1
|
Melchior M, Van Eycken M, Nicaise C, Duquesne T, Longueville L, Collin A, Decaestecker C, Salmon I, Delporte C, Soyfoo M. Decreased Expression of Aquaporins as a Feature of Tubular Damage in Lupus Nephritis. Cells 2025; 14:380. [PMID: 40072108 PMCID: PMC11899336 DOI: 10.3390/cells14050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Background: Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, AQP2 and AQP3, which could provide a better understanding of tubulointerstitial stress during lupus nephritis. Methods: This retrospective monocentric study was conducted at Erasme-HUB Hospital. We included 37 lupus nephritis samples and 9 healthy samples collected between 2000 and 2020, obtained from the pathology department. Immunohistochemistry was performed to target AQP1, AQP2 and AQP3 and followed by digital analysis. Results: No difference in AQP1, AQP2 and AQP3 staining location was found between healthy and lupus nephritis samples. However, we observed significant differences between these two groups, with a decrease in AQP1 expression in the renal cortex and in AQP3 expression in the cortex and medulla. In the subgroup of proliferative glomerulonephritis (class III/IV), this decrease in AQPs expression was more pronounced, particularly for AQP3. In addition, within this subgroup, we detected lower AQP2 expression in patients with higher interstitial inflammation score and lower AQP3 expression when higher interstitial fibrosis and tubular atrophy were present. Conclusions: We identified significant differences in the expression of aquaporins 1, 2, and 3 in patients with lupus nephritis. These findings strongly suggest that decreased AQP expression could serve as an indicator of tubular injury. Further research is warranted to evaluate AQP1, AQP2, and AQP3 as prognostic markers in both urinary and histological assessments of lupus nephritis.
Collapse
Affiliation(s)
- Maxime Melchior
- Departement of Rheumatology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marie Van Eycken
- Department of Pathology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.V.E.); (I.S.)
| | - Charles Nicaise
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (C.N.); (T.D.); (L.L.)
| | - Thomas Duquesne
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (C.N.); (T.D.); (L.L.)
| | - Léa Longueville
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (C.N.); (T.D.); (L.L.)
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (A.C.); (C.D.)
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (A.C.); (C.D.)
- Laboratory of Image Synthesis and Analysis, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.V.E.); (I.S.)
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (A.C.); (C.D.)
- Centre Universitaire Inter Régional D’expertise en Anatomie Pathologique Hospitalière, 6040 Jumet, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Muhammad Soyfoo
- Departement of Rheumatology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
2
|
Verzicco I, Tedeschi S, Graiani G, Bongrani A, Carnevali ML, Dancelli S, Zappa J, Mattei S, Bovino A, Cavazzini S, Rocco R, Calvi A, Palladini B, Volpi R, Cannone V, Coghi P, Borghetti A, Cabassi A. Evidence for a Prehypertensive Water Dysregulation Affecting the Development of Hypertension: Results of Very Early Treatment of Vasopressin V1 and V2 Antagonism in Spontaneously Hypertensive Rats. Front Cardiovasc Med 2022; 9:897244. [PMID: 35722114 PMCID: PMC9198251 DOI: 10.3389/fcvm.2022.897244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to long-term regulation of blood pressure (BP), in the kidney resides the initial trigger for hypertension development due to an altered capacity to excrete sodium and water. Betaine is one of the major organic osmolytes, and its betaine/gamma-aminobutyric acid transporter (BGT-1) expression in the renal medulla relates to interstitial tonicity and urinary osmolality and volume. This study investigated altered water and sodium balance as well as changes in antidiuretic hormone (ADH) activity in female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats from their 3–5 weeks of age (prehypertensive phase) to SHR’s 28–30 weeks of age (established hypertension-organ damage). Young prehypertensive SHRs showed a reduced daily urine output, an elevated urine osmolarity, and higher immunostaining of tubule BGT-1, alpha-1-Na-K ATPase in the outer medulla vs. age-matched WKY. ADH circulating levels were not different between young prehypertensive SHR and WKY, but the urine aquaporin2 (AQP2)/creatinine ratio and labeling of AQP2 in the collecting duct were increased. At 28–30 weeks, hypertensive SHR with moderate renal failure did not show any difference in urinary osmolarity, urine AQP2/creatinine ratio, tubule BGT-1, and alpha-1-Na-K ATPase as compared with WKY. These results suggest an increased sensitivity to ADH in prehypertensive female SHR. On this basis, a second series of experiments were set to study the role of ADH V1 and V2 receptors in the development of hypertension, and a group of female prehypertensive SHRs were treated from the 25th to 49th day of age with either V1 (OPC21268) or V2 (OPC 41061) receptor antagonists to evaluate the BP time course. OPC 41061-treated SHRs had a delayed development of hypertension for 5 weeks without effect in OPC 21268-treated SHRs. In prehypertensive female SHR, an increased renal ADH sensitivity is crucial for the development of hypertension by favoring a positive water balance. Early treatment with selective V2 antagonism delays future hypertension development in young SHRs.
Collapse
Affiliation(s)
- Ignazio Verzicco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Stefano Tedeschi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Gallia Graiani
- Histology and Histopathology Unit and Molecular Biology Laboratory, Dental School Parma, University of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Maria Luisa Carnevali
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Simona Dancelli
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Jessica Zappa
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Silvia Mattei
- Nefrologia e Dialisi, Azienda USL – Istituto di Ricerca a Carattere Scientifico IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Achiropita Bovino
- Internal Medicine Unit, Ospedale Fidenza, Azienda USL Parma, Parma, Italy
| | - Stefania Cavazzini
- Laboratory of Industrial Toxicology, DIMEC, University of Parma, Parma, Italy
| | - Rossana Rocco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Anna Calvi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Barbara Palladini
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Riccardo Volpi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Valentina Cannone
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Pietro Coghi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Alberico Borghetti
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Aderville Cabassi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
- *Correspondence: Aderville Cabassi,
| |
Collapse
|
3
|
Treadmill Exercise Training Ameliorates Functional and Structural Age-Associated Kidney Changes in Male Albino Rats. ScientificWorldJournal 2021; 2021:1393372. [PMID: 34887703 PMCID: PMC8651424 DOI: 10.1155/2021/1393372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Aging is a biological process that impacts multiple organs. Unfortunately, kidney aging affects the quality of life with high mortality rate. So, searching for innovative nonpharmacological modality improving age-associated kidney deterioration is important. This study aimed to throw more light on the beneficial effect of treadmill exercise on the aged kidney. Thirty male albino rats were divided into three groups: young (3-4 months old), sedentary aged (23-24 months old), and exercised aged (23-24 months old, practiced moderate-intensity treadmill exercise 5 days/week for 8 weeks). The results showed marked structural alterations in the aged kidney with concomitant impairment of kidney functions and increase in arterial blood pressure with no significant difference in kidney weight. Also, it revealed that treadmill exercise alleviated theses effects in exercised aged group with reduction of urea and cystatin C. Exercise training significantly decreased glomerulosclerosis index, tubular injury score, and % area of collagen deposition. Treadmill exercise exerted its beneficial role via a significant reduction of C-reactive protein and malondialdehyde and increase in total antioxidant capacity. In addition, exercise training significantly decreased desmin immunoreaction and increased aquaporin-3, vascular endothelial growth factor, and beclin-1 in the aged kidney. This study clarified that treadmill exercise exerted its effects via antioxidant and anti-inflammatory mechanisms, podocyte protection, improving aquaporin-3 and vascular endothelial growth factor expression, and inducing autophagy in the aged kidney. This work provided a new insight into the promising role of aerobic exercise to ameliorate age-associated kidney damage.
Collapse
|
4
|
Saghir SA, Ansari RA, Dorato MA. Rethinking toxicity testing: Influence of aging on the outcome of long-term toxicity testing and possible remediation. Food Chem Toxicol 2020; 141:111327. [PMID: 32380075 DOI: 10.1016/j.fct.2020.111327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Traditionally, toxicity testing is conducted at fixed dose rates (i.e., mg/kg/day) without considering life-changing events, e.g., stress, sickness, aging- and/or pregnancy-related changes in physical, physiological and biochemical parameters. In humans, life-changing events may cause systemic dose non-proportionality requiring modulation of drug dosage; similar changes occur in animals altering systemic dose during chronic/carcinogenic testing leading to "late-occurring" effects in some studies. For example, propylene monomethyl ether, an industrial chemical, initially induced sedation in rats and mice with recovery upon induction of hepatic CYPs after ~1 week. Sedation reappeared in rats but not in mice after ~12 months of exposure due to decreased CYP activity in rats, elderly mice were able to maintain slightly higher CYP activity avoiding recurrence of sedation. The systemic dose of two pharmaceuticals (doxazosin and brimonidine tartrate) increased up to 6-fold in ≥12-month old rats with no toxicity. In a rat reproductive toxicity study, systemic dose of 2,4-D, an herbicide, rapidly increased due to increased consumption of 2,4-D-fortified diet during pregnancy, lactation and neonatal growth, requiring adjustment to maintain the targeted systemic dose. Ideally, toxicological studies should be based on systemic dose with the option of modulating external dose rates to maintain the targeted systemic dose. Systemic dose can easily be monitored in selected core study animals at desired intervals considering recent developments in sampling and analysis at a fraction of the overall cost of a study.
Collapse
Affiliation(s)
- Shakil Ahmed Saghir
- Scotts Miracle-Gro, 14111 Scottslawn Road, Marysville, OH, 43041, USA; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan; ToxInternational, Inc., 5057 Stonecroft Ct., Hilliard, OH 43026, USA.
| | - Rais Ahmad Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Michael A Dorato
- Inotiv, 13 Firstfield Road, Suite 110, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
5
|
Probst S, Scharner B, McErlean R, Lee WK, Thévenod F. Inverse Regulation of Lipocalin-2/24p3 Receptor/SLC22A17 and Lipocalin-2 Expression by Tonicity, NFAT5/TonEBP and Arginine Vasopressin in Mouse Cortical Collecting Duct Cells mCCD(cl.1): Implications for Osmotolerance. Int J Mol Sci 2019; 20:ijms20215398. [PMID: 31671521 PMCID: PMC6862280 DOI: 10.3390/ijms20215398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
The rodent collecting duct (CD) expresses a 24p3/NGAL/lipocalin-2 (LCN2) receptor (SLC22A17) apically, possibly to mediate high-affinity reabsorption of filtered proteins by endocytosis, although its functions remain uncertain. Recently, we showed that hyperosmolarity/-tonicity upregulates SLC22A17 in cultured mouse inner-medullary CD cells, whereas activation of toll-like receptor 4 (TLR4), via bacterial lipopolysaccharides (LPS), downregulates SLC22A17. This is similar to the upregulation of Aqp2 by hyperosmolarity/-tonicity and arginine vasopressin (AVP), and downregulation by TLR4 signaling, which occur via the transcription factors NFAT5 (TonEBP or OREBP), cAMP-responsive element binding protein (CREB), and nuclear factor-kappa B, respectively. The aim of the study was to determine the effects of osmolarity/tonicity and AVP, and their associated signaling pathways, on the expression of SLC22A17 and its ligand, LCN2, in the mouse (m) cortical collecting duct cell line mCCD(cl.1). Normosmolarity/-tonicity corresponded to 300 mosmol/L, whereas the addition of 50–100 mmol/L NaCl for up to 72 h induced hyperosmolarity/-tonicity (400–500 mosmol/L). RT-PCR, qPCR, immunoblotting and immunofluorescence microscopy detected Slc22a17/SLC22A17 and Lcn2/LCN2 expression. RNAi silenced Nfat5, and the pharmacological agent 666-15 blocked CREB. Activation of TLR4 was induced with LPS. Similar to Aqp2, hyperosmotic/-tonic media and AVP upregulated Slc22a17/SLC22A17, via activation of NFAT5 and CREB, respectively, and LPS/TLR4 signaling downregulated Slc22a17/SLC22A17. Conversely, though NFAT5 mediated the hyperosmolarity/-tonicity induced downregulation of Lcn2/LCN2 expression, AVP reduced Lcn2/LCN2 expression and predominantly apical LCN2 secretion, evoked by LPS, through a posttranslational mode of action that was independent of CREB signaling. In conclusion, the hyperosmotic/-tonic upregulation of SLC22A17 in mCCD(cl.1) cells, via NFAT5, and by AVP, via CREB, suggests that SLC22A17 contributes to adaptive osmotolerance, whereas LCN2 downregulation could counteract increased proliferation and permanent damage of osmotically stressed cells.
Collapse
Affiliation(s)
- Stephanie Probst
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Bettina Scharner
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Ruairi McErlean
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK.
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Frank Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| |
Collapse
|
6
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
7
|
Hardt S, Valek L, Zeng-Brouwers J, Wilken-Schmitz A, Schaefer L, Tegeder I. Progranulin Deficient Mice Develop Nephrogenic Diabetes Insipidus. Aging Dis 2018; 9:817-830. [PMID: 30271659 PMCID: PMC6147595 DOI: 10.14336/ad.2017.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022] Open
Abstract
Loss-of-function mutations of progranulin are associated with frontotemporal dementia in humans, and its deficiency in mice is a model for this disease but with normal life expectancy and mild cognitive decline on aging. The present study shows that aging progranulin deficient mice develop progressive polydipsia and polyuria under standard housing conditions starting at middle age (6-9 months). They showed high water licking behavior and doubling of the normal daily drinking volume, associated with increased daily urine output and a decrease of urine osmolality, all maintained during water restriction. Creatinine clearance, urine urea, urine albumin and glucose were normal. Hence, there were no signs of osmotic diuresis or overt renal disease, other than a concentrating defect. In line, the kidney morphology and histology revealed a 50% increase of the kidney weight, kidney enlargement, mild infiltrations of the medulla with pro-inflammatory cells, widening of tubules but no overt signs of a glomerular or tubular pathology. Plasma vasopressin levels were on average about 3-fold higher than normal levels, suggesting that the water loss resulted from unresponsiveness of the collecting tubules towards vasopressin, and indeed aquaporin-2 immunofluorescence in collecting tubules was diminished, whereas renal and hypothalamic vasopressin were increased, the latter in spite of substantial astrogliosis in the hypothalamus. The data suggest that progranulin deficiency causes nephrogenic diabetes insipidus in mice during aging. Possibly, polydipsia in affected patients - eventually interpreted as psychogenic polydipsia - may point to a similar concentrating defect.
Collapse
Affiliation(s)
- Stefanie Hardt
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Lucie Valek
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- 2General Pharmacology and Toxicology, Goethe-University Hospital Frankfurt am Main, Germany
| | | | - Liliana Schaefer
- 2General Pharmacology and Toxicology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Irmgard Tegeder
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| |
Collapse
|
8
|
Milano S, Carmosino M, Gerbino A, Svelto M, Procino G. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. Int J Mol Sci 2017; 18:ijms18112385. [PMID: 29125546 PMCID: PMC5713354 DOI: 10.3390/ijms18112385] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| |
Collapse
|
9
|
Relationship between Aging-Related Skin Dryness and Aquaporins. Int J Mol Sci 2017; 18:ijms18071559. [PMID: 28718791 PMCID: PMC5536047 DOI: 10.3390/ijms18071559] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
Skin function deteriorates with aging, and the dermal water content decreases. In this study, we have analyzed the mechanism of aging-related skin dryness focusing on aquaporins (AQPs), which are the water channels. Mice aged 3 and 20 months were designated as young and aged mice, respectively, to be used in the experiments. No differences were observed in transepidermal water loss between the young mice and aged mice. However, the dermal water content in aged mice was significantly lower than that in young mice, thus showing skin dryness. The expression of AQP1, AQP3, AQP4, AQP7, and AQP9 was observed in the skin. All the mRNA expression levels of these AQPs were significantly lower in aged mice. For AQP3, which was expressed dominantly in the skin, the protein level was lower in aged mice than in young mice. The results of the study showed that the expression level of AQPs in the skin decreased with aging, suggesting the possibility that this was one of the causes of skin dryness. New targets for the prevention and treatment of aging-related skin dryness are expected to be proposed when the substance that increases the expression of AQP3 is found.
Collapse
|
10
|
|
11
|
Abstract
Aging is associated with structural and functional changes in the kidney. Structural changes include glomerulosclerosis, thickening of the basement membrane, increase in mesangial matrix, tubulointerstitial fibrosis and arteriosclerosis. Glomerular filtration rate is maintained until the fourth decade of life, after which it declines. Parallel reductions in renal blood flow occur with redistribution of blood flow from the cortex to the medulla. Other functional changes include an increase in glomerular basement permeability and decreased ability to dilute or concentrate urine.
Collapse
Affiliation(s)
- Zeina Karam
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
12
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
13
|
Aquaporin 5 knockout mouse lens develops hyperglycemic cataract. Biochem Biophys Res Commun 2013; 441:333-8. [PMID: 24148248 DOI: 10.1016/j.bbrc.2013.10.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/22/2022]
Abstract
The scope of this investigation was to understand the role of aquaporin 5 (AQP5) for maintaining lens transparency and homeostasis. Studies were conducted using lenses of wild-type (WT) and AQP5 knockout (AQP5-KO) mice. Immunofluorescent staining verified AQP5 expression in WT lens sections and lack of expression in the knockout. In vivo and ex vivo, AQP5-KO lenses resembled WT lenses in morphology and transparency. Therefore, we subjected the lenses ex vivo under normal (5.6mM glucose) and hyperglycemic (55.6mM glucose) conditions to test for cataract formation. Twenty-four hours after incubation in hyperglycemic culture medium, AQP5-KO lenses showed mild opacification which was accelerated several fold at 48 h; in contrast, WT lenses remained clear even after 48 h of hyperglycemic treatment. AQP5-KO lenses displayed osmotic swelling due to increase in water content. Cellular contents began to leak into the culture medium after 48 h. We reason that water influx through glucose transporters and glucose cotransporters into the cells could mainly be responsible for creating hyperglycemic osmotic swelling; absence of AQP5 in fiber cells appears to cause lack of required water efflux, challenging cell volume regulation and adding to osmotic swelling. This study reveals that AQP5 could play a critical role in lens microcirculation for maintaining transparency and homeostasis, especially by providing protection under stressful conditions. To the best of our knowledge, this is the first report providing evidence that AQP5 facilitates maintenance of lens transparency and homeostasis by regulating osmotic swelling caused by glucose transporters and cotransporters under hyperglycemic stressful conditions.
Collapse
|
14
|
Sands JM. Urine concentrating and diluting ability during aging. J Gerontol A Biol Sci Med Sci 2012; 67:1352-7. [PMID: 22588950 PMCID: PMC3670161 DOI: 10.1093/gerona/gls128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/06/2012] [Indexed: 11/13/2022] Open
Abstract
Urine concentrating ability is reduced during normal aging in people and rats. The abundance of many of the key transport proteins that contribute to urine concentrating ability is reduced in the kidney medulla of aged rats. The reductions in water, sodium, and urea transport protein abundances, and their reduced response to water restriction, contribute to the reduced ability of aged rats to concentrate their urine and conserve water. If similar mechanisms occur in human kidneys, it would provide a molecular explanation for the reduced urine concentrating ability in aging and may provide opportunities for novel therapeutic approaches to improve urine concentrating ability and/or nocturnal polyuria.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, WMRB Room 338, NE, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflugers Arch 2012; 464:561-72. [PMID: 23007461 PMCID: PMC3514661 DOI: 10.1007/s00424-012-1157-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
In the late 1980s, urea permeability measurements produced values that could not be explained by paracellular transport or lipid phase diffusion. The existence of urea transport proteins were thus proposed and less than a decade later, the first urea transporter was cloned. The family of urea transporters has two major subgroups, designated SLC14A1 (or UT-B) and Slc14A2 (or UT-A). UT-B and UT-A gene products are glycoproteins located in various extra-renal tissues however, a majority of the resulting isoforms are found in the kidney. The UT-B (Slc14A1) urea transporter was originally isolated from erythrocytes and two isoforms have been reported. In kidney, UT-B is located primarily in the descending vasa recta. The UT-A (Slc14A2) urea transporter yields six distinct isoforms, of which three are found chiefly in the kidney medulla. UT-A1 and UT-A3 are found in the inner medullary collecting duct (IMCD), while UT-A2 is located in the thin descending limb. These transporters are crucial to the kidney's ability to concentrate urine. The regulation of urea transporter activity in the IMCD involves acute modification through phosphorylation and subsequent movement to the plasma membrane. UT-A1 and UT-A3 accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation of the urea transporters in the IMCD involves altering protein abundance in response to changes in hydration status, low protein diets, or adrenal steroids. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new genetically engineered mouse models are being developed to study these transporters.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Taş U, Caylı S, Inanır A, Ozyurt B, Ocaklı S, Karaca Zİ, Sarsılmaz M. Aquaporin-1 and aquaporin-3 expressions in the intervertebral disc of rats with aging. Balkan Med J 2012; 29:349-53. [PMID: 25207032 DOI: 10.5152/balkanmedj.2012.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/18/2012] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The intervertebral disc (IVD) undergoes biochemical and morphologic degenerative changes during the process of aging. Aquaporins (AQPs) are a family of water channel proteins that facilitate water and small solute movement in tissues and may have a potential role in the aging degeneration of IVDs. One of the important problems in understanding disc degeneration is to find cellular molecules which contribute to the pathogenesis of IVDs. XThe aim of this study was to demonstrate the expression of aquaporin 1 and 3 in nucleus pulposus (NP), annulus fibrosus (AF) cells of rat lumbar intervertebral discs from both young and aged animals using immunohistochemistry. MATERIAL AND METHODS Twenty Wistar-albino rats were included in the study. The rats were separated into two groups: 2-month-old rats (n=10) as the young group, 18-month-old rats (n=10) as the old group. The intervertebral disc tissues obtained from the lumbar spine (L1-L4, 4 discs) were used for immunohistochemical staining of AQP-1 and 3. RESULTS This study demonstrated that AQP-1 and AQP-3 immunoreactivity significantly decreased in NP and AF of aged rats compared to the young rats. CONCLUSION We suggest that AQP-1 and 3 may contribute to the age related degeneration of the intervertebral disc.
Collapse
Affiliation(s)
- Ufuk Taş
- Department of Anatomy, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Sevil Caylı
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Ahmet Inanır
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Birsen Ozyurt
- Department of Anatomy, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Seda Ocaklı
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Zafer İsmail Karaca
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Mustafa Sarsılmaz
- Department of Anatomy, Faculty of Medicine, Şifa University, Izmir, Turkey
| |
Collapse
|
17
|
Cabral PD, Herrera M. Membrane-associated aquaporin-1 facilitates osmotically driven water flux across the basolateral membrane of the thick ascending limb. Am J Physiol Renal Physiol 2012; 303:F621-9. [PMID: 22674028 PMCID: PMC3468494 DOI: 10.1152/ajprenal.00268.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb of the loop of Henle (TAL) reabsorbs ∼30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ∼50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ∼23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation.
Collapse
Affiliation(s)
- Pablo D Cabral
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan, USA
| | | |
Collapse
|
18
|
The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice. Life Sci 2010; 87:475-80. [DOI: 10.1016/j.lfs.2010.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022]
|
19
|
Schlanger LE, Bailey JL, Sands JM. Electrolytes in the aging. Adv Chronic Kidney Dis 2010; 17:308-19. [PMID: 20610358 PMCID: PMC2901254 DOI: 10.1053/j.ackd.2010.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/24/2010] [Accepted: 03/28/2010] [Indexed: 01/28/2023]
Abstract
The elderly population in the United States continues to grow and is expected to double by 2050. With aging, there are degenerative changes in many organs and the kidney is no exception. After 40 years of age, there is an increase in cortical glomerulosclerosis and a decline in both glomerular filtration rate and renal plasma flow. These changes may be associated with an inability to excrete a concentrated or a dilute urine, ammonium, sodium, or potassium. Hypernatremia and hyponatremia are the most common electrolyte abnormalities found in the elderly and both are associated with a high mortality. Under normal conditions, the elderly are able to maintain water and electrolyte balance, but this may be jeopardized by an illness, a decline in cognitive ability, and with certain medications. Therefore, it is important to be aware of the potential electrolyte abnormalities in the elderly that can arise under these various conditions to prevent adverse outcomes.
Collapse
Affiliation(s)
- Lynn E. Schlanger
- Assistant Professor of Medicine, Emory University/VAMC at Atlanta, Address 1670 Clairmont Road, Decatur, GA 30033, Telephone: 404-321-6111 ext 7070, Fax: 404-235-3049
| | - James Lynch Bailey
- Professor of Medicine, Director of the Renal Fellowship Program, Emory University, Telephone: 404-727-9215, Fax: 404-72703425
| | - Jeff M. Sands
- Juha P. Kokko Professor of Medicine and Physiology, Director, Renal Division, Executive Vice-Chair, Department of Medicine, Associate Dean for Clinical and Translational Research, Telephone: 404-727-2525, Fax: 404-727-3425
| |
Collapse
|
20
|
Abstract
Aged people and rats have a reduced ability to maximally concentrate their urine. Many of the key transport proteins that contribute to urine concentrating ability are reduced in the medulla of aged rats. The reductions in the abundances of water, sodium, and urea transport proteins, and their reduced response to water restriction, contributes to the reduced ability of aged rats to concentrate their urine and conserve water. If similar mechanisms occur in human kidneys, it would provide a molecular explanation for the reduced concentrating ability in aging and may provide opportunities for novel therapeutic approaches to improve urine concentrating ability.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Hasler U, Leroy V, Martin PY, Féraille E. Aquaporin-2 abundance in the renal collecting duct: new insights from cultured cell models. Am J Physiol Renal Physiol 2009; 297:F10-8. [DOI: 10.1152/ajprenal.00053.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The renal cortico-papillary osmotic gradient is generated by sodium reabsorption in the thick ascending limb. The antidiuretic hormone arginine vasopressin (AVP) increases collecting duct water permeability by enhancing aquaporin-2 (AQP2) water channel insertion in the apical membrane of principal cells, allowing water to passively flow along the osmotic gradient from the tubule lumen to the interstitium. In addition to short-term AQP2 redistribution between intracellular compartments and the cell surface, AQP2 whole cell abundance is tightly regulated. AVP is a major transcriptional activator of the AQP2 gene, and stimulation of insulin- and calcium-sensing receptors respectively potentiate and reduce its action. Extracellular tonicity is another key factor that determines the levels of AQP2 abundance. Its effect is dependent on activation of the tonicity-responsive enhancer binding protein that reinforces AVP-induced AQP2 transcriptional activation. Conversely, activation of the NF-κB transcriptional factor by proinflammatory factors reduces AQP2 gene transcription. Aldosterone additionally regulates AQP2 whole cell abundance by simultaneously reducing AQP2 gene transcription and stimulating AQP2 mRNA translation. These examples illustrate how cross talk between various stimuli regulates AQP2 abundance in collecting duct principal cells and consequently contributes to maintenance of body water homeostasis.
Collapse
|
22
|
Hasler U. Controlled aquaporin-2 expression in the hypertonic environment. Am J Physiol Cell Physiol 2009; 296:C641-53. [PMID: 19211910 DOI: 10.1152/ajpcell.00655.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The corticomedullary osmolality gradient is the driving force for water reabsorption occurring in the kidney. In the collecting duct, this gradient allows luminal water to move across aquaporin (AQP) water channels, thereby increasing urine concentration. However, this same gradient exposes renal cells to great osmotic challenges. These cells must constantly adapt to fluctuations of environmental osmolality that challenge cell volume and incite functional change. This implies profound alterations of cell phenotype regarding water permeability. AQP2 is an essential component of the urine concentration mechanism whose controlled expression dictates apical water permeability of collecting duct principal cells. This review focuses on changes of AQP2 abundance and trafficking in hypertonicity-challenged cells. Intracellular mechanisms governing these events are discussed and the biological relevance of altered AQP2 expression by hypertonicity is outlined.
Collapse
Affiliation(s)
- Udo Hasler
- Service de Néphrologie, Fondation pour Recherches Médicales, 64 Ave. de la Roseraie, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
23
|
Hasler U, Nunes P, Bouley R, Lu HAJ, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem 2008; 283:26643-61. [PMID: 18664568 DOI: 10.1074/jbc.m801071200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.
Collapse
Affiliation(s)
- Udo Hasler
- Massachusetts General Hospital Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Arreche N, Fellet A, López M, López-Costa J, Arranz C, Balaszczuk AM. Hypovolemic state: involvement of nitric oxide in the aged related alterations of aquaporins-2 abundance in rat kidney. Vascul Pharmacol 2008; 49:19-25. [PMID: 18502184 DOI: 10.1016/j.vph.2008.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/18/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
AIM To examine the effect of nitric oxide (NO) on the expression and/or localization of inner medulla collecting duct aquaporin-2 water channel (AQP2) in young and adult hemorrhaged anesthetized rats. METHODS Rats of 2 (young) and 12 mo (adult) old (n=15) were divided into: Sham animals with and without NG-nitro-l-arginine methyl ester (L-NAME) treatment (S L-NAME and S); hemorrhaged animals (20% blood loss) with and without L-NAME (H L-NAME and H). Mean arterial pressure (MAP) was continuously monitored and AQP2 expression and inmunolocalization were evaluated at 120 min after bleeding. RESULTS L-NAME blunted the hypotension induced by hemorrhage at 120 min in young (106+/-2 mm Hg) and adult (103+/-4 mm Hg) rats. AQP2 expression increased after bleeding in young (from 22 to 50 densitometric units) and adult rats (from 15 to 30 densitometric units). Pretreatment with L-NAME enhanced this effect, being this rise lower in adult than young animals (young: 318%, adult: 233%). Electron microscopy showed that AQP2 labeling increased after withdrawal, being the number of gold particles smaller in adult than young animals in the inner medulla. L-NAME enhanced this effect. CONCLUSION NOS activity decreases AQP2 expression/traffick in the inner collecting duct principal cells in response to hemorrhage and this effect is lower with aging.
Collapse
Affiliation(s)
- Noelia Arreche
- Department of Physiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Combet S, Gouraud S, Gobin R, Berthonaud V, Geelen G, Corman B, Verbavatz JM. Aquaporin-2 downregulation in kidney medulla of aging rats is posttranscriptional and is abolished by water deprivation. Am J Physiol Renal Physiol 2008; 294:F1408-14. [PMID: 18367658 DOI: 10.1152/ajprenal.00437.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging kidney is associated in humans and rodents with polyuria and reduced urine concentrating ability. In senescent female WAG/Rij rats, this defect is independent of arginine-vasopressin (AVP)/V(2) receptor/cAMP pathway. It has been attributed to underexpression and mistargeting of aquaporin-2 (AQP2) water channel in the inner medullary collecting duct (IMCD). We showed previously that dDAVP administration could partially correct this defect. Since AQP2 can also be regulated by AVP-independent pathways in water deprivation (WD), we investigated AQP2 and phosphorylated AQP2 (p-AQP2) regulation in thirsted adult (10 mo old) and senescent (30 mo old) female WAG/Rij rats. Following 2-day WD, urine flow rate decreased and urine osmolality increased in both groups. However, in agreement with significantly lower cortico-papillary osmotic gradient with aging, urine osmolality remained lower in senescent animals. WD induced sixfold increase of plasma AVP in all animals which, interestingly, did not result in higher papillary cAMP level. Following WD, AQP2 and p-AQP2 expression increased hugely in 10- and 30-mo-old rats and their mistargeting in old animals was corrected. Moreover, the age-related difference in AQP2 regulation was abolished after WD. To further investigate the mechanism of AQP2 underexpression with aging, AQP2 mRNA was quantified by real-time RT-PCR. In the outer medulla, preservation of AQP2 protein expression was achieved through increased AQP2 mRNA level in senescent rats. In the IMCD, no change in AQP2 mRNA was detected with aging but AQP2 protein expression was markedly lower in 30-mo-old animals. In conclusion, there is a posttranscriptional downregulation of AQP2 with aging, which is abolished by WD.
Collapse
Affiliation(s)
- S Combet
- CEA, Institut de Biologie et Technologies de Saclay and CNRS URA 2096, Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang W, Li C, Summer SN, Falk S, Schrier RW. Polyuria of thyrotoxicosis: downregulation of aquaporin water channels and increased solute excretion. Kidney Int 2007; 72:1088-94. [PMID: 17700641 DOI: 10.1038/sj.ki.5002475] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyrotoxicosis is a common disorder causing cardiovascular and renal irregularities. In this study, thyrotoxicosis was produced in rats by 14 days of daily thyroxine injection. This was associated with an increase in cardiac index, mean arterial pressure, and renal blood flow compared with euthyroid controls. Food and water intake along with urine output were significantly increased in the thyrotoxic rats compared with control animals associated with a significant increase in solute excretion. Polyuria and increased solute excretion still occurred even when food and water intake was equivalent. These renal responses were associated with significant decreases in AQP1 and AQP2 water channel expression in both the ad lib and paired intake studies in the cortex and inner medulla. The downregulation of AQP2 protein occurred in spite of equivalent plasma arginine vasopressin (AVP) in the ad lib and increased AVP in the paired feeding studies. Solute-free water reabsorption was greater in both the ad lib and paired thyrotoxic than euthyroid rats and was associated with increased Na-K-2Cl cotransporter expression. We propose that the AVP-independent downregulation of AQP2, the observed increase in renal arterial pressure, and decrease in filtration fraction contribute to polyuria the increased solute excretion in spite of enhanced ion transporters in thyrotoxicosis.
Collapse
Affiliation(s)
- W Wang
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Fred G Silva
- The United States and Canadian Academy of Pathology and the Medical College of Georgia, Emory University, 3643 Walton Way Extension, Building 6, Augusta, GA 30909, USA.
| |
Collapse
|
28
|
Hasler U, Jeon US, Kim JA, Mordasini D, Kwon HM, Féraille E, Martin PY. Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol 2006; 17:1521-31. [PMID: 16641150 DOI: 10.1681/asn.2005121317] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP) plays a key role in protecting renal cells from hypertonic stress by stimulating transcription of specific genes. Under hypertonic conditions, TonEBP activity is enhanced via increased nuclear translocation, transactivation, and abundance. It was reported previously that hypertonicity exerted a dual, time-dependent effect on vasopressin-inducible aquaporin-2 (AQP2) expression in immortalized mouse collecting duct principal cells (mpkCCDcl4). Whereas AQP2 abundance decreased after 3 h of hyperosmotic challenge, it increased after 24 h of hypertonic challenge. This study investigated the role that TonEBP may play in these events by subjecting mpkCCDcl4 cells to 3 or 24 h of hypertonic challenge. Hypertonic challenge increased TonEBP mRNA and protein content and enhanced TonEBP activity as illustrated by both increased TonEBP-dependent luciferase activity and mRNA expression of several genes that are targeted by TonEBP. Irrespective of the absence or presence of vasopressin, decreased TonEBP activity in cells that were transfected with either TonEBP small interfering RNA or an inhibitory form of TonEBP strongly reduced AQP2 mRNA and protein content under iso-osmotic conditions and blunted the increase of AQP2 abundance that was induced after 24 h of hypertonic challenge. Conversely, decreased TonEBP activity did not significantly alter reduced expression of AQP2 mRNA that was induced by 3 h of hypertonic challenge. Mutation of a TonE enhancer element located 489 bp upstream of the AQP2 transcriptional start site abolished the hypertonicity-induced increase of luciferase activity in cells that expressed AQP2 promoter-luciferase plasmid constructs, indicating that TonEBP influences AQP2 transcriptional activity at least partially by acting directly on the AQP2 promoter. These findings demonstrate that in collecting duct principal cells, TonEBP plays a central role in regulating AQP2 expression by enhancing AQP2 gene transcription.
Collapse
Affiliation(s)
- Udo Hasler
- Service de Néphrologie, Fondation pour Recherches Médicales, 64 Avenue de la Roseraie, GE 1211, Genève 4, Switzerland, and Department of Medicine, University of Maryland, Baltimore, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tian Y, Riazi S, Khan O, Klein JD, Sugimura Y, Verbalis JG, Ecelbarger CA. Renal ENaC subunit, Na-K-2Cl and Na-Cl cotransporter abundances in aged, water-restricted F344 x Brown Norway rats. Kidney Int 2006; 69:304-12. [PMID: 16408120 DOI: 10.1038/sj.ki.5000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renal sodium reabsorption is a key determinant of final urine concentration. Our aim was to determine whether differences existed between aged and young rats in their response to water restriction with regard to the regulation of abundance of any of the major distal renal sodium transporter proteins. Male Fisher 344 x Brown Norway (F344 x BN) rats of 3-, 10-, 24-, or 31 months of age (3M, 10M, 24M, or 31M) were either water restricted (WR) for 5 days or control (ad libitum water). Major renal sodium transporters and channel subunits were evaluated by immunoblotting and immunohistochemistry. Age did not significantly affect plasma arginine vasopressin or aldosterone levels, but renin activity was only 8% in 31M-WR rats relative to 3M-WR (P<0.05). Extreme aging (31M) led to decreased outer medullary abundance of the bumetanide-sensitive Na-K-2Cl cotransporter and decreased cortical abundance of the beta- and gamma-subunits (70-kDa band) of the epithelial sodium channel (ENaC) (P<0.05). Water restriction significantly (P<0.05) increased the abundance of Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC) across ages. However, these increases were significantly blunted as rats aged. Mean band densities were increased in WR rats (relative to age controls) by 54 and 106% at 3M, but only 25 and 29% at 24M and 0 and 6% at 31M for NKCC2 and NCC, respectively. Aged F344 x BN rats have reduced basal distal tubular renal sodium transporter abundances and blunted upregulation during water restriction, which may contribute to decreased urinary concentrating capacity.
Collapse
Affiliation(s)
- Y Tian
- Department of Medicine, Division of Endocrinology and Metabolism, Georgetown University, Washington, District of Columbia 20057-1412, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Jeff M Sands
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
31
|
Leung JC, Chan LY, Tsang AW, Tang SC, Lai KN. Differential expression of aquaporins in the kidneys of streptozotocin-induced diabetic mice. Nephrology (Carlton) 2005; 10:63-72. [PMID: 15705184 DOI: 10.1111/j.1440-1797.2005.00359.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Aquaporins (AQPs) are members of the water channel family and are important in renal physiology as it affects urinary concentration. The downregulation of aquaporins is often observed in polyuria associated with acquired nephrogenic diabetes insipidus. In this study, we examined the expression of AQP1, AQP2, AQP3 and AQP4 in streptozotocin (STZ)-induced diabetic mice. RESULTS By semiquantitative reverse transcription-polymerase chain reaction, we detected no change in the gene expression of AQP1 or AQP4 in whole kidney among STZ-induced diabetic mice (STZ mice) and sham (control group that received citrate buffer injection only). In contrast, we found less AQP2 or AQP3 mRNA expression in the whole kidney from STZ mice. Immunoblotting studies confirmed no difference in AQP1 or AQP4 protein expression of whole kidney between STZ mice and sham. However, there was less AQP2 or AQP3 protein expression in the whole kidney from STZ mice as compared to sham. By immunochemical staining, the reduction of AQP2 protein was localized to the principle cells of the collecting ducts. The expression of cortical AQP3 (especially the outer cortex, the S1 and S2 segments of the proximal tubules) was downregulated in STZ mice whereas the expression of AQP3 protein in medullary collecting ducts was similar to that of sham. CONCLUSION Our results reveal that the water transport in urinary concentration involves the downregulation of AQP2 and AQP3 expression in STZ mice.
Collapse
Affiliation(s)
- Joseph Ck Leung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
32
|
Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Féraille E. Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol 2005; 16:1571-82. [PMID: 15843469 DOI: 10.1681/asn.2004110930] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The driving force for renal water reabsorption is provided by the osmolarity gradient between the interstitium and the tubular lumen, which is subject to rapid physiologic variations as a consequence of water intake fluctuations. The effect of increased extracellular tonicity/osmolarity on vasopressin-inducible aquaporin-2 (AQP2) expression in immortalized mouse collecting duct principal cells (mpkCCD(cl4)) is investigated in this report. Increasing the osmolarity of the medium either by the addition of NaCl, sucrose, or urea first decreased AQP2 expression after 3 h. AQP2 expression then increased in cells exposed to NaCl- or sucrose-supplemented hypertonic medium after longer periods of time (24 h), while urea-supplemented hyperosmotic medium had no effect. Altered AQP2 expression induced by both short-term (3 h) and long-term (24 h) exposure of cells to hypertonicity arose from changes in AQP2 gene transcription because hypertonicity did not modify AQP2 mRNA stability nor AQP2 protein turnover. On the long-term, vasopressin (AVP) and hypertonicity increased AQP2 expression in a synergistic manner. Hypertonicity altered neither the dose-responsiveness of AVP-induced AQP2 expression nor cAMP-protein kinase (PKA) activity, while PKA inhibition did not reduce the extent of the hypertonicity-induced increase of AQP2 expression. These results indicate that in collecting duct principal cells: (1) a short-term increase of extracellular osmolarity decreases AQP2 expression through inhibition of AQP2 gene transcription; (2) a long-term increase of extracellular tonicity, but not osmolarity, enhances AQP2 expression via stimulation of AQP2 gene transcription; and (3) long-term hypertonicity and PKA increases AQP2 expression through synergistic but independent mechanisms.
Collapse
Affiliation(s)
- Udo Hasler
- Division de Nephrologye, Fondation pour Recherches Médicales, 64 Avenue de la Roseraie, Genève 4, Switzerland, CH-1211
| | | | | | | | | |
Collapse
|
33
|
Masseguin C, LePanse S, Corman B, Verbavatz JM, Gabrion J. Aging affects choroidal proteins involved in CSF production in Sprague-Dawley rats. Neurobiol Aging 2005; 26:917-27. [PMID: 15718051 DOI: 10.1016/j.neurobiolaging.2004.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2003] [Revised: 06/11/2004] [Accepted: 07/30/2004] [Indexed: 11/23/2022]
Abstract
Aging is currently associated with progressive declines of cerebral functions. From these, a decreased resistance to dehydration suggested alteration in choroidal control of brain homeostasis and reduced cerebrospinal fluid (CSF) production in old subjects. In the present study, choroid plexuses of 20-month old Sprague-Dawley rats were compared with those of 3- and 10-month old rats. Using ultrastructure analysis and immunodetection of ezrin, a protein associating cytoskeleton to membranes, we showed that progressive loss of microvilli and strong decrease in apical ezrin are evident in 20-month old rats. Using immunolabeling and confocal microscopy, we found reduction in expression of two choroidal proteins, carbonic anhydrase II and aquaporin 1, involved in CSF secretion. In addition, we confirmed previous studies indicating that choroidal Na,K-ATPase decreased with age. In situ hybridization analyses showed that mRNA levels for Na,K-ATPase and aquaporin 1 were significantly lowered in choroid plexus of old rats. These findings are consistent with a reduced secretory activity in choroid plexus and suggest that massive disorders could affect choroidal CSF production in aged rats.
Collapse
Affiliation(s)
- C Masseguin
- INSERM U26, Hôpital Fernand-Widal, 200, rue du Faubourg Saint-Denis, F-75475 Paris Cédex 10, France
| | | | | | | | | |
Collapse
|
34
|
Tian Y, Serino R, Verbalis JG. Downregulation of renal vasopressin V2 receptor and aquaporin-2 expression parallels age-associated defects in urine concentration. Am J Physiol Renal Physiol 2004; 287:F797-805. [PMID: 15213068 DOI: 10.1152/ajprenal.00403.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal concentrating ability is known to be impaired with aging. The antidiuretic hormone AVP plays an important role in renal water excretion by regulating the membrane insertion and abundance of the water channel aquaporin-2 (AQP2); this effect is primarily mediated via the V2 subtype of the AVP receptor (V2R). This study evaluated the hypothesis that decreased renal sensitivity to AVP, with subsequent altered renal AQP2 expression, contributes to the reduced urinary concentrating ability with aging. Our results show that under baseline conditions, urine osmolality is significantly lower in aged Fischer 344 and Brown-Norway F1 hybrid (F344BN) rats despite equivalent plasma AVP concentrations as in young rats. Levels of kidney V2R mRNA expression and AQP2 abundances were also significantly decreased in aged F344BN rats, as was AQP2 immunostaining in collecting duct cells. In response to moderate water restriction, urine osmolality increased by significantly lesser amounts in aged F344BN rats compared with young rats despite similar increases in plasma AVP levels. Moderate water restriction induced equivalent relative increases in renal AQP2 abundances in all age groups but resulted in significantly lower abundances in total kidney AQP2 protein in aged compared with young F344BN rats. These results therefore demonstrate a functional impairment of renal concentrating ability in aged F344BN rats that is not due to impaired secretion of AVP but rather appears to be related to impaired responsiveness of the kidney to AVP that is secondary, at least in part, to a downregulation of renal V2R expression and AQP2 abundance.
Collapse
Affiliation(s)
- Ying Tian
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | | | | |
Collapse
|
35
|
Cheval L, Duong Van Huyen JP, Bruneval P, Verbavatz JM, Elalouf JM, Doucet A. Plasticity of mouse renal collecting duct in response to potassium depletion. Physiol Genomics 2004; 19:61-73. [PMID: 15238618 DOI: 10.1152/physiolgenomics.00055.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity of mouse renal collecting duct in response to potassium depletion. —Renal collecting ducts are the main sites for regulation of whole body potassium balance. Changes in dietary intake of potassium induce pleiotropic adaptations of collecting duct cells, which include alterations of ion and water transport properties along with an hypertrophic response. To study the pleiotropic adaptation of the outer medullary collecting duct (OMCD) to dietary potassium depletion, we combined functional studies of renal function (ion, water, and acid/base handling), analysis of OMCD hypertrophy (electron microscopy) and hyperplasia (PCNA labeling), and large scale analysis of gene expression (transcriptome analysis). The transcriptome of OMCD was compared in mice fed either a normal or a potassium-depleted diet for 3 days using serial analysis of gene expression (SAGE) adapted for downsized extracts. SAGE is based on the generation of transcript-specific tag libraries. Approximately 20,000 tags corresponding to 10,000 different molecular species were sequenced in each library. Among the 186 tags differentially expressed ( P < 0.05) between the two libraries, 120 were overexpressed and 66 were downregulated. The SAGE expression profile obtained in the control library was representative of different functional classes of proteins and of the two cell types (principal and α-intercalated cells) constituting the OMCD. Combined with gene expression analysis, results of functional and morphological studies allowed us to identify candidate genes for distinct physiological processes modified by potassium depletion: sodium, potassium, and water handling, hyperplasia and hypertrophy. Finally, comparison of mouse and human OMCD transcriptomes allowed us to address the question of the relevance of the mouse as a model for human physiology and pathophysiology.
Collapse
MESH Headings
- Acid-Base Equilibrium/genetics
- Acid-Base Equilibrium/physiology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Animals
- Body Weight
- Gene Expression Profiling
- Humans
- Hyperplasia/genetics
- Hyperplasia/pathology
- Hypertrophy/genetics
- Hypertrophy/pathology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/pathology
- Kidney Tubules, Collecting/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Organ Size
- Potassium Deficiency/blood
- Potassium Deficiency/genetics
- Potassium Deficiency/physiopathology
- Potassium Deficiency/urine
- Potassium, Dietary/administration & dosage
- Potassium, Dietary/pharmacology
- Proliferating Cell Nuclear Antigen/analysis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Reproducibility of Results
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Lydie Cheval
- Laboratoire de Physiologie et Génomique Rénales, Unité Mixte de Recherche Centre National de la Recherche Scientifique/UPMC 7134, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Urea is transported across the kidney inner medullary collecting duct by urea-transporter proteins. Two urea-transporter genes have been cloned from humans and rodents: the UT-A (Slc14A2) gene encodes five protein and eight cDNA isoforms; the UT-B (Slc14A1) gene encodes a single isoform. In the past year, significant progress has been made in understanding the regulation of urea-transporter protein abundance in kidney, studies of genetically engineered mice that lack a urea transporter, identification of urea transporters outside of the kidney, cloning of urea transporters in nonmammalian species, and active urea transport in microorganisms. RECENT FINDINGS UT-A1 protein abundance is increased by 12 days of vasopressin, but not by 5 days. Analysis of the UT-A1 promoter suggests that vasopressin increases UT-A1 indirectly following a direct effect to increase the transcription of other genes, such as the Na(+)-K(+)-2Cl- cotransporter NKCC2/BSC1 and the aquaporin (AQP) 2 water channel, that begin to increase inner medullary osmolality. UT-A1 protein abundance is also increased by adrenalectomy, and is decreased by glucocorticoids or mineralocorticoids. However, each hormone works through its own receptor. Knockout mice that lack UT-A1 and UT-A3, or lack UT-B, have a urine-concentrating defect and a decrease in inner medullary interstitial urea content. SUMMARY Urea transporters play a critical role in the urine-concentrating mechanism. Their abundance is regulated by vasopressin, glucocorticoids, and mineralocorticoids. These regulatory mechanisms may be important in disease states such as diabetes because changes in urea-transporter abundance in diabetic rats require glucocorticoids and vasopressin.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Hardin JA, Wallace LE, Wong JFK, O'Loughlin EV, Urbanski SJ, Gall DG, MacNaughton WK, Beck PL. Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn's disease and infectious colitis. Cell Tissue Res 2004; 318:313-23. [PMID: 15338270 DOI: 10.1007/s00441-004-0932-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2003] [Accepted: 05/26/2004] [Indexed: 12/13/2022]
Abstract
Colitis is associated with alterations in electrolyte and water transport. These changes give rise to some of the symptoms experienced by patients with colitis. Alterations in fluid flux may also contribute to increased susceptibility to mucosal injury. Recently, endogenous water channel proteins (aquaporins; AQPs), have been identified in colonic tissue. The expression of AQP4, AQP7 and AQP8 was examined, via reverse transcription/polymerase chain reaction, Western blotting and immunohistochemistry, in a murine model of colitis and in patients with inflammatory bowel disease or infectious colitis. Colitis was induced in C57BL/6 mice by the addition of 2.5% dextran sodium sulphate (DSS) to their drinking water. AQP expression in these mice was assessed following 12 h to 7 days of DSS exposure and during the recovery phase from 1 to 15 days following cessation of DSS exposure. Colonic water transport was measured after 1 and 3 days of DSS and following 7 days of recovery. The expression of AQP4 and AQP8 mRNA was significantly decreased after 12-24 h of DSS exposure and remained depressed throughout the treatment period. Expression of AQP7 was more variable. Protein expression followed a similar pattern to that observed for AQP mRNA. Significant alteration in colonic fluid secretion was correlated with reduced expression of AQP isoforms. Significantly, patients with active ulcerative colonic, Crohn's colitis or infectious colitis had similar dramatic reductions in AQP expression that appeared to be correlated with disease activity. Thus, colonic injury in both mouse and man is associated with a downregulation in AQP expression.
Collapse
Affiliation(s)
- J A Hardin
- The Gastrointestinal Research Unit, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Trinh-Trang-Tan MM, Geelen G, Teillet L, Corman B. Urea transporter expression in aging kidney and brain during dehydration. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1355-65. [PMID: 12933359 DOI: 10.1152/ajpregu.00207.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.
Collapse
Affiliation(s)
- M-M Trinh-Trang-Tan
- Institut National de la Santé et de la Recherche Médicale U76, Institut National de Transfusion Sanguine, 6, rue Alexandre Cabanel, F-75015 Paris, France.
| | | | | | | |
Collapse
|
39
|
Amlal H, Wilke C. Resistance of mTAL Na+-dependent transporters and collecting duct aquaporins to dehydration in 7-month-old rats. Kidney Int 2003; 64:544-54. [PMID: 12846749 DOI: 10.1046/j.1523-1755.2003.00110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aging is associated with a defect in urinary concentration in both human and experimental animals. The purpose of these studies was to examine the urinary concentrating ability, the expression of kidney water channels [aquaporins (AQP1 to AQP3)], and medullary thick ascending limb (mTAL) Na+-dependent transporters in old but not senescent versus young animals in response to water deprivation. METHODS Two-month-old and 7-month-old rats were placed in metabolic cages and deprived of water for 72 hours. Kidney tissues were isolated and examined for the expression of AQP1 to AQP3 and mTAL, peptide-derived polyclonal antibody specific to kidney apical Na+-K+-2 Cl- cotransporter (BSC1), Na+/H+ exchanger isoform 3 (NHE3), and Na+ pump using semiquantitative immunoblotting and Northern hybridization. RESULTS After 72 hours of water deprivation, urine osmolality increased from 1269 to 3830 mOsm/kg H2O in 2-month-old rats, but only from 1027 to 2588 mOsm/kg H2O in 7-month-old rats. In response to water deprivation, AQP2 and AQP3 expression increased significantly in the cortex and medulla of 2-month-old rats but remained unchanged in the medulla or slightly increase in the cortex of 7-month-old animals. AQP1 expression was not altered by dehydration in both groups. The protein abundance of mTAL BSC1, NHE3, and Na+ pump increased significantly in young but remained unchanged in 7-month-old rats subjected to water deprivation. CONCLUSION Age-related decrease in urinary concentrating ability is an early event, developed before the onset of senescence. This defect results from reduced responsiveness of cortical AQP2 and AQP3 and a blunted response of medullary AQP2 and mTAL BSC1, NHE3, and Na+ pump to dehydration in aging kidneys.
Collapse
Affiliation(s)
- Hassane Amlal
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA.
| | | |
Collapse
|
40
|
Sands JM. Urine-concentrating ability in the aging kidney. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE15. [PMID: 12844542 DOI: 10.1126/sageke.2003.24.pe15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Urine-concentrating ability is decreased in the aging mammalian kidney. Studies have revealed various changes in kidney function that occur with aging and may explain the reduced ability to concentrate urine. Recently, the genes encoding many of the water- and solute-transport proteins and the vasopressin receptor, all of which are involved in urine concentration, have been cloned. Therefore, the molecular mechanisms that cause the reduction in urine-concentrating ability with aging can now be deciphered. In this Perspective, I discuss recent experiments designed to characterize this change in kidney function in aging mammals.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Storm R, Klussmann E, Geelhaar A, Rosenthal W, Maric K. Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells. Am J Physiol Renal Physiol 2003; 284:F189-98. [PMID: 12388395 DOI: 10.1152/ajprenal.00245.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The water permeability of the renal collecting duct is regulated by the insertion of aquaporin-2 (AQP2) into the apical plasma membrane of epithelial (principal) cells. Using primary cultured epithelial cells from the inner medulla of rat kidney (IMCD cells), we show that osmolality and solute composition are potent regulators of AQP2 mRNA and protein synthesis, as well as the classical cAMP-dependent pathway, but do not affect the arginine vasopressin-induced AQP2 shuttle. In the presence of the cAMP analog dibutyryl cAMP (DBcAMP, 500 microM), NaCl and sorbitol, but not urea, evoked a robust increase of AQP2 expression in IMCD cells, with NaCl being far more potent than sorbitol. cAMP-responsive element-binding protein phosphorylation increased with DBcAMP concentrations but was not altered by changes in osmolality. In the rat and human AQP2 promoter, we identified a putative tonicity-responsive element. We conclude that, in addition to the arginine vasopressin/cAMP-signaling cascade, a further pathway activated by elevated effective osmolality (tonicity) is crucial for the expression of AQP2 in IMCD cells, and we suggest that the effect is mediated via the tonicity-responsive element.
Collapse
Affiliation(s)
- R Storm
- Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Germany.
| | | | | | | | | |
Collapse
|
42
|
Combet S, Geffroy N, Berthonaud V, Dick B, Teillet L, Verbavatz JM, Corman B, Trinh-Trang-Tan MM. Correction of age-related polyuria by dDAVP: molecular analysis of aquaporins and urea transporters. Am J Physiol Renal Physiol 2003; 284:F199-208. [PMID: 12388383 DOI: 10.1152/ajprenal.00167.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Senescent female WAG/Rij rats exhibit polyuria without obvious renal disease or defects in vasopressin plasma level or V(2) receptor mRNA expression. Normalization of urine flow rate by 1-desamino-8-d-arginine vasopressin (dDAVP) was investigated in these animals. Long-term dDAVP infusion into 30-mo-old rats reduced urine flow rate and increased urine osmolality to levels comparable to those in control 10-mo-old rats. The maximal urine osmolality in aging rat kidney was, however, lower than that in adult kidney, despite supramaximal administration of dDAVP. This improvement involved increased inner medullary osmolality and urea sequestration. This may result from upregulation of UT-A1, the vasopressin-regulated urea transporter, in initial inner medullary collecting duct (IMCD), but not in terminal IMCD, where UT-A1 remained low. Expression of UT-A2, which contributes to medullary urea recycling, was greatly increased. Regulation of IMCD aquaporin (AQP)-2 (AQP2) expression by dDAVP differed between adult and senescent rats: the low AQP2 abundance in senescent rats was normalized by dDAVP infusion, which also improved targeting of the channel; in adult rats, AQP2 expression was unaltered, suggesting that IMCD AQP2 expression is not regulated by dDAVP directly. Increased AQP3 expression in senescent rats may also be involved in improved urine-concentrating capacity owing to higher basolateral water and urea reabsorption capacity.
Collapse
Affiliation(s)
- Sophie Combet
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kishore BK, Kran CM, Reif M, Menon AG. Molecular physiology of urinary concentration defect in elderly population. Int Urol Nephrol 2002; 33:235-48. [PMID: 12092636 DOI: 10.1023/a:1015239915543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is estimated that by the year 2050 one in five Americans will be 65 years or older. This mandates the growing need for clinical and basic research in the field of geriatric medicine to understand age-related maladies. The most prominent abnormality in renal function in the aging population is the inability to handle water, frequently resulting in hypo- or hyperosmolar states, and the associated electrolyte imbalances. During the past decade, thanks to the advent of powerful molecular techniques, rapid strides have been made in the approaches employed to understand and dissect the physiology of renal function in general and the urinary concentration mechanism in particular. Using an integrated approach of clinical observations, experimental model systems, molecular analysis, and functional genomics, a more comprehensive picture of the interplay of physiological systems in the genesis of urinary concentration defect in the elderly is beginning to emerge. Much remains to be deciphered regarding the complex interactions between the role of environment, genetics, diet, pharmacological agents and the general effects of aging on kidney function. The emerging importance of socio-economic and quality of life issues surrounding geriatric medicine encourage public and private support and funding for research in the area of age-related diseases, especially as they are related to the kidney.
Collapse
Affiliation(s)
- B K Kishore
- Department of Internal Medicine, University of Cincinnati Medical Center, OH, USA.
| | | | | | | |
Collapse
|
44
|
Audigé A, Dick B, Frey BM, Frey FJ, Corman B, Vogt B. Glucocorticoids and 11 beta-hydroxysteroid dehydrogenase type 2 gene expression in the aging kidney. Eur J Clin Invest 2002; 32:411-20. [PMID: 12059986 DOI: 10.1046/j.1365-2362.2002.01003.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aging is associated with increased concentrations of circulating glucocorticoids, a situation expected to induce a glucocorticoid-mediated mineralocorticoid effect, resulting in sodium retention and hypertension unless counteracting mechanisms are operative. Conversion of glucocorticoids to inert 11 beta-keto compounds by the enzyme 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) is one of these mechanisms. We hypothesized therefore that 11 beta-HSD2 gene expression and/or activity increase with age in male WAG/Rij rats, a strain without increased blood pressure with age or senescence-related obesity or kidney disease. MATERIALS AND METHODS Corticosterone (B) concentrations in plasma and urinary excretion of corticosterone and dehydrocorticosterone (A) tetrahydro metabolites, THB + 5 alpha-THB + THA, were assessed by gas chromatography-mass spectrometry (GC-MS) in 10-month-old-rats (n = 6) and in 30-month-old rats (n = 6). Renal 11 beta-HSD2 messenger ribonucleic acid (mRNA) abundance was measured by real-time quantitative TaqMan polymerase chain reaction and microarray assays. RESULTS Thirty-month-old rats had significantly higher corticosterone concentrations in plasma and increased urinary excretion of corticosterone and dehydrocorticosterone tetrahydro metabolites. Conversion of B to A in kidney microsomes from 30-month-old rats was moderately but not significantly increased compared with 10-month-old rats. The urinary ratios of (THB + 5 alpha-THB)/THA and free B/A and renal 11 beta-HSD2 mRNA abundance were equal in 10- and 30-month-old rats. CONCLUSIONS There is no evidence for an enhanced gene expression or activity of renal 11 beta-HSD2 in these aging rats, suggesting either that endogenous 11 beta-HSD2 is able to cope with the increased corticosterone concentrations characteristic of the aging process or that alternative mechanisms contribute to the maintenance of a normal sodium excretion in these animals.
Collapse
Affiliation(s)
- A Audigé
- Division of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B. Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 2002; 13:836-847. [PMID: 11912242 DOI: 10.1681/asn.v134836] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exact distributions of the different salt transport systems along the human cortical distal nephron are unknown. Immunohistochemistry was performed on serial cryostat sections of healthy parts of tumor nephrectomized human kidneys to study the distributions in the distal convolution of the thiazide-sensitive Na-Cl cotransporter (NCC), the beta subunit of the amiloride-sensitive epithelial Na channel (ENaC), the vasopressin-sensitive water channel aquaporin 2 (AQP2), and aquaporin 3 (AQP3), the H(+) ATPase, the Na-Ca exchanger (NCX), plasma membrane calcium-ATPase, and calbindin-D28k (CaBP). The entire human distal convolution and the cortical collecting duct (CCD) display calbindin-D28k, although in variable amounts. Approximately 30% of the distal convolution profiles reveal NCC, characterizing the distal convoluted tubule. NCC overlaps with ENaC in a short portion at the end of the distal convoluted tubule. ENaC is displayed all along the connecting tubule (70% of the distal convolution) and the CCD. The major part of the connecting tubule and the CCD coexpress aquaporin 2 with ENaC. Intercalated cells, undetected in the first 20% of the distal convolution, were interspersed among the segment-specific cells of the remainder of the distal convolution, and of the CCD. The basolateral calcium extruding proteins, Na-Ca exchanger (NCX), and the plasma membrane Ca(2+)-ATPase were found all along the distal convolution, and, in contrast to other species, along the CCD, although in varying amounts. The knowledge regarding the precise distribution patterns of transport proteins in the human distal nephron and the knowledge regarding the differences from that in laboratory animals may be helpful for diagnostic purposes and may also help refine the therapeutic management of electrolyte disorders.
Collapse
Affiliation(s)
- Helena Lagger Biner
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Marie-Pierre Arpin-Bott
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Johannes Loffing
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Xiaoyan Wang
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Mark Knepper
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Steve C Hebert
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Brigitte Kaissling
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
46
|
Combet S, Teillet L, Geelen G, Pitrat B, Gobin R, Nielsen S, Trinh-Trang-Tan MM, Corman B, Verbavatz JM. Food restriction prevents age-related polyuria by vasopressin-dependent recruitment of aquaporin-2. Am J Physiol Renal Physiol 2001; 281:F1123-31. [PMID: 11704564 DOI: 10.1152/ajprenal.0139.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the prevention of age-related polyuria by chronic food restriction were investigated in female WAG/Rij rats. The decreased osmolality of renal papilla observed in senescent rats was not corrected by food restriction. A reduced urea content in the inner medulla of senescent rats, fed ad libitum or food-restricted, was suggested by the marked decrease in expression of UT-A1 and UT-B1 urea transporters. Aquaporin-2 (AQP2) downregulation in the inner medulla of senescent rats was partially prevented by food restriction. Both AQP2 and the phosphorylated form of AQP2 (p-AQP2), the presence of which was diffuse within the cytoplasm of collecting duct principal cells in normally fed senescent rats, were preferentially targeted at the apical region of the cells in food-restricted senescent animals. Plasma vasopressin (AVP) was similar in 10- and 30-mo-old rats fed ad libitum, but was doubled in food-restricted 30-mo-old rats. This study indicates that 1) kidney aging is associated with a marked decrease in AQP2, UT-A1, and UT-B1 expression in the inner medulla and a reduced papillary osmolality; and 2) the prevention of age-related polyuria by chronic food restriction occurs through an improved recruitment of AQP2 and p-AQP2 to the apical membrane in inner medulla principal cells, permitted by increased plasma AVP concentration.
Collapse
Affiliation(s)
- S Combet
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Downey P, Sapirstein A, O'Leary E, Sun TX, Brown D, Bonventre JV. Renal concentrating defect in mice lacking group IV cytosolic phospholipase A(2). Am J Physiol Renal Physiol 2001; 280:F607-18. [PMID: 11249852 DOI: 10.1152/ajprenal.2001.280.4.f607] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eicosanoids regulate various cellular functions that are important in physiological and pathophysiological processes. Arachidonic acid is released from membranes by phospholipase A(2) (PLA(2)) activity. Activated macrophages derived from mice lacking the 85-kDa group IV cytosolic PLA(2) (cPLA(2)) have a markedly reduced release of prostaglandin E(2) and leukotrienes B(4) and C(4). Under basal conditions and after furosemide, urinary prostaglandin E(2) excretion is reduced in cPLA(2)-knockout (cPLA(2)(-/-)) mice. Serum creatinine, Na(+), K(+), and Ca(2+) concentrations, glomerular filtration rate, and fractional excretion of Na(+) and K(+) are not different in cPLA(2)(-/-) and cPLA(2)(+/+) mice. Maximal urinary concentration is lower in 48-h water-deprived cPLA(2)(-/-) mice compared with cPLA(2)(+/+) animals (1,934 +/- 324 vs. 3,541 +/- 251 mmol/kgH(2)O). Plasma osmolality is higher (337 +/- 5 vs. 319 +/- 3 mmol/kgH(2)O) in cPLA(2)(-/-) mice that lose a greater percentage of their body weight (20 +/- 2 vs. 13 +/- 1%) compared with cPLA(2)(+/+) mice after water deprivation. Vasopressin does not correct the concentrating defect. There is progressive reduction in urinary osmolality with age in cPLA(2)(-/-) mice. Membrane-associated aquaporin-1 (AQP1) expression, identified by immunocytochemical techniques, is reduced markedly in proximal tubules of older cPLA(2)(-/-) animals but is normal in thin descending limbs. However, Western blot analysis of kidney cortical samples revealed an equivalent AQP1 signal intensity in cPLA(2)(+/+) and cPLA(2)(-/-) animals. Young cPLA(2)(-/-) mice have normal proximal tubule AQP1 staining. Collecting duct AQP2, -3, and -4 were normally expressed in the cPLA(2)(-/-) mice. Thus mice lacking cPLA(2) develop an age-related defect in renal concentration that may be related to abnormal trafficking and/or folding of AQP1 in the proximal tubule, implicating cPLA(2) in these processes.
Collapse
Affiliation(s)
- P Downey
- Medical and Anesthesia Services, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nielsen S, Kwon TH, Hager H, Knepper MA, Marples D, Frøkiaer J. Chapter 4 Pathophysiology of renal aquaporins. CURRENT TOPICS IN MEMBRANES 2001. [DOI: 10.1016/s1063-5823(01)51006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|