1
|
Gao Y, Kang K, Luo B, Sun X, Lan F, He J, Wu Y. Graphene oxide and mineralized collagen-functionalized dental implant abutment with effective soft tissue seal and romotely repeatable photodisinfection. Regen Biomater 2022; 9:rbac024. [PMID: 35529047 PMCID: PMC9071057 DOI: 10.1093/rb/rbac024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Grasping the boundary of antibacterial function may be better for the sealing of soft tissue around dental implant abutment. Inspired by ‘overdone is worse than undone’, we prepared a sandwich-structured dental implant coating on the percutaneous part using graphene oxide (GO) wrapped under mineralized collagen. Our unique coating structure ensured the high photothermal conversion capability and good photothermal stability of GO. The prepared coating not only achieved suitable inhibition on colonizing bacteria growth of Streptococcus sanguinis, Fusobacterium nucleatum and Porphyromonas gingivalis but also disrupted the wall/membrane permeability of free bacteria. Further enhancements on the antibacterial property were generally observed through the additional incorporation of dimethylaminododecyl methacrylate. Additionally, the coating with sandwich structure significantly enhanced the adhesion, cytoskeleton organization and proliferation of human gingival fibroblasts, which was effective to improve soft tissue sealing. Furthermore, cell viability was preserved when cells and bacteria were cultivated in the same environment by a coculture assay. This was attributed to the sandwich structure and mineralized collagen as the outmost layer, which would protect tissue cells from photothermal therapy and GO, as well as accelerate the recovery of cell activity. Overall, the coating design would provide a useful alternative method for dental implant abutment surface modification and functionalization.
Collapse
Affiliation(s)
- Yichun Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Shen C, Zhang G, Wang Q, Meng Q. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19789-19797. [PMID: 26280545 DOI: 10.1021/acsami.5b05809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation.
Collapse
Affiliation(s)
- Chong Shen
- Department of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| | - Guoliang Zhang
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology , Hangzhou 310023, China
| | - Qichen Wang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Qin Meng
- Department of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
3
|
Hoppensack A, Kazanecki CC, Colter D, Gosiewska A, Schanz J, Walles H, Schenke-Layland K. A human in vitro model that mimics the renal proximal tubule. Tissue Eng Part C Methods 2014; 20:599-609. [PMID: 24266327 DOI: 10.1089/ten.tec.2013.0446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human in vitro-manufactured tissue and organ models can serve as powerful enabling tools for the exploration of fundamental questions regarding cell, matrix, and developmental biology in addition to the study of drug delivery dynamics and kinetics. To date, the development of a human model of the renal proximal tubule (PT) has been hindered by the lack of an appropriate cell source and scaffolds that allow epithelial monolayer formation and maintenance. Using extracellular matrices or matrix proteins, an in vivo-mimicking environment can be created that allows epithelial cells to exhibit their typical phenotype and functionality. Here, we describe an in vitro-engineered PT model. We isolated highly proliferative cells from cadaveric human kidneys (human kidney-derived cells [hKDCs]), which express markers that are associated with renal progenitor cells. Seeded on small intestinal submucosa (SIS), hKDCs formed a confluent monolayer and displayed the typical phenotype of PT epithelial cells. PT markers, including N-cadherin, were detected throughout the hKDC culture on the SIS, whereas markers of later tubule segments were weak (E-cadherin) or not (aquaporin-2) expressed. Basement membrane and microvilli formation demonstrated a strong polarization. We conclude that the combination of hKDCs and SIS is a suitable cell-scaffold composite to mimic the human PT in vitro.
Collapse
Affiliation(s)
- Anke Hoppensack
- 1 Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Kaneko T, Shimizu A, Mii A, Fujita E, Fujino T, Kunugi S, Du X, Akimoto T, Tsuruoka S, Ohashi R, Masuda Y, Iino Y, Katayama Y, Fukuda Y. Role of matrix metalloproteinase-2 in recovery after tubular damage in acute kidney injury in mice. Nephron Clin Pract 2013; 122:23-35. [PMID: 23548779 DOI: 10.1159/000346569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/11/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Matrix metalloproteinases (MMPs) are zinc endopeptidases that degrade extracellular matrix and are involved in the pathogenesis of ischemic damage in acute kidney injury (AKI). In the present study, we analyzed the role of MMP-2 in the repair process in ischemic AKI. METHODS AKI was induced in MMP-2 wild-type (MMP-2(+/+)) and MMP-2-deficient (MMP-2(-/-)) mice by 90-min renal artery clamping followed by reperfusion. Renal histology and the activity and distribution of MMP-2 were examined from day 1 to day 14. During the recovery from AKI, MMP-2(+/+) mice were also treated with MMP-2/MMP-9 inhibitor. RESULTS In both MMP-2(+/+) and MMP-2(-/-) mice, AKI developed on day 1 after ischemia/reperfusion with widespread acute tubular injury, but subsequent epithelial cell proliferation was evident on days 3-7. During the repair process, active MMP-2 and MMP-9 increased in regenerating tubular epithelial cells in MMP-2(+/+) mice on days 7-14, and the tubular repair process was almost complete by day 14. On the other hand, in MMP-2(-/-) mice, less prominent proliferation of tubular epithelial cells was evident on days 3 and 7, and damaged tubules that were covered with elongated and immature regenerated epithelial cells were identified on days 7 and 14. Incomplete recovery of injured microvasculature was also noted with persistent macrophage infiltration. Similarly, treatment with MMP-2/MMP-9 inhibitor resulted in impaired recovery in MMP-2(+/+) mice. CONCLUSION MMP-2 is involved in tubular repair after AKI. The use of the MMP-2/MMP-9 inhibitor was a disadvantage when it was administered during the repair stage of ischemic AKI. Treatment with MMP inhibitor for AKI needs to be modified to enhance recovery from AKI.
Collapse
Affiliation(s)
- Tomohiro Kaneko
- Division of Neurology, Nephrology and Rheumatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dieterich C, Puey A, Lin S, Lyn S, Swezey R, Furimsky A, Fairchild D, Mirsalis JC, Ng HH. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci 2008; 107:258-69. [PMID: 18930951 PMCID: PMC2638642 DOI: 10.1093/toxsci/kfn203] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.
Collapse
Affiliation(s)
- Christine Dieterich
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hallman MA, Zhuang S, Schnellmann RG. Regulation of dedifferentiation and redifferentiation in renal proximal tubular cells by the epidermal growth factor receptor. J Pharmacol Exp Ther 2008; 325:520-8. [PMID: 18270318 DOI: 10.1124/jpet.107.134031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repair of injured renal epithelium is thought to be mediated by surviving renal proximal tubular cells (RPTC) that must dedifferentiate to allow the proliferation and migration necessary for epithelial regeneration. RPTC then redifferentiate to restore tubular structure and function. Current models suggest that epidermal growth factor receptor (EGFR) activation is required for dedifferentiation characterized by enhanced vimentin expression, decreased N-cadherin expression, spindle morphology, and loss of apical-basal polarity after injury. Because an in vitro model of RPTC redifferentiation has not been reported, and the mechanism(s) of redifferentiation has not been determined, we used rabbit RPTC in primary cultures to address these issues. H2O2 induced the dedifferentiated phenotype that persisted >48 h; redifferentiation occurred spontaneously in the absence of exogenous growth factors after 72 to 120 h. Phosphorylation of two tyrosine residues of EGFR increased 12 to 24 h, peaked at 24 h, and declined to basal levels by 48 h after injury. EGFR inhibition during dedifferentiation restored epithelial morphology and apical-basal polarity, and it decreased vimentin expression to control levels 24 h later. In contrast, exogenous epidermal growth factor addition increased vimentin expression and potentiated spindle morphology. p38 mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-beta receptor inhibitors did not affect redifferentiation after H2O2 injury. Similar results were observed in a mechanical injury model. These experiments represent a new model for the investigation of RPTC redifferentiation after acute injury and identify a key regulator of redifferentiation: EGFR, independent of p38 MAPK and the TGF-beta receptor.
Collapse
Affiliation(s)
- Mark A Hallman
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St., P.O.B. 250140, Charleston, SC 29425, USA
| | | | | |
Collapse
|
7
|
Lock EA, Barth JL, Argraves SW, Schnellmann RG. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-l-cysteine, a metabolite of trichloroethylene. Toxicol Appl Pharmacol 2006; 216:319-30. [PMID: 16844155 DOI: 10.1016/j.taap.2006.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Epidemiology studies suggest that there may be a weak association between high level exposure to trichloroethylene (TCE) and renal tubule cell carcinoma. Laboratory animal studies have shown an increased incidence of renal tubule carcinoma in male rats but not mice. TCE can undergo metabolism via glutathione (GSH) conjugation to form metabolites that are known to be nephrotoxic. The GSH conjugate, S-(1,2-dichlorovinyl)glutathione (DCVG), is processed further to the cysteine conjugate, S-(1,2-dichlorovinyl)-l-cysteine (DCVC), which is the penultimate nephrotoxic species. We have cultured human renal tubule cells (HRPTC) in serum-free medium under a variety of different culture conditions and observed growth, respiratory control and glucose transport over a 20 day period in medium containing low glucose. Cell death was time- and concentration-dependent, with the EC(50) for DCVG being about 3 microM and for DCVC about 7.5 microM over 10 days. Exposure of HRPTC to sub-cytotoxic doses of DCVC (0.1 microM and 1 microM for 10 days) led to a small number of changes in gene expression, as determined by transcript profiling with Affymetrix human genome chips. Using the criterion of a mean 2-fold change over control for the four samples examined, 3 genes at 0.1 microM DCVC increased, namely, adenosine kinase, zinc finger protein X-linked and an enzyme with lyase activity. At 1 microM DCVC, two genes showed a >2-fold decrease, N-acetyltransferase 8 and complement factor H. At a lower stringency (1.5-fold change), a total of 63 probe sets were altered at 0.1 microM DCVC and 45 at 1 microM DCVC. Genes associated with stress, apoptosis, cell proliferation and repair and DCVC metabolism were altered, as were a small number of genes that did not appear to be associated with the known mode of action of DCVC. Some of these genes may serve as molecular markers of TCE exposure and effects in the human kidney.
Collapse
Affiliation(s)
- Edward A Lock
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
8
|
King DW, Smith MA. Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicol In Vitro 2005; 18:797-803. [PMID: 15465645 DOI: 10.1016/j.tiv.2004.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 03/25/2004] [Indexed: 11/25/2022]
Abstract
Vancomycin (VAN) is a glycopeptide antibiotic used to treat gram-positive infections. Nephrotoxicity is a common side effect observed with vancomycin therapy. However, the mechanism of vancomycin-induced nephrotoxicity has not been fully characterized. In this study we examined the effect of vancomycin on cellular proliferation in renal proximal tubule cells. A dose- and time-dependent increase in cell number and total cellular protein was observed following vancomycin exposure. Vancomycin exposure also caused an increase in BrdU incorporation followed by the accumulation of renal proximal tubule cells in G(2)/M phase of the cell cycle. These effects were inhibited by pretreatment with the mitogen-activated protein kinase inhibitor, PD098059, suggesting an association between the cell proliferative effect of VAN and the induction of the mitogen-activated protein kinase signaling pathway. Mitochondrial function in renal proximal tubule cells was assessed using oxygen consumption and ATP concentrations. We observed an increase in oxygen consumption and ATP concentrations following short-term exposure to vancomycin. Together, our data suggest that vancomycin treatment produces alterations in mitochondrial function that coincide with a cell proliferative response in renal proximal tubule epithelial cells.
Collapse
Affiliation(s)
- D W King
- School of Public Health, University of Texas-Houston Health Science Center, Houston, TX 77030, USA.
| | | |
Collapse
|
9
|
Zhuang S, Dang Y, Schnellmann RG. Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. Am J Physiol Renal Physiol 2004; 287:F365-72. [PMID: 15213065 DOI: 10.1152/ajprenal.00035.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We showed that renal proximal tubular cells (RPTC) can proliferate and migrate following plating and oxidant or mechanical injury in the absence of exogenous growth factors; however, the mechanisms of this response remain unclear. We examined whether epidermal growth factor receptor (EGFR) signaling is activated following plating and mechanical injury and mediates RPTC proliferation and migration. EGFR, Akt [a target of phosphoinositide-3-kinase (PI3K)], and ERK1/2 were activated after plating and mechanical injury, and their phosphorylation was further enhanced by addition of exogenous EGF. Inactivation of the EGFR with the selective inhibitor AG-1478 completely blocked phosphorylation of EGFR, Akt, and ERK1/2 and blocked cell proliferation and migration after plating and injury. Inhibition of PI3K with LY-294002 blocked Akt phosphorylation and proliferation, whereas U-0126 blocked ERK1/2 phosphorylation but had no effect on proliferation. Furthermore, p38 was phosphorylated following mechanical injury and the p38 inhibitor SB-203580 blocked p38 phosphorylation and cell migration. In contrast, neither PI3K nor ERK1/2 inhibition blocked cell migration. These results show that EGFR activation is required for RPTC proliferation and migration and that proliferation is mediated by PI3K, whereas migration is mediated by p38.
Collapse
Affiliation(s)
- Shougang Zhuang
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
10
|
Liu X, Godwin ML, Nowak G. Protein kinase C-alpha inhibits the repair of oxidative phosphorylation after S-(1,2-dichlorovinyl)-L-cysteine injury in renal cells. Am J Physiol Renal Physiol 2004; 287:F64-73. [PMID: 14996667 DOI: 10.1152/ajprenal.00216.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we showed that physiological functions of renal proximal tubular cells (RPTC) do not recover following S-(1,2-dichlorovinyl)-l-cysteine (DCVC)-induced injury. This study investigated the role of protein kinase C-alpha (PKC-alpha) in the lack of repair of mitochondrial function in DCVC-injured RPTC. After DCVC exposure, basal oxygen consumption (Qo(2)), uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production decreased, respectively, to 59, 27, 27, 57, and 68% of controls. None of these functions recovered. Mitochondrial transmembrane potential decreased 53% after DCVC injury but recovered on day 4. PKC-alpha was activated 4.3- and 2.5-fold on days 2 and 4, respectively, of the recovery period. Inhibition of PKC-alpha activation (10 nM Go6976) did not block DCVC-induced decreases in mitochondrial functions but promoted the recovery of uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production. Protein levels of the catalytic beta-subunit of F(1)F(0)-ATPase were not changed by DCVC or during the recovery period. Amino acid sequence analysis revealed that alpha-, beta-, and epsilon-subunits of F(1)F(0)-ATPase have PKC consensus motifs. Recombinant PKC-alpha phosphorylated the beta-subunit and decreased F(1)F(0)-ATPase activity in vitro. Serine but not threonine phosphorylation of the beta-subunit was increased during late recovery following DCVC injury, and inhibition of PKC-alpha activation decreased this phosphorylation. We conclude that during RPTC recovery following DCVC injury, 1). PKC-alpha activation decreases F(0)F(1)-ATPase activity, oxidative phosphorylation, and ATP production; 2). PKC-alpha phosphorylates the beta-subunit of F(1)F(0)-ATPase on serine residue; and 3). PKC-alpha does not mediate depolarization of RPTC mitochondria. This is the first report showing that PKC-alpha phosphorylates the catalytic subunit of F(1)F(0)-ATPase and that PKC-alpha plays an important role in regulating repair of mitochondrial function.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
11
|
Nowak G, Bakajsova D, Clifton GL. Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells. Am J Physiol Renal Physiol 2003; 286:F307-16. [PMID: 14570699 DOI: 10.1152/ajprenal.00275.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether protein kinase C-epsilon (PKC-epsilon) is involved in the repair of mitochondrial function and/or active Na+ transport after oxidant injury in renal proximal tubular cells (RPTC). Sublethal injury was produced in primary cultures of RPTC using tert-butylhydroperoxide (TBHP), and the recovery of functions was examined. PKC-epsilon was activated three- to fivefold after injury. Active PKC-epsilon translocated to the mitochondria. Basal oxygen consumption (Qo2), uncoupled Qo2, and ATP production decreased 58, 60, and 41%, respectively, at 4 h and recovered by day 4 after injury. At 4 h, complex I-coupled respiration decreased 50% but complex II- and IV-coupled respirations were unchanged. Inhibition of PKC-epsilon translocation using a peptide selective inhibitor, PKC-epsilonV1-2, reduced decreases in basal and uncoupled Qo2 values and increased complex I-linked respiration in TBHP-injured RPTC at 4 h of recovery. Furthermore, PKC-epsilonV1-2 prevented decreases in ATP production in injured RPTC. Na+-K+-ATPase activity and ouabain-sensitive 86Rb+ uptake were decreased by 60 and 53%, respectively, at 4 h of recovery. Inhibition of PKC-epsilon activation prevented a decline in Na+-K+-ATPase activity and reduced decreases in ouabain-sensitive 86Rb+ uptake. We conclude that during early repair after oxidant injury in RPTC 1) PKC-epsilon is activated and translocated to mitochondria; 2) PKC-epsilon activation decreases mitochondrial respiration, electron transport rate, and ATP production by reducing complex I-linked respiration; and 3) PKC-epsilon mediates decreases in active Na+ transport and Na+-K+-ATPase activity. These data show that PKC-epsilon activation after oxidant injury in RPTC is involved in the decreases in mitochondrial function and active Na+ transport and that inhibition of PKC-epsilon activation promotes the repair of these functions.
Collapse
Affiliation(s)
- Grazyna Nowak
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
12
|
Nony PA, Schnellmann RG. Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 2003; 304:905-12. [PMID: 12604664 DOI: 10.1124/jpet.102.035022] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many cases, acute renal failure (ARF) is the result of proximal tubular cell injury and death and can arise in a variety of clinical situations, especially following renal ischemia and drug or toxicant exposure. Although much research has focused on the cellular events leading to ARF, less emphasis has been placed on the mechanisms of renal cell repair and regeneration, although ARF is reversed in over half of those who acquire it. Studies using in vivo and in vitro models have demonstrated the importance of proliferation, migration, and repair of physiological functions of injured renal proximal tubular cells (RPTC) in the reversal of ARF. Growth factors have been shown to produce migration and proliferation of injured RPTC, although the specific mechanisms through which growth factors promote renal regeneration in vivo are unclear. Recently, interactions between integrins and extracellular matrix proteins such as collagen IV were shown to promote the repair of physiological functions in injured RPTC. Specifically, collagen IV synthesis and deposition following cellular injury restored integrin polarity and promoted repair of mitochondrial function and active Na(+) transport. Furthermore, exogenous collagen IV, but not collagen I, fibronectin, or laminin, promoted the repair of physiological functions without stimulating proliferation. These findings suggest the importance of establishing and/or maintaining collagen IV-integrin interactions in the stimulation of repair of physiological functions following sublethal cellular injury. Furthermore, the pathway that stimulates repair is distinct from that of proliferation and migration and may be a viable target for pharmacological intervention.
Collapse
Affiliation(s)
- Paul A Nony
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|