar-free (median 0.0021 [0.0003, 0.2077] (ng/mL)2/1000; p = 0.796). Sucrose-containing sports drink consumption during simulated occupational heat stress does not modify acute kidney injury risk when compared to sugar free-sport drink consumption.
Collapse
Affiliation(s)
- Maxime Jeanovitch Lignier
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
| | - Hayden W Hess
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica A Freemas
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
| | - Blair D Johnson
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
- Nutrition and Exercise Research Center, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
- Nutrition and Exercise Research Center, Indiana University School of Public Health - Bloomington, Bloomington, IN, USA
| |
Collapse
|
3
|
Chapman CL, Johnson BD, Hostler DP, Schlader ZJ. Diagnostic accuracy of thermal, hydration, and heart rate assessments in discriminating positive acute kidney injury risk following physical work in the heat. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:326-341. [PMID: 38512776 DOI: 10.1080/15459624.2024.2315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Occupational heat stress increases the risk of acute kidney injury (AKI). This study presents a secondary analysis to generate novel hypotheses for future studies by investigating the diagnostic accuracy of thermal, hydration, and heart rate assessments in discriminating positive AKI risk following physical work in the heat in unacclimatized individuals. Unacclimatized participants (n = 13, 3 women, age: ∼23 years) completed four trials involving 2 h of exercise in a 39.7 ± 0.6 °C, 32 ± 3% relative humidity environment that differed by experimental manipulation of hyperthermia (i.e., cooling intervention) and dehydration (i.e., water drinking). Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Positive AKI risk was identified when the product of concentrations insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7∙TIMP-2] exceeded 0.3 (ng∙mL-1)2∙1000-1. Peak absolute core temperature had the acceptable discriminatory ability (AUC = 0.71, p = 0.009), but a relatively large variance (AUC 95% CI: 0.57-0.86). Mean body temperature, urine specific gravity, urine osmolality, peak heart rate, and the peak percent of both maximum heart rate and heart rate reserve had poor discrimination (AUC = 0.66-0.69, p ≤ 0.051). Mean skin temperature, percent change in body mass and plasma volume, and serum sodium and osmolality had no discrimination (p ≥ 0.072). A peak increase in mean skin temperature of >4.7 °C had a positive likelihood ratio of 11.0 which suggests clinical significance. These data suggest that the absolute value of peak core temperature and the increase in mean skin temperature may be valuable to pursue in future studies as a biomarker for AKI risk in unacclimatized workers.
Collapse
Affiliation(s)
- Christopher L Chapman
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Blair D Johnson
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - David P Hostler
- Department of Exercise & Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| |
Collapse
|
4
|
Juett LA, Drury JE, Greensmith TB, Thompson AP, Funnell MP, James LJ, Mears SA. Hypohydration induced by prolonged cycling in the heat increases biomarkers of renal injury in males. Eur J Appl Physiol 2024; 124:1085-1096. [PMID: 37848571 PMCID: PMC10954877 DOI: 10.1007/s00421-023-05328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Recent studies have shown that hypohydration can increase renal injury. However, the contribution of hypohydration to the extent of renal injury is often confounded by exercise induced muscle damage. Therefore, the aim of the present study was to investigate the effect of manipulating hydration status during moderate-intensity cycling in the heat on biomarkers of renal injury. METHODS Following familiarisation, fourteen active males (age: 21 [20-22] y; BMI: 22.1 ± 1.9 kg/m2; V ˙ O2peak: 55 ± 9 mL/kg/min) completed two experimental trials, in a randomised cross-over design. Experimental trials consisted of up to 120 min of intermittent cycling (~ 50% Wpeak) in the heat (~ 35 °C, ~ 50% relative humidity). During exercise, subjects consumed either a water volume equal to 100% body mass losses (EU) or minimal water (HYP; 75-100 mL) to induce ~ 3% body mass loss. Blood and urine samples were collected at baseline, 30 min post-exercise and 24 h post-baseline, with an additional urine sample collected immediately post-exercise. RESULTS Thirty minutes post-exercise, body mass and plasma volume were lower in HYP than EU (P < 0.001), whereas serum and urine osmolality (P < 0.001), osmolality-corrected urinary kidney injury molecule-1 concentrations (HYP: 2.74 [1.87-5.44] ng/mOsm, EU: 1.15 [0.84-2.37] ng/mOsm; P = 0.024), and percentage change in osmolality-corrected urinary neutrophil gelatinase-associated lipocalin concentrations (HYP: 61 [17-141] %, EU: 7.1 [- 4 to 24] %; P = 0.033) were greater in HYP than EU. CONCLUSION Hypohydration produced by cycling in the heat increased renal tubular injury, compared to maintaining euhydration with water ingestion.
Collapse
Affiliation(s)
- Loris A Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
- Loughborough College, Loughborough, LE11 3BT, UK
| | - Jack E Drury
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Thomas B Greensmith
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Alfie P Thompson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
5
|
Wijkström J, Annadata KC, Elinder CG, Kolla PK, Sarvepalli NR, Ring A, Swaminathan R, Gunabooshanam B, Söderberg M, Venugopal V, Wernerson A. Clinical findings and kidney morphology in chronic kidney disease of unknown cause in India. J Intern Med 2023; 294:492-505. [PMID: 37400986 DOI: 10.1111/joim.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Chronic kidney disease of unknown cause (CKDu) is an emerging health problem in India and other countries worldwide. However, clinical descriptions, including kidney pathology, are scarce. METHODS This is a descriptive case series of patients with CKDu from an endemic region in India, with a focus on clinical and biochemical characteristics, kidney biopsy findings, and environmental exposure. Patients with suspected CKDu, aged 20-65, and eGFR 30-80 mL/min/1.73 m2 from rural areas with endemic prevalence of CKDu were included. The exclusion criteria were diabetes mellitus, uncontrolled hypertension, proteinuria >1 g/24 h, or other known kidney diseases. The participants underwent kidney biopsies, and blood and urine samples were collected. RESULTS Fourteen participants (3 females, 11 males) with a mean eGFR of 53 (range 29-78) mL/min/1.73 m2 were included. Kidney biopsies showed a combination of chronic tubulointerstitial damage, glomerulosclerosis, and glomerular hypertrophy, with varying degrees of interstitial inflammation. Eight participants had polyuria (diuresis ≥ 3 L/day). The urinary sediments were bland, with no haematuria. Serum potassium and sodium levels were, in most cases, normal but within the lower reference interval. CONCLUSION The kidney morphology and clinical characteristics in patients with CKDu in India were similar to those described for CKDu in Central America and Sri Lanka.
Collapse
Affiliation(s)
- Julia Wijkström
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | | | - Carl-Gustaf Elinder
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | | | | | - Anneli Ring
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Rajendiran Swaminathan
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Barathi Gunabooshanam
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Magnus Söderberg
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Gothenburg, Sweden
| | - Vidhya Venugopal
- Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Yang Y, Zhang D, Song M, Wang C, Lv J, Zhou J, Chen M, Ma L, Mei C. Macrophages promote heat stress nephropathy in mice via the C3a-C3aR-TNF pathway. Immunobiology 2023; 228:152337. [PMID: 36689826 DOI: 10.1016/j.imbio.2023.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Heat-stress nephropathy (HSN) is associated with recurrent dehydration. However, the mechanisms underlying HSN remain largely unknown. In this study, we evaluated the role of dehydration in HSN and kidney injury in mice. Firstly, we found that complement was strongly activated in the mice that were exposed to dehydration; and among complement components, the interaction between C3a and its receptor, C3aR, was more closely associated with kidney injury. Then two-month-old mice were intraperitoneally injected with 2% dimethyl sulfoxide (DMSO) or the C3aR inhibitor SB290157 during dehydration. DMSO-treated mice exhibited excessive macrophage infiltration, renal cell apoptosis, and kidney fibrosis. In contrast, SB290157-treated mice had no apparent kidney injury. By fluorescence-activated cell sorting (FACS), we found that SB290157 treatment in mice remarkably inhibited macrophage infiltration and suppressed CCR2 expression in macrophages. In addition, C3a binding to C3aR promoted macrophage polarization toward the M1 phenotype and increased the production of TNF-α, which induced renal tubular epithelial cell (RTEC) apoptosis in vivo and in vitro. Interestingly, C3a treatment failed to directly induce TNF-α production and apoptosis in RTECs. However, TNF-α production in response to C3a treatment was significantly elevated when RTECs were cocultured with macrophages, suggesting that macrophages rather than RTECs are the target of C3a-C3aR interaction. At last, we proved that infusion of macrophages which highly expressed TNF-α would significantly deteriorate HSN in TNF-KO mice when they were exposed to recurrent dehydration. This study uncovers a novel mechanism underlying the pathogenesis of HSN, and a potential pathway to prevent kidney injury during dehydration.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The 981(th) Hospital of Joint Logistic Support Force, Chengde, China; Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China.
| | - Dongjuan Zhang
- Department of Nephrology, The 981(th) Hospital of Joint Logistic Support Force, Chengde, China
| | - Minghui Song
- Clinical Laboratory, Hainan Hospital of General Hospital of Chinese People's Liberation Army, Sanya, China
| | - Chao Wang
- Kidney Diagnostic and Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Jiayi Lv
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Jie Zhou
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China; Department of Nephrology, Affiliated ShuGuang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meihan Chen
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China; Department of Nephrology, Shanghai Tenth People's Hospital, TongJi University, Shanghai, China
| | - Lu Ma
- Kidney Diagnostic and Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Changlin Mei
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Castañeda R, Cáceres A, Cruz SM, Aceituno JA, Marroquín ES, Barrios Sosa AC, Strangman WK, Williamson RT. Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115755. [PMID: 36181985 DOI: 10.1016/j.jep.2022.115755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of kidney disease has increased rapidly in recent years and has emerged as one of the leading causes of mortality worldwide. Natural products have been suggested as valuable nephroprotective agents due to their multi-target and synergistic effects on modulating important proteins involved in kidney injury. There is a large number of plant species that have been used traditionally for kidney-related conditions in Mesoamerican medicine by different cultural groups that could provide a valuable source of nephroprotective therapeutic candidates and could lead to potential drug discovery. AIM OF REVIEW This review aims to provide an overview of the currently known efficacy of plant species used traditionally in Mesoamerica by Mayan groups to treat kidney-related conditions and to analyze the phytochemical, pharmacological, molecular, toxicological, and clinical evidence to contribute to public health efforts and for directing future research. METHODS Primary sources of plant use reports for traditional kidney-related disorders in Mesoamerica were searched systematically from library catalogs, theses, and scientific databases (PubMed, Google Scholar; and Science Direct), and were filtered according to usage frequency in Mayan groups and plant endemism. The database of traditional plants was further analyzed based on associations with published reports of the phytochemical, pharmacological, molecular, toxicological, and clinical evidence. RESULTS The most reported kidney-related conditions used traditionally in Mayan medicine involve reducing renal damage (a cultural interpretation that considers an inflammatory or infectious condition), cleaning or purifying the blood and kidney, reducing kidney pain, and eliminating kidney stones. A total of 208 plants used for kidney-related problems by 10 Mayan groups were found, representing 143 native species, where only 42 have reported pharmacological activity against kidney damage, mainly approached by in vitro and in vivo models of chemical- or drug-induced nephrotoxicity, diabetes nephropathy, and renal injury produced by hypertension. Nephroprotective effects are mainly mediated by reducing oxidative stress, inflammatory response, fibrosis mechanisms, and apoptosis in the kidney. The most common nephroprotective compounds associated with traditional Mayan medicine were flavonoids, terpenoids, and phenolic acids. The most widely studied traditional plants in terms of pharmacological evidence, bioactive compounds, and mechanisms of action, are Annona muricata L., Carica papaya L., Ipomoea batatas (L.) Lam., Lantana camara L., Sechium edule (Jacq.) Sw., Tagetes erecta L., and Zea mays L. Most of the plant species with reported pharmacological activity against kidney damage were considered safe in toxicological studies. CONCLUSION Available pharmacological reports suggest that several herbs used in traditional Mayan medicine for renal-associated diseases may have nephroprotective effects and consistent pharmacological evidence, nephroprotective compounds, and mechanisms of action in different models of kidney injury. However, more research is required to fully understand the potential of traditional Mayan medicine in drug discovery given the limited ethnobotanical studies and data available for most species with regards to identification on bioactive components, pharmacological mechanisms, and the scarce number of clinical studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Sully M Cruz
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - J Agustín Aceituno
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - E Sebastián Marroquín
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Ana C Barrios Sosa
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - Wendy K Strangman
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| |
Collapse
|
8
|
Pinkerton LE, Bertke S, Dahm MM, Kubale TL, Siegel MR, Hales TR, Yiin JH, Purdue MP, Beaumont JJ, Daniels RD. End-stage renal disease incidence in a cohort of US firefighters from San Francisco, Chicago, and Philadelphia. Am J Ind Med 2022; 65:975-984. [PMID: 36268894 PMCID: PMC9828160 DOI: 10.1002/ajim.23435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Firefighters perform strenuous work in hot environments, which may increase their risk of chronic kidney disease. The purpose of this study was to evaluate the risk of end-stage renal disease (ESRD) and types of ESRD among a cohort of US firefighters compared to the US general population, and to examine exposure-response relationships. METHODS ESRD from 1977 through 2014 was identified through linkage with Medicare data. ESRD incidence in the cohort compared to the US population was evaluated using life table analyses. Associations of all ESRD, systemic ESRD, hypertensive ESRD, and diabetic ESRD with exposure surrogates (exposed days, fire runs, and fire hours) were examined in Cox proportional hazards models adjusted for attained age (the time scale), race, birth date, fire department, and employment duration. RESULTS The incidence of all ESRD was less than expected (standardized incidence ratio (SIR) = 0.79; 95% confidence interval = 0.69-0.89, observed = 247). SIRs for ESRD types were not significantly increased. Positive associations of all ESRD, systemic ESRD, and hypertensive ESRD with exposed days were observed: however, 95% confidence intervals included one. CONCLUSIONS We found little evidence of increased risk of ESRD among this cohort of firefighters. Limitations included the inability to evaluate exposure-response relationships for some ESRD types due to small observed numbers, the limitations of the surrogates of exposure, and the lack of information on more sensitive outcome measures for potential kidney effects.
Collapse
Affiliation(s)
- Lynne E. Pinkerton
- MaximusMcLeanVirginiaUSA
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Stephen Bertke
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Matthew M. Dahm
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Travis L. Kubale
- World Trade Center Health ProgramNational Institute for Occupational Safety and HealthWashingtonDistrict of ColumbiaUSA
| | - Miriam R. Siegel
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Thomas R. Hales
- Division of Safety ResearchNational Institute for Occupational Safety and HealthDenverColoradoUSA
| | - James H. Yiin
- Office of Extramural ProgramsNational Institute for Occupational Safety and HealthAtlantaGeorgiaUSA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - James J. Beaumont
- Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Robert D. Daniels
- World Trade Center Health ProgramNational Institute for Occupational Safety and HealthWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
9
|
Johnson RJ, García-Arroyo FE, Gonzaga-Sánchez G, Vélez-Orozco KA, Álvarez-Álvarez YQ, Aparicio-Trejo OE, Tapia E, Osorio-Alonso H, Andrés-Hernando A, Nakagawa T, Kuwabara M, Kanbay M, Lanaspa MA, Sánchez-Lozada LG. Current Hydration Habits: The Disregarded Factor for the Development of Renal and Cardiometabolic Diseases. Nutrients 2022; 14:2070. [PMID: 35631211 PMCID: PMC9145744 DOI: 10.3390/nu14102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.
Collapse
Affiliation(s)
- Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Fernando E. García-Arroyo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Guillermo Gonzaga-Sánchez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Kevin A. Vélez-Orozco
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Yamnia Quetzal Álvarez-Álvarez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Omar Emiliano Aparicio-Trejo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Edilia Tapia
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Ana Andrés-Hernando
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Masanari Kuwabara
- Intensive Care Unit, Toranomon Hospital, Tokyo 105-8470, Japan;
- Department of Cardiology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Miguel A. Lanaspa
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Laura Gabriela Sánchez-Lozada
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| |
Collapse
|
10
|
Piani F, Melena I, Severn C, Chung LT, Vinovskis C, Cherney D, Pyle L, Roncal-Jimenez CA, Lanaspa MA, Rewers A, van Raalte DH, Obeid W, Parikh C, Nelson RG, Pavkov ME, Nadeau KJ, Johnson RJ, Bjornstad P. Tubular injury in diabetic ketoacidosis: Results from the diabetic kidney alarm study. Pediatr Diabetes 2021; 22:1031-1039. [PMID: 34435718 PMCID: PMC8957478 DOI: 10.1111/pedi.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Glomerular injury is a recognized complication of diabetic ketoacidosis (DKA), yet the tubular lesions are poorly understood. The aim of this prospective study was to evaluate the presence and reversibility of tubular injury during DKA in children with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Blood and urine samples were collected from 40 children with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, glucose 451 ± 163 mg/dL) at three timepoints: 0-8 and 12-24 h after starting insulin, and 3 months after discharge. Mixed-effects models evaluated the changes in tubular injury markers over time (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1 [KIM-1], and interleukin 18 [IL-18]). We also evaluated the relationships among the tubular injury biomarkers, copeptin, a vasopressin surrogate, and serum uric acid (SUA). RESULTS Serum NGAL, KIM-1, and IL-18 were highest at 0-8 h (306.5 ± 45.9 ng/mL, 128.9 ± 10.1 pg/mL, and 564.3 ± 39.2 pg/mL, respectively) and significantly decreased over 3 months (p = 0.03, p = 0.01, and p < 0.001, respectively). There were strong relationships among increases in copeptin and SUA and rises in tubular injury biomarkers. At 0-8 h, participants with acute kidney injury (AKI) [17%] showed significantly higher concentrations of tubular injury markers, copeptin, and SUA. CONCLUSIONS DKA was characterized by tubular injury, and the degree of injury associated with elevated copeptin and SUA. Tubular injury biomarkers, copeptin and SUA may be able to predict AKI in DKA.
Collapse
Affiliation(s)
- Federica Piani
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cameron Severn
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Linh T. Chung
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carissa Vinovskis
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Laura Pyle
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Colorado, USA
| | - Carlos A. Roncal-Jimenez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Miguel A. Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Arleta Rewers
- Department of Pediatrics, Section of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniël H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands
| | - Wassim Obeid
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chirag Parikh
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, Arizona, USA
| | - Meda E. Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen J. Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hamilton SA, Jarhyan P, Fecht D, Venkateshmurthy NS, Pearce N, Venkat Narayan KM, Ali MK, Mohan V, Tandon N, Prabhakaran D, Mohan S. Environmental risk factors for reduced kidney function due to undetermined cause in India: an environmental epidemiologic analysis. Environ Epidemiol 2021; 5:e170. [PMID: 34934891 PMCID: PMC8683143 DOI: 10.1097/ee9.0000000000000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND An epidemic of chronic kidney disease is occurring in rural communities in low-income and middle-income countries that do not share common kidney disease risk factors such as diabetes and hypertension. This chronic kidney disease of unknown etiology occurs primarily in agricultural communities in Central America and South Asia. Consequently, environmental risk factors including heat stress, heavy metals exposure, and low altitude have been hypothesized as risk factors. We conducted an environmental epidemiological analysis investigating these exposures in India which reports the disease. METHODS We used a random sample population in rural and urban sites in Northern and Southern India in 2010, 2011, and 2014 (n = 11,119). We investigated associations of the heat index, altitude, and vicinity to cropland with estimated glomerular filtration rate (eGFR) using satellite-derived data assigned to residential coordinates. We modeled these exposures with eGFR using logistic regression to estimate the risk of low eGFR, and linear mixed models (LMMs) to analyze site-specific eGFR-environment associations. RESULTS Being over 55 years of age, male, and living in proximity to cropland was associated with increased risk of low eGFR [odds ratio (OR) (95% confidence interval (CI) = 2.24 (1.43, 3.56), 2.32 (1.39, 3.88), and 1.47 (1.16, 2.36)], respectively. In LMMs, vicinity to cropland was associated with low eGFR [-0.80 (-0.44, -0.14)]. No associations were observed with temperature or altitude. CONCLUSIONS Older age, being male, and living in proximity to cropland were negatively associated with eGFR. These analyses are important in identifying subcommunities at higher risk and can help direct future environmental investigations.
Collapse
Affiliation(s)
- Sophie A. Hamilton
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Neil Pearce
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global NCDs, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
12
|
Juett LA, Midwood KL, Funnell MP, James LJ, Mears SA. Hypohydration produced by high-intensity intermittent running increases biomarkers of renal injury in males. Eur J Appl Physiol 2021; 121:3485-3497. [PMID: 34528132 PMCID: PMC8571244 DOI: 10.1007/s00421-021-04804-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023]
Abstract
Purpose Whilst there is evidence to suggest that hypohydration caused by physical work in the heat increases renal injury, whether this is the case during exercise in temperate conditions remains unknown. This study investigated the effect of manipulating hydration status during high-intensity intermittent running on biomarkers of renal injury. Methods After familiarisation, 14 males (age: 33 ± 7 years; V̇O2peak: 57.1 ± 8.6 ml/kg/min; mean ± SD) completed 2 trials in a randomised cross-over design, each involving 6, 15 min blocks of shuttle running (modified Loughborough Intermittent Shuttle Test protocol) in temperate conditions (22.3 ± 1.0 °C; 47.9 ± 12.9% relative humidity). During exercise, subjects consumed either a volume of water equal to 90% of sweat losses (EU) or 75 mL water (HYP). Body mass, blood and urine samples were taken pre-exercise (baseline/pre), 30 min post-exercise (post) and 24 h post-baseline (24 h). Results Post-exercise, body mass loss, serum osmolality and urine osmolality were greater in HYP than EU (P ≤ 0.024). Osmolality-corrected urinary kidney injury molecule-1 (uKIM-1) concentrations were increased post-exercise (P ≤ 0.048), with greater concentrations in HYP than EU (HYP: 2.76 [1.72–4.65] ng/mOsm; EU: 1.94 [1.1–2.54] ng/mOsm; P = 0.003; median [interquartile range]). Osmolality-corrected urinary neutrophil gelatinase-associated lipocalin (uNGAL) concentrations were increased post-exercise (P < 0.001), but there was no trial by time interaction effect (P = 0.073). Conclusion These results suggest that hypohydration produced by high-intensity intermittent running increases renal injury, compared to when euhydration is maintained, and that the site of this increased renal injury is at the proximal tubules.
Collapse
Affiliation(s)
- Loris A Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Katharine L Midwood
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
13
|
Piani F, Reinicke T, Borghi C, Tommerdahl KL, Cara-Fuentes G, Johnson RJ, Bjornstad P. Acute Kidney Injury in Pediatric Diabetic Kidney Disease. Front Pediatr 2021; 9:668033. [PMID: 34211943 PMCID: PMC8239177 DOI: 10.3389/fped.2021.668033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of type 1 and 2 diabetes and often presents during adolescence and young adulthood. Given the growing incidence of both type 1 and type 2 diabetes in children and adolescents, DKD represents a significant public health problem. Acute kidney injury (AKI) in youth with diabetes is strongly associated with risk of DKD development. This review will summarize the epidemiology and pathophysiology of AKI in children with diabetes, the relationship between AKI and DKD, and the potential therapeutic interventions. Finally, we will appraise the impact of the recent COVID-19 infection pandemic on AKI in children with diabetes.
Collapse
Affiliation(s)
- Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Trenton Reinicke
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Kalie L Tommerdahl
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Nephrology, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
15
|
Chapman CL, Grigoryan T, Vargas NT, Reed EL, Kueck PJ, Pietrafesa LD, Bloomfield AC, Johnson BD, Schlader ZJ. High-fructose corn syrup-sweetened soft drink consumption increases vascular resistance in the kidneys at rest and during sympathetic activation. Am J Physiol Renal Physiol 2020; 318:F1053-F1065. [PMID: 32174139 DOI: 10.1152/ajprenal.00374.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We first tested the hypothesis that consuming a high-fructose corn syrup (HFCS)-sweetened soft drink augments kidney vasoconstriction to sympathetic stimulation compared with water (study 1). In a second study, we examined the mechanisms underlying these observations (study 2). In study 1, 13 healthy adults completed a cold pressor test, a sympathoexcitatory maneuver, before (preconsumption) and 30 min after drinking 500 mL of decarbonated HFCS-sweetened soft drink or water (postconsumption). In study 2, venous blood samples were obtained in 12 healthy adults before and 30 min after consumption of 500 mL water or soft drinks matched for caffeine content and taste, which were either artificially sweetened (Diet trial), sucrose-sweetened (Sucrose trial), or sweetened with HFCS (HFCS trial). In both study 1 and study 2, vascular resistance was calculated as mean arterial pressure divided by blood velocity, which was measured via Doppler ultrasound in renal and segmental arteries. In study 1, HFCS consumption increased vascular resistance in the segmental artery at rest (by 0.5 ± 0.6 mmHg·cm-1·s-1, P = 0.01) and during the cold pressor test (average change: 0.5 ± 1.0 mmHg·cm-1·s-1, main effect: P = 0.05). In study 2, segmental artery vascular resistance increased in the HFCS trial (by 0.8 ± 0.7 mmHg·cm-1·s-1, P = 0.02) but not in the other trials. Increases in serum uric acid were greater in the HFCS trial (0.3 ± 0.4 mg/dL, P ≤ 0.04) compared with the Water and Diet trials, and serum copeptin increased in the HFCS trial (by 0.8 ± 1.0 pmol/L, P = 0.06). These findings indicate that HFCS acutely increases vascular resistance in the kidneys, independent of caffeine content and beverage osmolality, which likely occurs via simultaneous elevations in circulating uric acid and vasopressin.
Collapse
Affiliation(s)
- Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Tigran Grigoryan
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Emma L Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Paul J Kueck
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Leonard D Pietrafesa
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Adam C Bloomfield
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
16
|
Butler-Dawson J, Dally M, Johnson RJ, Johnson EC, Krisher L, Sánchez-Lozada LG, Griffin BR, Brindley S, Newman LS. Association of Copeptin, a Surrogate Marker of Arginine Vasopressin, with Decreased Kidney Function in Sugarcane Workers in Guatemala. ANNALS OF NUTRITION AND METABOLISM 2020; 76:30-36. [PMID: 32172243 DOI: 10.1159/000506619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vasopressin is elevated in response to heat and dehydration and has been postulated to have a role in the chronic kidney disease of unknown origin being observed in Central America. The aims of this study were to examine whether the vasopressin pathway, as measured by copeptin, is associated with the presence of kidney dysfunction, and to examine whether higher fluid intake is associated with lower circulating copeptin and thereby preserves kidney health among sugarcane workers exposed to hot conditions. METHODS Utilizing a longitudinal study of 105 workers in Guatemala, we examined relationships between hydration indices, plasma copeptin concentrations, and kidney function markers at 3 times during the 6-month harvest. We also examined whether baseline copeptin concentrations increased the odds of developing an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. RESULTS Copeptin concentrations were positively associated with serum creatinine (β 1.41, 95% CI 0.88-2.03) and negatively associated with eGFR (β -1.07, 95% CI -1.43 to -0.70). In addition, as workers improved their hydration (measured by increases in fluid balance), copeptin concentrations were reduced, and this reduction was associated with an improvement in kidney function. CONCLUSIONS Results suggest that copeptin should be studied as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Jaime Butler-Dawson
- Center for Health, Work, and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA, .,Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA, .,Colorado Consortium on Climate Change and Human Health, University of Colorado, Aurora, Colorado, USA,
| | - Miranda Dally
- Center for Health, Work, and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.,Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.,Colorado Consortium on Climate Change and Human Health, University of Colorado, Aurora, Colorado, USA
| | - Richard J Johnson
- Colorado Consortium on Climate Change and Human Health, University of Colorado, Aurora, Colorado, USA.,Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Evan C Johnson
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Lyndsay Krisher
- Center for Health, Work, and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.,Colorado Consortium on Climate Change and Human Health, University of Colorado, Aurora, Colorado, USA
| | | | - Benjamin R Griffin
- Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Lee S Newman
- Center for Health, Work, and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.,Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.,Colorado Consortium on Climate Change and Human Health, University of Colorado, Aurora, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
17
|
Chapman CL, Johnson BD, Vargas NT, Hostler D, Parker MD, Schlader ZJ. Both hyperthermia and dehydration during physical work in the heat contribute to the risk of acute kidney injury. J Appl Physiol (1985) 2020; 128:715-728. [PMID: 32078468 DOI: 10.1152/japplphysiol.00787.2019] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Occupational heat stress increases the risk of acute kidney injury (AKI) and kidney disease. This study tested the hypothesis that attenuating the magnitude of hyperthermia (i.e., increase in core temperature) and/or dehydration during prolonged physical work in the heat attenuates increases in AKI biomarkers. Thirteen healthy adults (3 women, 23 ± 2 yr) exercised for 2 h in a 39.7 ± 0.6°C, 32 ± 3% relative-humidity environmental chamber. In four trials, subjects received water to remain euhydrated (Water), continuous upper-body cooling (Cooling), a combination of both (Water + Cooling), or no intervention (Control). The magnitude of hyperthermia (increased core temperature of 1.9 ± 0.3°C; P < 0.01) and dehydration (percent loss of body mass of -2.4 ± 0.5%; P < 0.01) were greatest in the Control group. There were greater increases in the urinary biomarkers of AKI in the Control trial: albumin (increase of 13 ± 11 μg/mL; P ≤ 0.05 compared with other trials), neutrophil gelatinase-associated lipocalin (NGAL) (increase of 16 ± 14 ng/dL, P ≤ 0.05 compared with Cooling and Water + Cooling groups), and insulin-like growth factor-binding protein 7 (IGFBP7) (increase of 227 ± 190 ng/mL; P ≤ 0.05 compared with other trials). Increases in IGFBP7 in the Control trial persisted after correcting for urine production/concentration. There were no differences in the AKI biomarker tissue inhibitor of metalloproteinase 2 (TIMP-2) between trials (P ≥ 0.11). Our findings indicate that the risk of AKI is highest with greater magnitudes of hyperthermia and dehydration during physical work in the heat. Additionally, the differential findings between IGFBP7 (preferentially secreted in proximal tubules) and TIMP-2 (distal tubules) suggest the proximal tubules as the location of potential renal injury.NEW & NOTEWORTHY We demonstrate that the risk for acute kidney injury (AKI) is higher in humans with greater magnitudes of hyperthermia and dehydration during physical work in the heat and that alleviating the hyperthermia and/or limiting dehydration equally reduce the risk of AKI. The biomarker panel employed in this study suggests the proximal tubules as the location of potential renal injury.
Collapse
Affiliation(s)
- Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
18
|
Serum osmolarity as a potential predictor for contrast-induced nephropathy following elective coronary angiography. Int Urol Nephrol 2020; 52:541-547. [PMID: 32008199 DOI: 10.1007/s11255-020-02391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Contrast-induced nephropathy (CIN) is a relatively common complication following primary coronary angiography (CAG) or percutaneous coronary intervention (PCI), especially in at-risk patients. The goal of this study is to evaluate the role of pre-procedural serum osmolarity as a risk factor for CIN in patients undergoing elective CAG for stable coronary artery disease (CAD). MATERIALS AND METHODS A total of 356 stable CAD patients scheduled to undergo CAG or PCI were included in this two-center study. Serum osmolarity was calculated on admission. CIN was defined according to the KDIGO criteria. RESULTS There were 45 (12.6%) patients who developed CIN 48-72 h after CAG or PCI. CIN patients had a higher prevalence of diabetes (51.1% in those with CIN vs 24.4% in those without CIN, p < 0.001), higher serum glucose (129 mg/dL in those with CIN vs 108 mg/dL in those without CIN, p < 0.001), blood urea nitrogen (22.4 mg/dL in those with CIN vs 19.0 mg/dL in those without CIN, p = 0.01) and serum osmolarity (294.2 mOsm in those with CIN vs 290.1 mOsm in those without CIN, p < 0.001) levels, had received a higher dose of contrast (250 mL in those with CIN vs 200 mL in those without CIN, p = 0.03) but had lower hemoglobin (12.9 g/dL in those with CIN vs 13.6 g/dL in those without CIN, p = 0.04) level. In multivariate analysis, serum osmolarity [odds ratio (OR) 1.11; 95% confidence interval (CI) 1.04-1.18 for each mOsm/L increase; p = 0.001], diabetes (OR 2.43, 95% CI 1.26-4.71; p = 0.01), C-reactive protein (OR 1.04, 95% CI 1.01-1.08 for each mg/dL increase; p = 0.02) and contrast volume (OR 34.66, 95% CI 1.25-962.22 for each L increase; p = 0.04) remained as independent predictors of CIN. Serum sodium, glucose and blood urea nitrogen contributed to the excess serum osmolarity of CIN patients. CONCLUSION Serum osmolarity is a cheap and widely available marker that can reliably predict CIN after CAG or PCI. Future research should focus on determining a clinically optimal cutoff for serum osmolarity that would warrant preventive interventions. Furthermore, later research may investigate the role of serum osmolarity not only as a risk factor but also as a pathogenetic mechanism underlying CIN.
Collapse
|
19
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
20
|
Schlader ZJ, Hostler D, Parker MD, Pryor RR, Lohr JW, Johnson BD, Chapman CL. The Potential for Renal Injury Elicited by Physical Work in the Heat. Nutrients 2019; 11:nu11092087. [PMID: 31487794 PMCID: PMC6769672 DOI: 10.3390/nu11092087] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) is occurring in laborers who undertake physical work in hot conditions. Rodent data indicate that heat exposure causes kidney injury, and when this injury is regularly repeated it can elicit CKD. Studies in humans demonstrate that a single bout of exercise in the heat increases biomarkers of acute kidney injury (AKI). Elevations in AKI biomarkers in this context likely reflect an increased susceptibility of the kidneys to AKI. Data largely derived from animal models indicate that the mechanism(s) by which exercise in the heat may increase the risk of AKI is multifactorial. For instance, heat-related reductions in renal blood flow may provoke heterogenous intrarenal blood flow. This can promote localized ischemia, hypoxemia and ATP depletion in renal tubular cells, which could be exacerbated by increased sodium reabsorption. Heightened fructokinase pathway activity likely exacerbates ATP depletion occurring secondary to intrarenal fructose production and hyperuricemia. Collectively, these responses can promote inflammation and oxidative stress, thereby increasing the risk of AKI. Equivalent mechanistic evidence in humans is lacking. Such an understanding could inform the development of countermeasures to safeguard the renal health of laborers who regularly engage in physical work in hot environments.
Collapse
Affiliation(s)
- Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN 47405, USA.
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - James W Lohr
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) can cluster in geographic locations or in people of particular genetic ancestries. We explore APOL1 nephropathy and Balkan nephropathy as examples of CKD clustering that illustrate genetics and environment conspiring to cause high rates of kidney disease. Unexplained hotspots of kidney disease in Asia and Central America are then considered from the perspective of potential gene × environment interactions. RECENT FINDINGS We report on evidence supporting both genes and environment in these CKD hotspots. Differing genetic susceptibility between populations and within populations may explain why causal environmental risk factors have been so hard to identify conclusively. Similarly, one cannot explain why these epidemics of kidney disease are happening now without invoking environmental changes. SUMMARY Approaches to these CKD hotspots are of necessity becoming more holistic. Genetic studies may help us identify the environmental triggers by teaching us about disease biology and may empower environmental risk factor studies by allowing for stratification of study participants by genetic susceptibility.
Collapse
|
22
|
Chapman CL, Johnson BD, Sackett JR, Parker MD, Schlader ZJ. Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. Am J Physiol Regul Integr Comp Physiol 2019; 316:R189-R198. [DOI: 10.1152/ajpregu.00351.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to test the hypothesis that consuming a soft drink (i.e., a high-fructose, caffeinated beverage) during and following exercise in the heat elevates biomarkers of acute kidney injury (AKI) in humans. Twelve healthy adults drank 2 liters of an assigned beverage during 4 h of exercise in the heat [35.1 (0.1)°C, 61 (5)% relative humidity] in counterbalanced soft drink and water trials, and ≥1 liter of the same beverage after leaving the laboratory. Stage 1 AKI (i.e., increased serum creatinine ≥0.30 mg/dl) was detected at postexercise in 75% of participants in the Soft Drink trial compared with 8% in Water trial ( P = 0.02). Furthermore, urinary neutrophil gelatinase-associated lipocalin (NGAL), a biomarker of AKI, was higher during an overnight collection period after the Soft Drink trial compared with Water in both absolute concentration [6 (4) ng/dl vs. 5 (4) ng/dl, P < 0.04] and after correcting for urine flow rate [6 (7) (ng/dl)/(ml/min) vs. 4 (4) (ng/dl)/(ml/min), P = 0.03]. Changes in serum uric acid from preexercise were greater in the Soft Drink trial than the Water trial at postexercise ( P < 0.01) and 24 h ( P = 0.05). There were greater increases from preexercise in serum copeptin, a stable marker of vasopressin, at postexercise in the Soft Drink trial ( P < 0.02) than the Water trial. These findings indicate that consuming a soft drink during and following exercise in the heat induces AKI, likely via vasopressin-mediated mechanisms.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - James R. Sackett
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J. Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
23
|
Johnson RJ, Perez-Pozo SE, Lillo JL, Grases F, Schold JD, Kuwabara M, Sato Y, Hernando AA, Garcia G, Jensen T, Rivard C, Sanchez-Lozada LG, Roncal C, Lanaspa MA. Fructose increases risk for kidney stones: potential role in metabolic syndrome and heat stress. BMC Nephrol 2018; 19:315. [PMID: 30409184 PMCID: PMC6225702 DOI: 10.1186/s12882-018-1105-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Fructose intake, mainly as table sugar or high fructose corn syrup, has increased in recent decades and is associated with increased risk for kidney stones. We hypothesized that fructose intake alters serum and urinary components involved in stone formation. Methods We analyzed a previously published randomized controlled study that included 33 healthy male adults (40–65 years of age) who ingested 200 g of fructose (supplied in a 2-L volume of 10% fructose in water) daily for 2 weeks. Participants were evaluated at the Unit of Nephrology of the Mateo Orfila Hospital in Menorca. Changes in serum levels of magnesium, calcium, uric acid, phosphorus, vitamin D, and intact PTH levels were evaluated. Urine magnesium, calcium, uric acid, phosphorus, citrate, oxalate, sodium, potassium, as well as urinary pH, were measured. Results Ingestion of fructose was associated with an increased serum level of uric acid (p < 0.001), a decrease in serum ionized calcium (p = 0.003) with a mild increase in PTH (p < 0.05) and a drop in urinary pH (p = 0.02), an increase in urine oxalate (p = 0.016) and decrease in urinary magnesium (p = 0.003). Conclusions Fructose appears to increase urinary stone formation in part via effects on urate metabolism and urinary pH, and also via effects on oxalate. Fructose may be a contributing factor for the development of kidney stones in subjects with metabolic syndrome and those suffering from heat stress. Trial registration ClinicalTrials.gov NCT00639756 March 20, 2008.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA. .,Eastern Colorado Health Care System, Department of Veteran Affairs, Denver, CO, USA. .,Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | | | | | - Felix Grases
- IUNICS-Idisba, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jesse D Schold
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Ana Andres Hernando
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Gabriela Garcia
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Christopher Rivard
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Laura G Sanchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico City, Mexico
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| |
Collapse
|
24
|
Kupferman J, Ramírez-Rubio O, Amador JJ, López-Pilarte D, Wilker EH, Laws RL, Sennett C, Robles NV, Lau JL, Salinas AJ, Kaufman JS, Weiner DE, Scammell MK, McClean MD, Brooks DR, Friedman DJ. Acute Kidney Injury in Sugarcane Workers at Risk for Mesoamerican Nephropathy. Am J Kidney Dis 2018; 72:475-482. [PMID: 30042041 DOI: 10.1053/j.ajkd.2018.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE & OBJECTIVE Mesoamerican nephropathy (MeN), a form of chronic kidney disease (CKD) of unknown cause in Central America, affects young individuals working in physically strenuous occupations. Repeated episodes of work-related kidney injury may lead to CKD in this setting. We aimed to better understand the burden and natural history of acute kidney injury (AKI) in workers at risk for MeN. STUDY DESIGN Cross-sectional study of active sugarcane workers, followed by prospective follow-up of individuals with AKI. SETTING & PARTICIPANTS 326 sugarcane workers with normal preharvest serum creatinine (Scr) values and no history of CKD in an MeN hotspot in Nicaragua near the end of the harvest, and prospective follow-up of workers with AKI. PREDICTOR AKI during the harvest, as defined by Scr level increase ≥ 0.3mg/dL over baseline to a level ≥ 1.3mg/dL. OUTCOMES Kidney function trajectory and development of CKD over 12 months. ANALYTICAL APPROACH Linear regression models were used to analyze the association between job category and kidney function. For workers with AKI, the effect of time on Scr level was evaluated using linear mixed effects. RESULTS 34 of 326 participants were found to have AKI, with a median late-harvest Scr level of 1.64mg/dL in the AKI group. Workers without AKI had a median Scr level of 0.88mg/dL. AKI was more common among cane cutters compared with other field workers. Participants with AKI had variable degrees of kidney function recovery, with median 6- and 12-month Scr values of 1.25 and 1.27mg/dL, respectively (P < 0.001 for each follow-up value compared to late-harvest Scr). When we compared workers' kidney function before the AKI episode to their kidney function at last follow-up, 10 participants with AKI developed de novo estimated glomerular filtration rate < 60mL/min/1.73m2 and 11 had a >30% decrease in estimated glomerular filtration rate. LIMITATIONS Follow-up limited to 1 year and some loss to follow-up in the prospective component of the study. Broad definition of AKI that includes both acute and subacute kidney injury. CONCLUSIONS In a group of sugarcane workers with normal preharvest kidney function, newly decreased kidney function developing during the harvest season was common. Of those with kidney injury, nearly half had established CKD 12 months later.
Collapse
Affiliation(s)
- Joseph Kupferman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Oriana Ramírez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Juan José Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | | | - Elissa H Wilker
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rebecca L Laws
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Caryn Sennett
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | | | - Jorge Luis Lau
- Especialistas en Medicina Interna, Chichigalpa, Nicaragua
| | | | - James S Kaufman
- Research Service, VA New York Harbor Healthcare System and Department of Medicine, New York University School of Medicine, New York, NY
| | - Daniel E Weiner
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA
| | - Madeleine K Scammell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Daniel R Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, MA.
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
25
|
Bijkerk R, Trimpert C, van Solingen C, de Bruin RG, Florijn BW, Kooijman S, van den Berg R, van der Veer EP, Bredewold EOW, Rensen PCN, Rabelink TJ, Humphreys BD, Deen PMT, van Zonneveld AJ. MicroRNA-132 controls water homeostasis through regulating MECP2-mediated vasopressin synthesis. Am J Physiol Renal Physiol 2018; 315:F1129-F1138. [DOI: 10.1152/ajprenal.00087.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fine-tuning of the body’s water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.
Collapse
Affiliation(s)
- Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Renal Division, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen van Solingen
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Medical Center, New York, New York
| | - Ruben G. de Bruin
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Barend W. Florijn
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosa van den Berg
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric P. van der Veer
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin O. W. Bredewold
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin D. Humphreys
- Renal Division, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Renal Division, Washington University School of Medicine, St. Louis, Missouri
| | - Peter M. T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Milagres T, García-Arroyo FE, Lanaspa MA, Garcia G, Ishimoto T, Andres-Hernando A, Kuwabara M, Jensen T, Sato Y, Glaser J, Sánchez-Lozada LG, Johnson RJ, Roncal-Jimenez C. Rehydration with fructose worsens dehydration-induced renal damage. BMC Nephrol 2018; 19:180. [PMID: 30005632 PMCID: PMC6045876 DOI: 10.1186/s12882-018-0963-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 01/26/2025] Open
Abstract
Background Increasing evidence suggests heat stress induced chronic kidney disease (CKD) may be mediated by endogenous fructose generation and may be exacerbated by rehydration by fructose-containing solutions. We have recently reported a model of CKD induced by heat stress. Here we test the hypothesis that rehydration with fructose may induce worse kidney injury than rehydration with equal amounts of water, and we also test if this fructose-induced injury is associated with activation of inflammasomes in the kidney. Methods Mice were recurrently exposed to heat (39.5 C0 for 30 min/h, 5 times daily for 5 wks) with rehydration consisting of 6 ml each night of water (Heat, n = 7) or fructose (Heat+F, 10%, n = 7), and were compared to control mice on water (Control, n = 7) or fructose (Fructose, n = 7). Various markers of renal injury were assessed. Results Compared to control animals, there was a progressive worsening of renal injury (inflammation and fibrosis) with fructose alone, heat stress alone, and heat stress with fructose rehydration (P < 0.01 by ANOVA). The combination of heat stress with rehydration with fructose was associated with increased intrarenal expression of the inflammasome markers, NLRP3 and IL-18, compared to heat stress alone. In addition, heat stress with or without fructose was associated with increased expression of caspase − 3 and monocyte chemoattractant protein-1 levels. Fructose administration was also associated with an increase in serum copeptin levels (a biomarker of vasopressin) and elevated copeptin was also observed in mice undergoing heat stress alone. Conclusions These studies suggest that heat stress may activate intrarenal inflammasomes leading to inflammation and renal injury, and provide evidence that rehydration with fructose may accelerate the renal injury and inflammatory response.
Collapse
Affiliation(s)
- Tamara Milagres
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Fernando E García-Arroyo
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia, Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Gabriela Garcia
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Takuji Ishimoto
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | | | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia, Ignacio Chavez, Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA
| | - Carlos Roncal-Jimenez
- Division of Renal Diseases and Hypertension, Nephrology Division, Mail Stop C281, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave 7th Floor Offices, Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Roncal-Jimenez CA, Sato Y, Milagres T, Andres Hernando A, García G, Bjornstad P, Dawson JB, Sorensen C, Newman L, Krisher L, Madero M, Glaser J, Gárcía-Trabanino R, Romero EJ, Song Z, Jensen T, Kuwabara M, Rodriguez-Iturbe B, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Experimental heat stress nephropathy and liver injury are improved by allopurinol. Am J Physiol Renal Physiol 2018; 315:F726-F733. [PMID: 29667911 DOI: 10.1152/ajprenal.00543.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) has been observed in Central America among workers in the sugarcane fields. One hypothesis is that the CKD may be caused by recurrent heat stress and dehydration, and potentially by hyperuricemia. Accordingly, we developed a murine model of kidney injury associated with recurrent heat stress. In the current experiment, we tested whether treatment with allopurinol (a xanthine oxidase inhibitor that reduces serum urate) provides renal protection against recurrent heat stress and dehydration. Eight-week-old male C57BL/6 mice were subjected to recurrent heat stress (39.5°C for 30 min, 7 times daily, for 5 wk) with or without allopurinol treatment and were compared with control animals with or without allopurinol treatment. Mice were allowed ad libitum access to normal laboratory chow (Harlan Teklad). Kidney histology, liver histology, and renal function were examined. Heat stress conferred both kidney and liver injury. Kidneys showed loss of proximal tubules, infiltration of monocyte/macrophages, and interstitial collagen deposition, while livers of heat-stressed mice displayed an increase in macrophages, collagen deposition, and myofibroblasts. Allopurinol provided significant protection and improved renal function in the heat-stressed mice. The renal protection was associated with reduction in intrarenal uric acid concentration and heat shock protein 70 expression. Heat stress-induced renal and liver injury can be protected with allopurinol treatment. We recommend a clinical trial of allopurinol for individuals developing renal injury in rural areas of Central America where the epidemic of chronic kidney disease is occurring.
Collapse
Affiliation(s)
- Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Tamara Milagres
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Ana Andres Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Gabriela García
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Petter Bjornstad
- Department of Pediatric Endocrinology, University of Colorado School of Medicine , Aurora, Colorado
| | - Jaime Butler Dawson
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Cecilia Sorensen
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Lee Newman
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Lyndsay Krisher
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Magdalena Madero
- Department of Nephrology, Institution Nacional de Cardiologia, Ignacio Chavez, Mexico City, Mexico
| | | | | | | | - Zhilin Song
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Bernardo Rodriguez-Iturbe
- Nephrology Service Hospital Universitario and Instituto Venezolano de Investigaciones Cientificas-Zulia , Maracaibo , Venezuela
| | | | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
28
|
Stacey MJ, Delves SK, Britland SE, Allsopp AJ, Brett SJ, Fallowfield JL, Woods DR. Copeptin reflects physiological strain during thermal stress. Eur J Appl Physiol 2018; 118:75-84. [PMID: 29075863 PMCID: PMC5754412 DOI: 10.1007/s00421-017-3740-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/08/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE To prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses. METHODS Volunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine. RESULTS There was a significant (P < 0.05) rise in copeptin from pre- to post-assault (10.0 ± 6.3 vs. 16.7 ± 9.6 pmol L-1, P < 0.001). Although osmolality did not increase, copeptin correlated strongly with osmolality after the exposure (r = 0.70, P = 0.004). In volunteers with maximum T c > 38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L-1) and creatinine (10 vs. 2 μmol L-1), but no differences in cortisol, free normetanephrine or osmolality. CONCLUSIONS Changes in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses.
Collapse
Affiliation(s)
- Michael John Stacey
- Department of Surgery and Cancer, Imperial College London, Care of General Intensive Care Unit, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Department of Military Medicine, Royal Centre for Defence Medicine, ICT Building, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK.
| | - Simon K Delves
- Institute of Naval Medicine, Alverstoke, Hampshire, PO12 2DL, UK
| | | | - Adrian J Allsopp
- Institute of Naval Medicine, Alverstoke, Hampshire, PO12 2DL, UK
| | - Stephen J Brett
- Department of Surgery and Cancer, Imperial College London, Care of General Intensive Care Unit, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | | | - David R Woods
- Department of Military Medicine, Royal Centre for Defence Medicine, ICT Building, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
- Carnegie Research Institute, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
29
|
Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McQuade RD, Blais JD, Czerwiec FS, Sergeyeva O. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N Engl J Med 2017; 377:1930-1942. [PMID: 29105594 DOI: 10.1056/nejmoa1710030] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In a previous trial involving patients with early autosomal dominant polycystic kidney disease (ADPKD; estimated creatinine clearance, ≥60 ml per minute), the vasopressin V2-receptor antagonist tolvaptan slowed the growth in total kidney volume and the decline in the estimated glomerular filtration rate (GFR) but also caused more elevations in aminotransferase and bilirubin levels. The efficacy and safety of tolvaptan in patients with later-stage ADPKD are unknown. METHODS We conducted a phase 3, randomized withdrawal, multicenter, placebo-controlled, double-blind trial. After an 8-week prerandomization period that included sequential placebo and tolvaptan run-in phases, during which each patient's ability to take tolvaptan without dose-limiting side effects was assessed, 1370 patients with ADPKD who were either 18 to 55 years of age with an estimated GFR of 25 to 65 ml per minute per 1.73 m2 of body-surface area or 56 to 65 years of age with an estimated GFR of 25 to 44 ml per minute per 1.73 m2 were randomly assigned in a 1:1 ratio to receive tolvaptan or placebo for 12 months. The primary end point was the change in the estimated GFR from baseline to follow-up, with adjustment for the exact duration that each patient participated (interpolated to 1 year). Safety assessments were conducted monthly. RESULTS The change from baseline in the estimated GFR was -2.34 ml per minute per 1.73 m2 (95% confidence interval [CI], -2.81 to -1.87) in the tolvaptan group, as compared with -3.61 ml per minute per 1.73 m2 (95% CI, -4.08 to -3.14) in the placebo group (difference, 1.27 ml per minute per 1.73 m2; 95% CI, 0.86 to 1.68; P<0.001). Elevations in the alanine aminotransferase level (to >3 times the upper limit of the normal range) occurred in 38 of 681 patients (5.6%) in the tolvaptan group and in 8 of 685 (1.2%) in the placebo group. Elevations in the aminotransferase level were reversible after stopping tolvaptan. No elevations in the bilirubin level of more than twice the upper limit of the normal range were detected. CONCLUSIONS Tolvaptan resulted in a slower decline than placebo in the estimated GFR over a 1-year period in patients with later-stage ADPKD. (Funded by Otsuka Pharmaceuticals and Otsuka Pharmaceutical Development and Commercialization; REPRISE ClinicalTrials.gov number, NCT02160145 .).
Collapse
Affiliation(s)
- Vicente E Torres
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Arlene B Chapman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Olivier Devuyst
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Ron T Gansevoort
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Ronald D Perrone
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Gary Koch
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - John Ouyang
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Robert D McQuade
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Jaime D Blais
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Frank S Czerwiec
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| | - Olga Sergeyeva
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (V.E.T.); the Section of Nephrology, University of Chicago, Chicago (A.B.C.); the Institute of Physiology, University of Zurich, Zurich, Switzerland (O.D.); the Division of Nephrology, Université Catholique de Louvain Medical School, Brussels (O.D.); the Division of Nephrology, University Medical Center Groningen, Groningen, the Netherlands (R.T.G.); the Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston (R.D.P.); the Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill (G.K.); and Otsuka Pharmaceutical Development and Commercialization, Rockville, MD (J.O., R.D.M., J.D.B., F.S.C., O.S.)
| |
Collapse
|