1
|
Bonnin-Marquez A, Jankowski J, Maas SL, Hermann J, Kahles F, Lellig M, Fliser D, Schunk S, Stamellou E, Berger M, Speer T, Kalim S, Leong Wong DW, van der Vorst EPC, Jankowski V. Guanidinylation compromises the anti-inflammatory and anti-oxidative properties of apolipoprotein A-I in chronic kidney disease progression. Kidney Int 2025; 107:916-929. [PMID: 40010491 DOI: 10.1016/j.kint.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Chronic kidney disease (CKD) substantially heightens the likelihood of cardiovascular events, in part due to the impaired functionality of high-density lipoprotein (HDL) and its connection with atherosclerosis. Here, 82 patients with CKD stages 2-5 had their plasma isolated and analyzed using mass spectrometry to detect post-translational modifications of apolipoprotein A-I (apoA-I), the main protein component of HDL. Guanidinylation, a non-enzymatic post-translational modification, led to increased levels of apoA-I with CKD progression. The increase in guanidinylated apoA-I became significant from CKD stage 3 onwards. The modification patterns of apoA-I in patients with CKD were mimicked in vitro by exposure to O-methylisourea bisulfate. The thus modified apoA-I was used for functional assays which revealed that guanidinylation compromised the anti-inflammatory and anti-oxidative properties of apoA-I, of potential relevance for clinical findings. Specifically, guanidinylated apoA-I activated inflammatory kinases in macrophages, suggesting a mechanistic link between apoA-I modifications and inflammatory responses. These findings are in favor of alterations in the functional properties of apoA-I in patients with CKD due to guanidinylation. The identification of high guanidinylated apoA-I peptide levels in plasma highlights a novel aspect of protein modification in CKD pathophysiology. The results of our study may provide a better understanding of the molecular mechanisms underlying CKD-related cardiovascular complications and highlight the importance and the need to minimize post-translational modifications in patients with CKD.
Collapse
Affiliation(s)
- Andrea Bonnin-Marquez
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, the Netherlands
| | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Juliane Hermann
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Florian Kahles
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Stefan Schunk
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Martin Berger
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4, Nephrology, Goethe University, Frankfurt/Main, Germany; Else Kroener Fresenius Center for Nephrological Research, Goethe University, Frankfurt/Main, Germany
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | | | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| |
Collapse
|
2
|
Samouilidou EC, Liaouri A, Kostopoulos V, Nikas D, Grapsa E. The importance of paraoxonase 1 activity in chronic kidney disease. Ren Fail 2024; 46:2376930. [PMID: 38982880 PMCID: PMC11238655 DOI: 10.1080/0886022x.2024.2376930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Paraoxonase 1 (PON1) is one of the most significant antioxidative enzymes associated with high-density lipoprotein (HDL). It has been proved that is involved in the pathogenesis of many diseases including chronic kidney disease (CKD). The association between PON1 and CKD seems to be mutual, such that the disease produces a significant decrease in PON1 activity levels, while the genetics of PON1 may affect the risk of susceptibility to CKD. Recent studies reveal that the decrease in serum PON1 activity observed in non-dialyzed and dialyzed CKD patients as well as in renal transplant (RT) patients is linked to an increased vulnerability to atherosclerosis. We intend to summarize current literature concerning PON1 activity in CKD, highlighting on the main determinants of PON1 activity, its association with oxidative stress, the impact of its genetic polymorphism on the disease development, the effect of drugs and nutritional state. Furthermore, evidence supporting the implication of reduced PON1 activity in the incident of cardiovascular disease in CKD patients, is also examined. It appears that despite the lack of standardization of PON1 activity measurement, PON1 remains a valuable biomarker for the researchers through the last decades, which contributes to the assessment of the antioxidant status having prognostic benefit on adverse clinical outcomes at various stages and etiologies of kidney disease.
Collapse
Affiliation(s)
| | | | | | - Dimitris Nikas
- Department of Biochemistry, "Alexandra" Hospital, Athens, Greece
| | | |
Collapse
|
3
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024; 87:50-59. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
5
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
6
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
7
|
Sarakpi T, Mesic A, Speer T. Leukocyte-endothelial interaction in CKD. Clin Kidney J 2023; 16:1845-1860. [PMID: 37915921 PMCID: PMC10616504 DOI: 10.1093/ckj/sfad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) represents an independent risk factor for cardiovascular diseases (CVD). Accordingly, CKD patients show a substantial increased risk of cardiovascular mortality. Inflammation represents an important link between CKD and CVD. The interaction between endothelial cells and effector cells of the innate immune system plays a central role in the development and progression of inflammation. Vascular injury causes endothelial dysfunction, leading to augmented oxidative stress, increased expression of leukocyte adhesion molecules and chronic inflammation. CKD induces numerous metabolic changes, creating a uremic milieu resulting in the accumulation of various uremic toxins. These toxins lead to vascular injury, endothelial dysfunction and activation of the innate immune system. Recent studies describe CKD-dependent changes in monocytes that promote endothelial dysfunction and thus CKD progression and CKD-associated CVD. The NLR family pyrin domain containing 3-interleukin-1β-interleukin-6 (NLRP3-IL-1β-IL-6) signaling pathway plays a pivotal role in the development and progression of CVD and CKD alike. Several clinical trials are investigating targeted inhibition of this pathway indicating that anti-inflammatory therapeutic strategies may emerge as novel approaches in patients at high cardiovascular risk and nonresolving inflammation. CKD patients in particular would benefit from targeted anti-inflammatory therapy, since conventional therapeutic regimens have limited efficacy in this population.
Collapse
Affiliation(s)
- Tamim Sarakpi
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armir Mesic
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
9
|
Wu Z, Lohmöller J, Kuhl C, Wehrle K, Jankowski J. Use of Computation Ecosystems to Analyze the Kidney-Heart Crosstalk. Circ Res 2023; 132:1084-1100. [PMID: 37053282 DOI: 10.1161/circresaha.123.321765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The identification of mediators for physiologic processes, correlation of molecular processes, or even pathophysiological processes within a single organ such as the kidney or heart has been extensively studied to answer specific research questions using organ-centered approaches in the past 50 years. However, it has become evident that these approaches do not adequately complement each other and display a distorted single-disease progression, lacking holistic multilevel/multidimensional correlations. Holistic approaches have become increasingly significant in understanding and uncovering high dimensional interactions and molecular overlaps between different organ systems in the pathophysiology of multimorbid and systemic diseases like cardiorenal syndrome because of pathological heart-kidney crosstalk. Holistic approaches to unraveling multimorbid diseases are based on the integration, merging, and correlation of extensive, heterogeneous, and multidimensional data from different data sources, both -omics and nonomics databases. These approaches aimed at generating viable and translatable disease models using mathematical, statistical, and computational tools, thereby creating first computational ecosystems. As part of these computational ecosystems, systems medicine solutions focus on the analysis of -omics data in single-organ diseases. However, the data-scientific requirements to address the complexity of multimodality and multimorbidity reach far beyond what is currently available and require multiphased and cross-sectional approaches. These approaches break down complexity into small and comprehensible challenges. Such holistic computational ecosystems encompass data, methods, processes, and interdisciplinary knowledge to manage the complexity of multiorgan crosstalk. Therefore, this review summarizes the current knowledge of kidney-heart crosstalk, along with methods and opportunities that arise from the novel application of computational ecosystems providing a holistic analysis on the example of kidney-heart crosstalk.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Johannes Lohmöller
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Christiane Kuhl
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Klaus Wehrle
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany (J.J.)
| |
Collapse
|
10
|
Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res 2023; 132:970-992. [PMID: 37053275 PMCID: PMC10097498 DOI: 10.1161/circresaha.123.321752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The endothelium is considered to be the gatekeeper of the vessel wall, maintaining and regulating vascular integrity. In patients with chronic kidney disease, protective endothelial cell functions are impaired due to the proinflammatory, prothrombotic and uremic environment caused by the decline in kidney function, adding to the increase in cardiovascular complications in this vulnerable patient population. In this review, we discuss endothelial cell functioning in healthy conditions and the contribution of endothelial cell dysfunction to cardiovascular disease. Further, we summarize the phenotypic changes of the endothelium in chronic kidney disease patients and the relation of endothelial cell dysfunction to cardiovascular risk in chronic kidney disease. We also review the mechanisms that underlie endothelial changes in chronic kidney disease and consider potential pharmacological interventions that can ameliorate endothelial health.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| |
Collapse
|
11
|
Denimal D. Carbamylated lipoproteins in diabetes. World J Diabetes 2023; 14:159-169. [PMID: 37035232 PMCID: PMC10075031 DOI: 10.4239/wjd.v14.i3.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Diabetic dyslipidemia is characterized by quantitative and qualitative abnor-malities in lipoproteins. In addition to glycation and oxidation, carbamylation is also a post-translational modification affecting lipoproteins in diabetes. Patients with type 2 diabetes (T2D) exhibit higher levels of carbamylated low-density lipoproteins (cLDL) and high-density lipoproteins (cHDL). Accumulating evidence suggests that cLDL plays a role in atherosclerosis in diabetes. cLDL levels have been shown to predict cardiovascular events and all-cause mortality. cLDL facilitates immune cell recruitment in the vascular wall, promotes accumulation of lipids in macrophages, and contributes to endothelial dysf-unction, endothelial nitric oxide-synthase (eNOS) inactivation and endothelial repair defects. Lastly, cLDL induces thrombus formation and platelet aggregation. On the other hand, recent data have demonstrated that cHDL serum level is independently associated with all-cause and cardiovascular-related mortality in T2D patients. This relationship may be causative since the atheroprotective properties of HDL are altered after carbamylation. Thus, cHDL loses the ability to remove cholesterol from macrophages, to inhibit monocyte adhesion and recruitment, to induce eNOS activation and to inhibit apoptosis. Taken together, it seems very likely that the abnormalities in the biological functions of LDL and HDL after carbamylation contribute to atherosclerosis and to the elevated cardiovascular risk in diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- Department of Biochemistry, University Hospital of Dijon, Dijon 21079, France
- INSERM LNC UMR1231, University of Burgundy, Dijon 21078, France
| |
Collapse
|
12
|
|
13
|
Denimal D, Monier S, Simoneau I, Duvillard L, Vergès B, Bouillet B. HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control. Cardiovasc Diabetol 2022; 21:154. [PMID: 35962339 PMCID: PMC9375300 DOI: 10.1186/s12933-022-01591-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Background Reduced cholesterol efflux capacity (CEC) of HDLs is likely to increase cardiovascular risk in type 1 diabetes (T1D). We aimed to assess whether improvement of glycemic control in T1D patients is associated with changes in CEC in relation with changes in carbamylation of HDLs. Methods In this open-label trial, 27 uncontrolled T1D patients were given a three-month standard medical intervention to improve glycemic control. HDL fraction was isolated from plasma, and CEC was measured on THP-1 macrophages. Carbamylation of HDLs was evaluated by an immunoassay. Control HDLs from healthy subjects were carbamylated in vitro with potassium cyanate. Results HbA1c decreased from 11.4% [10.2–12.9] (median [1st–3rd quartiles]) at baseline to 8.1% [6.6–9.0] after the three-month intervention (P < 0.00001). The CEC of HDLs increased after intervention in 19 (70%) patients (P = 0.038). At the same time, the carbamylation of HDLs decreased in 22 (82%) patients after intervention (P = 0.014). The increase in CEC significantly correlated with the decrease in carbamylated HDLs (r = −0.411, P = 0.034), even after adjustment for the change in HbA1c (β = −0.527, P = 0.003). In vitro carbamylation of control HDLs decreased CEC by 13% (P = 0.041) and 23% (P = 0.021) using 1 and 10 mmol/L of potassium cyanate, respectively. Conclusions The improvement of CEC in relation to a decrease in the carbamylation of HDLs may likely contribute to the beneficial cardiovascular effect of glycemic control in T1D patients. Trial registration: NCT02816099 ClinicalTrials.gov.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM LNC UMR1231, University of Burgundy, Dijon, France. .,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France.
| | - Serge Monier
- INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Isabelle Simoneau
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Laurence Duvillard
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France
| | - Bruno Vergès
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Benjamin Bouillet
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| |
Collapse
|
14
|
Wu Z, Jankowski V, Jankowski J. Irreversible post-translational modifications - Emerging cardiovascular risk factors. Mol Aspects Med 2022; 86:101010. [PMID: 34404548 DOI: 10.1016/j.mam.2021.101010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
Despite the introduction of lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies for primary prevention of cardiovascular and heart diseases (CVD), it remains the number one cause of death globally, raising the question for novel/further essential factors besides traditional risk factors such as cholesterol, blood pressure and coagulation. With continuous identification and characterization of non-enzymatic post-translationally modified isoforms of proteins and lipoproteins, it is becoming increasingly clear that irreversible non-enzymatic post-translational modifications (nPTMs) alter the biological functions of native proteins and lipoproteins thereby transforming innate serum components into CVD mediators. In particular renal insufficiency and metabolic imbalance are major contributors to the systemically increased concentration of reactive metabolites and thus increased frequency of nPTMs, promoting multi-morbid disease development centering around cardiovascular disease. nPTMs are significantly involved in the onset and progression of cardiovascular disease and represent a significant and novel risk factor. These insights represent potentially new avenues for risk assessment, prevention and therapy. This review chapter summarizes all forms of nPTMs found in CKD and under metabolic imbalance and discusses the biochemical connections between molecular alterations and the pathological impact on increased cardiovascular risk, novel nPTM-associated non-traditional cardiovascular risk factors, and clinical implication of nPTM in cardiovascular disease.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Zierfuss B, Höbaus C, Herz CT, Koppensteiner R, Stangl H, Schernthaner GH. HDL particle subclasses in statin treated patients with peripheral artery disease predict long-term survival. Thromb Haemost 2022; 122:1804-1813. [PMID: 35436798 DOI: 10.1055/a-1827-7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low-density lipoprotein-cholesterol (LDL-C) reduction showed a strong reduction of cardiovascular (CV) event rates in CV disease. However, the residual risk of future CV events remains high, which especially extends to peripheral arterial disease (PAD). Nuclear magnetic resonance (NMR)-spectroscopy offers a novel method for analyses of the lipoprotein spectrum. This study investigates lipoprotein subclasses using NMR-spectroscopy and assesses implications for long-term survival in PAD. NMR-spectroscopy was performed by Nightingale Inc. in 319 patients with stable PAD and well-controlled CV risk factors. Patients were followed-up for ten years. During that period 123 patients (38.5%) died, of those 68 (21.3%) were defined as CV-deaths. Outcome data were analyzed by the Kaplan-Meier method and multivariable Cox regression for lipoprotein particles. Small and medium high-density lipoprotein-particles (S-HDL-P and M-HDL-P) showed a significant inverse association with all-cause mortality in Cox-regression analyses after multivariable adjustment (S-HDL-P hazard ratio 0.71, 95% confidence interval 0.57-0.88; M-HDL-P 0.72, 0.58-0.90) for each increase of 1 standard deviation. In contrast, cholesterol-rich x-large HDL-particles (XL-HDL-P) showed a positive association with all-cause mortality (1.51, 1.20-1.89). Only the association between XL-HDL-P and CV-death sustained multivariable adjustment (1.49, 1.10-2.02), whereas associations for S-HDL-P and M-HDL-P were attenuated (0.76, 0.57-1.01; 0.80, 0.60-1.06). This study shows a novel association for a beneficial role of S-HDL-P and M-HDL-P but a negative association with higher cholesterol-rich XL-HDL-P for long-term outcome in well-treated patients with PAD. Thus, these results provide evidence that NMR-measured HDL particles identify patients at high CV residual risk beyond adequate lipid-lowering therapy.
Collapse
Affiliation(s)
- Bernhard Zierfuss
- Department of Medicine 2, Division of Angiology, Medical University of Vienna, Wien, Austria
| | - Clemens Höbaus
- Department of Medicine 2, Division of Angiology, Medical University of Vienna, Wien, Austria
| | - Carsten Thilo Herz
- Department of Medicine 3, Division of Nephrology and Dialysis, Medical University of Vienna, Wien, Austria
| | - Renate Koppensteiner
- Department of Medicine 2, Division of Angiology, Medical University of Vienna, Wien, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute for Medical Chemistry, Medical University of Vienna, Wien, Austria
| | | |
Collapse
|
16
|
El Chamieh C, Liabeuf S, Massy Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins (Basel) 2022; 14:280. [PMID: 35448889 PMCID: PMC9028122 DOI: 10.3390/toxins14040280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an elevated prevalence of atheromatous (ATH) and/or non-atheromatous (non-ATH) cardiovascular disease (CVD) due to an array of CKD-related risk factors, such as uremic toxins (UTs). Indeed, UTs have a major role in the emergence of a spectrum of CVDs, which constitute the leading cause of death in patients with end-stage renal disease. The European Uremic Toxin Work Group has identified over 100 UTs, more than 25 of which are dietary or gut-derived. Even though relationships between UTs and CVDs have been described in the literature, there are few reviews on the involvement of the most toxic compounds and the corresponding physiopathologic mechanisms. Here, we review the scientific literature on the dietary and gut-derived UTs with the greatest toxicity in vitro and in vivo. A better understanding of these toxins' roles in the elevated prevalence of CVDs among CKD patients might facilitate the development of targeted treatments. Hence, we review (i) ATH and non-ATH CVDs and the respective levels of risk in patients with CKD and (ii) the mechanisms that underlie the influence of dietary and gut-derived UTs on CVDs.
Collapse
Affiliation(s)
- Carolla El Chamieh
- Center for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles-Saint-Quentin-en-Yvelines University (UVSQ), INSERM UMRS 1018, F-94807 Villejuif, France;
| | - Sophie Liabeuf
- Pharmacology Department, Amiens University Hospital, F-80000 Amiens, France
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Ziad Massy
- Nephrology Department, Ambroise Paré University Hospital, APHP, F-92100 Paris, France
| |
Collapse
|
17
|
Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y, Graham LM, Cameron SJ, DiDonato JA, Crabb JW, Hazen SL. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta. J Biol Chem 2022; 298:101832. [PMID: 35304099 PMCID: PMC9010765 DOI: 10.1016/j.jbc.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO−) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN−), yielding CNO− and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO− pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
Collapse
Affiliation(s)
- Shawna Battle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ying Huang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Linda M Graham
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Scott J Cameron
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - John W Crabb
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
18
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
19
|
Hermann J, Schurgers L, Jankowski V. Identification and characterization of post-translational modifications: Clinical implications. Mol Aspects Med 2022; 86:101066. [PMID: 35033366 DOI: 10.1016/j.mam.2022.101066] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Post-translational modifications (PTMs) generate marginally modified isoforms of native peptides, proteins and lipoproteins thereby regulating protein functions, molecular interactions, and localization. With a key role in functional proteomics, post-translational modifications are recently also associated with the onsets and progressions of various diseases, such as cancer, cardiovascular, renal, and metabolic diseases. With the impact of post-translational modifications becoming increasingly clear, its reliable detection and quantification remain a major obstacle in the translation of these novel pathological markers into clinical diagnosis. While current antibody-based clinical diagnostics struggle to detect and quantify these marginal protein and lipoprotein alterations, state-of-the-art mass spectrometric, proteomic approaches provide the mass accuracy and resolving power necessary to isolate, identify and quantify novel and pathological post-translational modifications; however clinical translation of mass spectrometric applications are still facing major challenges. Here we review the status quo of the clinical translation of mass-spectrometric applications as novel diagnostic tools for the identification and quantification of post-translational modifications and focus on the emerging role of mass spectrometric methods in the clinical assessment of PTMs in disease states.
Collapse
Affiliation(s)
- Juliane Hermann
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
21
|
Renkecz T, Scopchanova S, Hirka G, Szakonyiné IP. Development and Validation of an LC-MS-MS Method for the Quantification of Cyanate in Rat Plasma and Its Application to Toxicokinetic Bioanalysis. J Anal Toxicol 2021; 45:1028-1035. [PMID: 33044525 DOI: 10.1093/jat/bkaa163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Cyanate has been recognized as a uremic toxin that can adversely affect the clinical status of patients with chronic kidney disease. Besides, its toxicity has been under investigation in mammalian toxicology. If such studies are supplemented with toxicokinetic sampling and bioanalysis, additional information can be acquired about the systemic exposure. In order to serve this need, a liquid chromatography with tandem mass spectrometry (LC-MS-MS) method was elaborated and validated for the quantification of cyanate in rat plasma using its isotope-labeled analog for internal standard. Cyanate was converted to a product compatible with reverse-phase LC-MS-MS via a two-step derivatization reaction with the reagent-anthranilic acid. It was observed that this reagent solution contains the reaction products even if prepared freshly in ultrapure water. The phenomenon was interpreted as the presence of urea and its reactivity with anthranilic acid. Contrary to previous research results where fresh anthranilic acid solution was recommended to use, we have found that the aging of the reagent solution is a crucial factor to eliminate the interference. Thereafter, the optimal pH was selected for the plasma sample and processing conditions. Bioanalytical validation and incurred sample reanalysis confirmed the reliability of the method when the intermediate reaction product was used for detection. Only one freeze-thaw cycle stability could be proven, which highlighted the need to collect two sample aliquots whenever possible. Real samples were analyzed in a toxicity study to evaluate systemic exposure of potassium cyanate at three dose levels. Further on, this method might be adapted to provide additional information about the pathophysiological concentration of cyanate in patients with chronic kidney disease for therapeutic support.
Collapse
Affiliation(s)
- Tibor Renkecz
- Toxi-Coop Toxicological Research Center, Analytical Laboratory, Berlini utca 47-49, Budapest, H-1045, Hungary
| | - Sirma Scopchanova
- SCC Scientific Consulting Company Chemisch-Wissenschaftliche Beratung GmbH, Am Grenzgraben 11, Bad Kreuznach, D-55545, Germany
| | - Gábor Hirka
- Toxi-Coop Toxicological Research Center, Analytical Laboratory, Berlini utca 47-49, Budapest, H-1045, Hungary
| | - Ilona Pasics Szakonyiné
- Toxi-Coop Toxicological Research Center, Analytical Laboratory, Berlini utca 47-49, Budapest, H-1045, Hungary
| |
Collapse
|
22
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
23
|
Speer T, Ridker PM, von Eckardstein A, Schunk SJ, Fliser D. Lipoproteins in chronic kidney disease: from bench to bedside. Eur Heart J 2021; 42:2170-2185. [PMID: 33393990 DOI: 10.1093/eurheartj/ehaa1050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with high cardiovascular risk. CKD patients exhibit a specific lipoprotein pattern termed 'uraemic dyslipidaemia', which is characterized by rather normal low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride plasma levels. All three lipoprotein classes are involved in the pathogenesis of CKD-associated cardiovascular diseases (CVDs). Uraemia leads to several modifications of the structure of lipoproteins such as changes of the proteome and the lipidome, post-translational protein modifications (e.g. carbamylation) and accumulation of small-molecular substances within the lipoprotein moieties, which affect their functionality. Lipoproteins from CKD patients interfere with lipid transport and promote inflammation, oxidative stress, endothelial dysfunction as well as other features of atherogenesis, thus contributing to the development of CKD-associated CVD. While, lipid-modifying therapies play an important role in the management of CKD patients, their efficacy is modulated by kidney function. Novel therapeutic agents to prevent the adverse remodelling of lipoproteins in CKD and to improve their functional properties are highly desirable and partially under development.
Collapse
Affiliation(s)
- Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany.,Department of Internal Medicine IV, Saarland University Hospital, Nephrology and Hypertension, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Stefan J Schunk
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Danilo Fliser
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| |
Collapse
|
24
|
Yang Y, Huang Z, Yang Z, Qi Y, Shi H, Zhou Y, Wang F, Yang M. Serum metabolomic profiling reveals an increase in homocitrulline in Chinese patients with nonalcoholic fatty liver disease: a retrospective study. PeerJ 2021; 9:e11346. [PMID: 33987020 PMCID: PMC8101472 DOI: 10.7717/peerj.11346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Backgrounds Nonalcoholic fatty liver disease (NAFLD) has multiple causes, is triggered by individual genetic susceptibility, environmental factors, and metabolic disturbances, and may be triggered by acquired metabolic stress. The metabolic profiles of NAFLD show significant ethnic differences, and the metabolic characteristics of NAFLD in Chinese individuals are unclear. Our study aimed to identify the metabolites and pathways associated with NAFLD in a Chinese cohort. Methods One hundred participants, including 50 NAFLD patients and 50 healthy controls, were enrolled in this retrospective observational study at Jinling Hospital in Nanjing; serum samples were collected from the patients and healthy subjects. The metabolome was determined in all samples by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS). Univariate and multivariate statistical analyses were used to compare the metabolic profiles between the two groups. Results The comparison indicated that the levels of 89 metabolites were different between the two groups. The glycerophospholipid family of metabolites was the most abundant family of metabolites that demonstrated significant differences. L-acetylcarnitine, L-homocitrulline, and glutamic acid were the top three metabolites ranked by VIP score and had favorable effective functions for diagnosis. Moreover, pathway enrichment analysis suggested 14 potentially different metabolic pathways between NAFLD patients and healthy controls based on their impact value. Biological modules involved in the lipid and carbohydrate metabolism had the highest relevance to the conditions of NAFLD. Glycerophospholipid metabolism had the strongest associations with the conditions of NAFLD. Conclusions Our data suggest that the serum metabolic profiles of NAFLD patients and healthy controls are different. L-Homocitrulline was remarkably increased in NAFLD patients.
Collapse
Affiliation(s)
- Yarong Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Zexin Huang
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui Shi
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Yifei Zhou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Miaofang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
26
|
Cupisti A, Bolasco P, D’Alessandro C, Giannese D, Sabatino A, Fiaccadori E. Protection of Residual Renal Function and Nutritional Treatment: First Step Strategy for Reduction of Uremic Toxins in End-Stage Kidney Disease Patients. Toxins (Basel) 2021; 13:toxins13040289. [PMID: 33921862 PMCID: PMC8073165 DOI: 10.3390/toxins13040289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The retention of uremic toxins and their pathological effects occurs in the advanced phases of chronic kidney disease (CKD), mainly in stage 5, when the implementation of conventional thrice-weekly hemodialysis is the prevalent and life-saving treatment. However, the start of hemodialysis is associated with both an acceleration of the loss of residual kidney function (RKF) and the shift to an increased intake of proteins, which are precursors of uremic toxins. In this phase, hemodialysis treatment is the only way to remove toxins from the body, but it can be largely inefficient in the case of high molecular weight and/or protein-bound molecules. Instead, even very low levels of RKF are crucial for uremic toxins excretion, which in most cases are protein-derived waste products generated by the intestinal microbiota. Protection of RKF can be obtained even in patients with end-stage kidney disease (ESKD) by a gradual and soft shift to kidney replacement therapy (KRT), for example by combining a once-a-week hemodialysis program with a low or very low-protein diet on the extra-dialysis days. This approach could represent a tailored strategy aimed at limiting the retention of both inorganic and organic toxins. In this paper, we discuss the combination of upstream (i.e., reduced production) and downstream (i.e., increased removal) strategies to reduce the concentration of uremic toxins in patients with ESKD during the transition phase from pure conservative management to full hemodialysis treatment.
Collapse
Affiliation(s)
- Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
- Correspondence:
| | - Piergiorgio Bolasco
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
| | - Domenico Giannese
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
| | - Alice Sabatino
- Department of Medicine and Surgery, University of Parma, Nephrology Unit, Parma University Hospital, 43121 Parma, Italy; (A.S.); (E.F.)
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, Nephrology Unit, Parma University Hospital, 43121 Parma, Italy; (A.S.); (E.F.)
| |
Collapse
|
27
|
Lui DTW, Cheung CL, Lee ACH, Wong Y, Shiu SWM, Tan KCB. Carbamylated HDL and Mortality Outcomes in Type 2 Diabetes. Diabetes Care 2021; 44:804-809. [PMID: 33402368 DOI: 10.2337/dc20-2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Carbamylation is part of the aging process and causes adverse changes in the structure and function of proteins. Lipoproteins are subjected to carbamylation. We investigated the usefulness of carbamylated HDL as a prognostic indicator of survival in patients with type 2 diabetes and the association with mortality outcomes. RESEARCH DESIGN AND METHODS Baseline plasma carbamylated HDL was measured by ELISA in a cohort of 1,517 patients with type 2 diabetes. The primary outcome was all-cause mortality, and the secondary outcomes were cause-specific deaths, including cardiovascular, renal, infection, and cancer related. RESULTS Over a median follow-up of 14 years, 292 patients died, and the mortality rate was 14.5 per 1,000 person-years. Plasma carbamylated HDL level was higher in those with a fatal outcome (46.1 ± 17.8 µg/mL vs. 32.9 ± 10.7; P < 0.01). Patients in the third (hazard ratio [HR] 2.11; 95% CI 1.40-3.17; P < 0.001) and fourth quartiles (HR 6.55; 95% CI 4.67-9.77; P < 0.001) of carbamylated HDL had increased mortality risk. After adjustment for conventional risk factors, elevated carbamylated HDL was independently associated with all-cause mortality (HR 1.39; 95% CI 1.28-1.52; P < 0.001) as well as with all the cause-specific mortalities. Adding plasma carbamylated HDL level improved the power of the multivariable models for predicting all-cause mortality, with significant increments in C index (from 0.78 to 0.80; P < 0.001), net reclassification index, and integrated discrimination improvement. CONCLUSIONS Carbamylation of HDL renders HDL dysfunctional, and carbamylated HDL is independently associated with mortality outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
28
|
Chen Z, Ding S, Wang YP, Chen L, Mao JY, Yang Y, Sun JT, Yang K. Association of carbamylated high-density lipoprotein with coronary artery disease in type 2 diabetes mellitus: carbamylated high-density lipoprotein of patients promotes monocyte adhesion. J Transl Med 2020; 18:460. [PMID: 33272295 PMCID: PMC7713164 DOI: 10.1186/s12967-020-02623-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence showed that carbamylated lipoprotein accelerated atherosclerosis. However, whether such modification of high-density lipoprotein (HDL) particles alters in type 2 diabetes mellitus (T2DM) patients and facilitates vascular complications remains unclear. We aimed to investigate the alteration of the carbamylation in HDL among T2DM patients and clarify its potential role in atherogenesis. METHODS A total of 148 consecutive T2DM patients undergoning angiography and 40 age- and gender-matched control subjects were included. HDL was isolated from plasma samples, and the concentration of HDL carbamyl-lysine (HDL-CBL) was measured. Furthermore, the HDL from subjects and in-vitro carbamylated HDL (C-HDL) was incubated with endothelial cells and monocyte to endothelial cell adhesion. Adhesion molecule expression and signaling pathway were detected. RESULTS Compared with the control group, the HDL-CBL level was remarkably increased in T2DM patients (6.13 ± 1.94 vs 12.00 ± 4.06 (ng/mg), P < 0.001). Of note, HDL-CBL demonstrated a more significant increase in T2DM patients with coronary artery disease (CAD) (n = 102) than those without CAD (n = 46) (12.75 ± 3.82 vs. 10.35 ± 4.11(ng/mg), P = 0.001). Multivariate logistic regression analysis demonstrated that higher HDL-CBL level was independently associated with a higher prevalence of CAD in diabetic patients after adjusting for established cofounders (adjusted odds ratio 1.174, 95% confidence Interval 1.045-1.319, p = 0.017). HDL from diabetic patients with CAD enhanced greater monocyte adhesion than that from the non-CAD or the control group (P < 0.001). Such pro-atherogenic capacity of diabetic HDL positively correlated with HDL-CBL level. Furthermore, in-vitro incubation of carbamylated HDL (C-HDL) with endothelial promoted monocyte to endothelial cell adhesion, induced upregulation of cell adhesion molecules expression, and activated NF-κB/p65 signaling in endothelial cells. Inhibiting carbamylation of HDL or NF-κB activation attenuated the monocyte to endothelial cell adhesion and cell surface adhesion molecules expression. CONCLUSIONS Our study identified elevated carbamylation modification of HDL from T2DM patients, especially in those with concomitant CAD. We also evidenced that C-HDL enhanced monocyte to endothelial cell adhesion, indicating a potential pro-atherogenic role of C-HDL in atherosclerosis among T2DM patients. Trial registration https://register.clinicaltrials.gov , NCT04390711 Registered on 14 May 2020; Retrospectively registered.
Collapse
Affiliation(s)
- Zhongli Chen
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China
| | - Yan Ping Wang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yan Mao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China
| | - Ying Yang
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, 650021, Yunnan, China
| | - Jia Teng Sun
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China.
| | - Ke Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
29
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
30
|
Tan KCB, Cheung CL, Lee ACH, Lam JKY, Wong Y, Shiu SWM. Carbamylated Lipoproteins and Progression of Diabetic Kidney Disease. Clin J Am Soc Nephrol 2020; 15:359-366. [PMID: 32075807 PMCID: PMC7057307 DOI: 10.2215/cjn.11710919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Protein carbamylation is a consequence of uremia and carbamylated lipoproteins contribute to atherogenesis in CKD. Proteins can also be carbamylated by a urea-independent mechanism, and whether carbamylated lipoproteins contribute to the progression of CKD has not been investigated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A case-control study was performed to determine whether there were changes in plasma levels of carbamylated lipoproteins in individuals with type 2 diabetes with eGFR >60 ml/min per 1.73 m2 compared with a group of age- and sex-matched healthy controls. A cohort of 1320 patients with type 2 diabetes with baseline eGFR ≥30 ml/min per 1.73 m2 was longitudinally followed up to evaluate the association between carbamylated lipoproteins and progression of CKD. The primary kidney outcome was defined as doubling of serum creatinine and/or initiation of KRT during follow-up. Plasma carbamylated LDLs and HDLs was measured by ELISA. RESULTS In individuals with diabetes with eGFR >60 ml/min per 1.73 m2, both plasma carbamylated LDL and HDL levels were higher compared with healthy controls (P<0.001). After a mean follow-up of 9 years of the diabetic cohort, individuals in the top quartile of carbamylated LDL (hazard ratio, 2.21; 95% confidence interval, 1.42 to 3.46; P<0.001) and carbamylated HDL (hazard ratio, 4.53; 95% confidence interval, 2.87 to 7.13; P<0.001) had higher risk of deterioration of kidney function compared with those in the lowest quartile. On multivariable Cox regression analysis, plasma carbamylated LDL was no longer associated with kidney outcome after adjusting for baseline eGFR and potential confounding factors. However, the association between plasma carbamylated HDL and kidney outcome remained significant and was independent of HDL cholesterol. CONCLUSIONS Plasma carbamylated HDL but not carbamylated LDL was independently associated with progression of CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Joanne K Y Lam
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| |
Collapse
|
31
|
Heine GH, Eller K, Stadler JT, Rogacev KS, Marsche G. Lipid-modifying therapy in chronic kidney disease: Pathophysiological and clinical considerations. Pharmacol Ther 2019; 207:107459. [PMID: 31863818 DOI: 10.1016/j.pharmthera.2019.107459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD), which affects >10% of the population worldwide, is associated with a dramatically increased rate of cardiovascular disease (CVD). More people with CKD will die from CVD than develop end-stage renal disease with dialysis-dependency. However, the contribution of classical atherosclerotic cardiovascular risk factors is less evident than in the general population. Particularly, the relationship between dyslipidemia and CVD morbidity and mortality in CKD patients is not as evident as in the general population. While LDL cholesterol-lowering drugs such as statins significantly reduce the rate of cardiovascular events in the general population, their role in patients with end-stage renal disease has been questioned. This could be caused by a shift from atherosclerotic to non-atherosclerotic CVD in patients with advanced CKD, which cannot be effectively prevented by lipid-lowering drugs. In addition, many lines of evidence suggest that impaired renal function directly affects the metabolism, composition and functionality of lipoproteins, which may affect their responsiveness to pharmacological interventions. In this review, we highlight the challenges for the therapeutic application of lipid-lowering treatment strategies in CKD and discuss why treatment strategies used in the general population cannot be applied uncritically to CKD patients.
Collapse
Affiliation(s)
- Gunnar H Heine
- Agaplesion Markus Krankenhaus, Frankfurt, Germany; Saarland University Faculty of Medicine, Homburg, Germany.
| | - Kathrin Eller
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria
| | - Kyrill S Rogacev
- Internal Medicine II/Cardiology, Sana HANSE-Klinikum Wismar, Germany; Nephrology/Lipidology, B Braun - ViaMedis, MVZ Schwerin West, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria.
| |
Collapse
|
32
|
Lim K, Kalim S. The Role of Nonenzymatic Post-translational Protein Modifications in Uremic Vascular Calcification. Adv Chronic Kidney Dis 2019; 26:427-436. [PMID: 31831121 DOI: 10.1053/j.ackd.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/11/2023]
Abstract
Considerable technological advances have enabled the identification and linkage of nonenzymatic post-translationally modified proteins to the pathogenesis of cardiovascular disease (CVD) in patients with kidney failure. Through processes such as the nonenzymatic carbamylation reaction as well as the formation of advanced glycation end products, we now know that protein modifications are invariably associated with the development of CVD beyond a mere epiphenomenon and this has become an important focus of nephrology research in recent years. Although the specific mechanisms by which protein modifications occurring in kidney failure that may contribute to CVD are diverse and include pathways such as inflammation and fibrosis, vascular calcification has emerged as a distinct pathological sequelae of protein modifications. In this review, we consider the biological mechanisms and clinical relevance of protein carbamylation and advanced glycation end products in CVD development with a focus on vascular calcification.
Collapse
|
33
|
New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11090529. [PMID: 31547340 PMCID: PMC6784181 DOI: 10.3390/toxins11090529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC-particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.
Collapse
|
34
|
Abstract
Objective: Recent studies have shown the important influence of various micro factors on the general biological activity and function of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these micro factors remain the focus of current research. Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and “endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018. Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs. Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs. Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were predominantly enriched in inflammatory diseases. Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Collapse
|
35
|
Sun JT, Chen YY, Mao JY, Wang YP, Chen YF, Hu X, Yang K, Liu Y. Oxidized HDL, as a Novel Biomarker for Calcific Aortic Valve Disease, Promotes the Calcification of Aortic Valve Interstitial Cells. J Cardiovasc Transl Res 2019; 12:560-568. [PMID: 31367900 DOI: 10.1007/s12265-019-09903-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by progressive mineralization of the aortic valve. Lipid infiltration and oxidative stress are the driving forces for the initiation and development of this disease. However, it remains unknown whether oxidized high-density lipoprotein (ox-HDL) plays a role in the mineralization of aortic valve interstitial cells (AVICs). Serum ox-HDL levels were determined in 168 severe CAVD patients and 168 age- and gender-matched non-CAVD controls. Results showed that ox-HDL concentrations were significantly increased in CAVD compared with the control group (131.52 ± 30.96 ng/mL vs. 112.58 ± 32.20 ng/mL, P < 0.001) and were correlated with CAVD severity. Multivariable logistic regression revealed that ox-HDL levels were independently associated with CAVD after adjusting for the incidence of coronary artery disease (CAD) (odds ratio 1.019, 95% CI 1.012-1.027, P < 0.001) or atherosclerotic risk factors (odds ratio 1.027, 95% CI 1.017-1.037, P < 0.001). Chronic ox-HDL stimulation of AVICs increased alkaline phosphatase activity (ALP) and calcium deposits in AVICs in vitro. Mechanistic studies further showed that ox-HDL upregulated several osteogenic factors, including BMP-2, Runx2, and Msx2 expressions in AVICs. This is the first study to demonstrate a relationship between increased ox-HDL concentration and CAVD incidence.
Collapse
Affiliation(s)
- Jia Teng Sun
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Yuan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200025, People's Republic of China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Jing Yan Mao
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Yan Ping Wang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Ya Fen Chen
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Xiang Hu
- Department of Cardiac Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China.
| | - Yan Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
36
|
Desmons A, Okwieka A, Doué M, Gorisse L, Vuiblet V, Pietrement C, Gillery P, Jaisson S. Proteasome-dependent degradation of intracellular carbamylated proteins. Aging (Albany NY) 2019; 11:3624-3638. [PMID: 31170093 PMCID: PMC6594819 DOI: 10.18632/aging.102002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/27/2019] [Indexed: 12/28/2022]
Abstract
Carbamylation, which corresponds to the binding of isocyanic acid to the amino groups of proteins, is a nonenzymatic post-translational modification responsible for alterations of protein structural and functional properties. Tissue accumulation of carbamylation-derived products and their role in pathological processes such as atherosclerosis or chronic renal failure have been previously documented. However, few studies have focused on the carbamylation of intracellular proteins and their subsequent role in cellular aging. This study aimed to determine the extent of intracellular protein carbamylation, its impact on cell functions and the ability of cells to degrade these modified proteins. Fibroblasts were incubated with cyanate or urea and the carbamylation level was evaluated by immunostaining and homocitrulline quantification. The results showed that carbamylated proteins accumulated intracellularly and that all proteins were susceptible. The presence of intracellular carbamylated proteins did not modify cell proliferation or type I collagen synthesis nor did it induce cell senescence, but it significantly decreased cell motility. Fibroblasts were able to degrade carbamylated proteins through the ubiquitin-proteasome system. In conclusion, intracellular proteins are susceptible to carbamylation but their accumulation does not seem to deeply affect cell function, owing largely to their elimination by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Aurore Desmons
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Anaïs Okwieka
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Manon Doué
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Present address: Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent Vuiblet
- Laboratory of Biopathology, University Hospital of Reims, Reims, France
| | - Christine Pietrement
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Department of Pediatrics (Nephrology unit), University Hospital of Reims, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| |
Collapse
|
37
|
Protein carbamylation in end stage renal disease: is there a mortality effect? Curr Opin Nephrol Hypertens 2019; 27:454-462. [PMID: 30148723 DOI: 10.1097/mnh.0000000000000454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Protein carbamylation is a posttranslational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Additional modulators of protein carbamylation include circulating free amino acid levels, inflammation, diet, smoking, and environmental pollution exposures. Carbamylation reactions can modify protein charge, structure, and function, leading to adverse molecular and cellular responses. These changes have been linked to several pathologic biochemical pathways relevant to patients with end stage renal disease (ESRD) such as accelerated atherosclerosis and dysfunctional erythropoiesis, among others. This review examines the consequences of human protein carbamylation and the clinical impact this is thought to have in patients with ESRD. RECENT FINDINGS Recent well-conducted studies across diverse cohorts of patients have independently associated elevations in protein carbamylation to mortality and morbidity in patients with ESRD. Studies are now examining the best strategies to reduce carbamylation load, including interventions aimed at lowering urea levels and restoring amino acid balance. Whether such carbamylation lowering strategies yield clinical improvements remain to be determined. SUMMARY Numerous fundamental studies provide plausible mechanisms for the observed association between protein carbamylation burden and adverse clinical outcomes in ESRD. Studies employing nutritional and dialytic interventions to lower carbamylation may mitigate this risk but the net clinical benefit has not been established.
Collapse
|
38
|
Increased electronegativity of high-density lipoprotein in uremia patients impairs its functional properties and is associated with the risk of coronary artery disease. Atherosclerosis 2018; 278:147-155. [DOI: 10.1016/j.atherosclerosis.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 01/28/2023]
|
39
|
Abstract
Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Collapse
Affiliation(s)
- Joshua Long
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Vela Parada
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Circulating levels of carbamylated protein and neutrophil extracellular traps are associated with periodontitis severity in patients with rheumatoid arthritis: A pilot case-control study. PLoS One 2018; 13:e0192365. [PMID: 29394286 PMCID: PMC5796721 DOI: 10.1371/journal.pone.0192365] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Objectives An interrelationship between rheumatoid arthritis (RA) and periodontitis has been suggested due to their common pathogenic mechanisms. Protein carbamylation and neutrophil extracellular traps (NETs) formation have been shown to be related to autoimmune conditions, including RA, but their association with periodontitis has not been elucidated. Therefore, we assessed whether or not circulating levels of carbamylated protein (CarP) and NETs are associated with periodontitis severity and influenced by periodontal treatment. Methods We conducted a retrospective case-control study that included 40 patients with RA and periodontitis, 30 patients with periodontitis, and 43 systemically and periodontally healthy controls to assess the circulating levels of CarP and NETs and rheumatologic and periodontal conditions. The same assessments were also performed in 22 patients with RA and periodontitis after 2 months of periodontal treatment, including oral hygiene instruction and full-mouth supragingival scaling. Results Patients with RA and periodontitis showed significantly higher serum levels of CarP and NETs than the control group (P = 0.04 and P < 0.001, respectively). The serum levels of CarP and NETs were significantly correlated positively with the mean values of probing depth (P = 0.01 and P = 0.007, respectively) and clinical attachment level (P = 0.007 and P = 0.001, respectively) in the 40 patients with RA and periodontitis. Multiple logistic regression analyses also revealed significantly positive associations between the serum levels of CarP and NETs and moderate to severe periodontitis (P = 0.03 and P = 0.001, respectively). Furthermore, periodontal treatment significantly decreased the serum levels of CarP and NETs in patients with RA and periodontitis (P = 0.03 and P = 0.02). Conclusion The circulating levels of CarP and NETs are associated with periodontitis severity and influenced by periodontal treatment in patients with RA.
Collapse
|
41
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
42
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
43
|
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 2017; 13:580-593. [PMID: 28757635 DOI: 10.1038/nrneph.2017.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Sun JT, Yang K, Mao JY, Shen WF, Lu L, Wu QH, Wang YP, Wu LP, Zhang RY. Cyanate-Impaired Angiogenesis: Association With Poor Coronary Collateral Growth in Patients With Stable Angina and Chronic Total Occlusion. J Am Heart Assoc 2016; 5:JAHA.116.004700. [PMID: 27986757 PMCID: PMC5210395 DOI: 10.1161/jaha.116.004700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Cyanate has recently gained attention for its role in the pathogenesis of vascular injury. Nonetheless, the effect of cyanate on angiogenesis remains unclear. Methods and Results In this study, we demonstrated that oral administration of cyanate impaired blood perfusion recovery in a mouse hind‐limb ischemia model. A reduction in blood perfusion recovery at day 21 was observed in the ischemic tissue of cyanate‐treated mice. Likewise, there were fewer capillaries in the ischemic hind‐limb tissue of cyanate‐exposed mice. Our in vitro study showed that cyanate, together with its carbamylated products, inhibited the migration, proliferation, and tube‐formation abilities of endothelial cells. Further research revealed that cyanate regulated angiogenesis partly by interrupting the vascular endothelial growth factor receptor 2/phosphatidylinositol 3‐kinase/Akt pathway. The serum concentrations of homocitrulline, a marker of cyanate exposure, were determined in 117 patients with stable angina and chronic total occlusion. Consistent with the antiangiogenic role of cyanate, homocitrulline levels were increased in patients with poor coronary collateralization (n=58) compared with those with high collateralization (n=59; 21.09±13.08 versus 15.54±9.02 ng/mL, P=0.009). In addition, elevated homocitrulline concentration was a strong predictor of poor coronary collateral growth. Conclusions Impaired angiogenesis induced by cyanate might contribute to poor coronary collateral growth.
Collapse
Affiliation(s)
- Jia Teng Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yan Mao
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wei Feng Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Hong Wu
- Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Ping Wang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ping Wu
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Sun JT, Liu Y, Lu L, Liu HJ, Shen WF, Yang K, Zhang RY. Diabetes-Invoked High-Density Lipoprotein and Its Association With Coronary Artery Disease in Patients With Type 2 Diabetes Mellitus. Am J Cardiol 2016; 118:1674-1679. [PMID: 27666175 DOI: 10.1016/j.amjcard.2016.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
Although high-density lipoprotein (HDL) can exhibit anti-inflammatory properties, these potent activities can become deficient and even transform into proinflammatory effects under various pathophysiological states. We investigated the effect of diabetic HDL on the inflammatory response in human monocytes and its relation to the existence of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (DM). HDL was isolated from DM patients with (n = 61) or without (n = 31) CAD (diameter stenosis ≥50%) and healthy controls (n = 40). Human peripheral blood mononuclear cells were incubated with HDL and the proinflammatory ability of HDL was determined by tumor necrosis factor-α (TNF-α) secretion in peripheral blood mononuclear cells. Secretion of TNF-α in human monocytes in response to diabetic HDL was significantly increased compared with that of the control HDL. Of note, HDL from DM patients with CAD stimulated the release of TNF-α in monocytes to a greater extent than that of HDL from those without CAD. Multiple linear regression analysis showed that the proinflammatory ability of HDL was independently associated with diabetes duration, hemoglobin A1c, serum levels of high-sensitivity C-reactive protein (hs-CRP) and reduced glomerular filtration rate (GFR). Furthermore, the proinflammatory ability of HDL was a significant predictor for the presence of CAD in patients with DM.
Collapse
|
48
|
Massy ZA, Pietrement C, Touré F. Reconsidering the Lack of Urea Toxicity in Dialysis Patients. Semin Dial 2016; 29:333-7. [DOI: 10.1111/sdi.12515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziad A. Massy
- Division of Nephrology; Ambroise Paré Hospital; APHP; Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ); Boulogne Billancourt/Paris France
- Inserm U-1018 Team 5; Paris-Saclay University and UVSQ; Villejuif France
| | - Christine Pietrement
- Department of Pediatrics; Nephrology Unit; University Hospital of Reims; Reims France
- Laboratoire de Biochimie et de biologie moléculaire; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
| | - Fatouma Touré
- Laboratoire de néphrologie; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
- Division of Nephrology; CHU Reims; Reims France
| |
Collapse
|