1
|
Abassi Z, Skorecki K, Hamo-Giladi DB, Kruzel-Davila E, Heyman SN. Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. Am J Physiol Lung Cell Mol Physiol 2021; 320:L422-L429. [PMID: 33404363 PMCID: PMC7938643 DOI: 10.1152/ajplung.00548.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The unique clinical features of COVID-19 disease present a formidable challenge in the understanding of its pathogenesis. Within a very short time, our knowledge regarding basic physiological pathways that participate in SARS-CoV-2 invasion and subsequent organ damage have been dramatically expanded. In particular, we now better understand the complexity of the renin-angiotensin-aldosterone system (RAAS) and the important role of angiotensin converting enzyme (ACE)-2 in viral binding. Furthermore, the critical role of its major product, angiotensin (Ang)-(1-7), in maintaining microcirculatory balance and in the control of activated proinflammatory and procoagulant pathways, generated in this disease, have been largely clarified. The kallikrein-bradykinin (BK) system and chymase are intensively interwoven with RAAS through many pathways with complex reciprocal interactions. Yet, so far, very little attention has been paid to a possible role of these physiological pathways in the pathogenesis of COVID-19 disease, even though BK and chymase exert many physiological changes characteristic to this disorder. Herein, we outline the current knowledge regarding the reciprocal interactions of RAAS, BK, and chymase that are probably turned-on in COVID-19 disease and participate in its clinical features. Interventions affecting these systems, such as the inhibition of chymase or blocking BKB1R/BKB2R, might be explored as potential novel therapeutic strategies in this devastating disorder.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Karl Skorecki
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dalit B Hamo-Giladi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
2
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Vio CP, Salas D, Cespedes C, Diaz-Elizondo J, Mendez N, Alcayaga J, Iturriaga R. Imbalance in Renal Vasoactive Enzymes Induced by Mild Hypoxia: Angiotensin-Converting Enzyme Increases While Neutral Endopeptidase Decreases. Front Physiol 2018; 9:1791. [PMID: 30618804 PMCID: PMC6297360 DOI: 10.3389/fphys.2018.01791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic hypoxia has been postulated as one of the mechanisms involved in salt-sensitive hypertension and chronic kidney disease (CKD). Kidneys have a critical role in the regulation of arterial blood pressure through vasoactive systems, such as the renin-angiotensin and the kallikrein-kinin systems, with the angiotensin-converting enzyme (ACE) and kallikrein being two of the main enzymes that produce angiotensin II and bradykinin, respectively. Neutral endopeptidase 24.11 or neprilysin is another enzyme that among its functions degrade vasoactive peptides including angiotensin II and bradykinin, and generate angiotensin 1-7. On the other hand, the kidneys are vulnerable to hypoxic injury due to the active electrolyte transportation that requires a high oxygen consumption; however, the oxygen supply is limited in the medullary regions for anatomical reasons. With the hypothesis that the chronic reduction of oxygen under normobaric conditions would impact renal vasoactive enzyme components and, therefore; alter the normal balance of the vasoactive systems, we exposed male Sprague-Dawley rats to normobaric hypoxia (10% O2) for 2 weeks. We then processed renal tissue to identify the expression and distribution of kallikrein, ACE and neutral endopeptidase 24.11 as well as markers of kidney damage. We found that chronic hypoxia produced focal damage in the kidney, mainly in the cortico-medullary region, and increased the expression of osteopontin. Moreover, we observed an increase of ACE protein in the brush border of proximal tubules at the outer medullary region, with increased mRNA levels. Kallikrein abundance did not change significantly with hypoxia, but a tendency toward reduction was observed at protein and mRNA levels. Neutral endopeptidase 24.11 was localized in proximal tubules, and was abundantly expressed under normoxic conditions, which markedly decreased both at protein and mRNA levels with chronic hypoxia. Taken together, our results suggest that chronic hypoxia produces focal kidney damage along with an imbalance of key components of the renal vasoactive system, which could be the initial steps for a long-term contribution to salt-sensitive hypertension and CKD.
Collapse
Affiliation(s)
- Carlos P Vio
- Department of Physiology, Center for Aging and Regeneration CARE UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Daniela Salas
- Department of Physiology, Center for Aging and Regeneration CARE UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Cespedes
- Department of Physiology, Center for Aging and Regeneration CARE UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jessica Diaz-Elizondo
- Department of Physiology, Center for Aging and Regeneration CARE UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Mendez
- Department of Physiology, Center for Aging and Regeneration CARE UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Anatomy, Histology, and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Barros CC, Schadock I, Sihn G, Rother F, Xu P, Popova E, Lapidus I, Plehm R, Heuser A, Todiras M, Bachmann S, Alenina N, Araujo RC, Pesquero JB, Bader M. Chronic Overexpression of Bradykinin in Kidney Causes Polyuria and Cardiac Hypertrophy. Front Med (Lausanne) 2018; 5:338. [PMID: 30560131 PMCID: PMC6287039 DOI: 10.3389/fmed.2018.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
Acute intra-renal infusion of bradykinin increases diuresis and natriuresis via inhibition of vasopressin activity. However, the consequences of chronically increased bradykinin in the kidneys have not yet been studied. A new transgenic animal model producing an excess of bradykinin by proximal tubular cells (KapBK rats) was generated and submitted to different salt containing diets to analyze changes in blood pressure and other cardiovascular parameters, urine excretion, and composition, as well as levels and expression of renin-angiotensin system components. Despite that KapBK rats excrete more urine and sodium, they have similar blood pressure as controls with the exception of a small increase in systolic blood pressure (SBP). However, they present decreased renal artery blood flow, increased intrarenal expression of angiotensinogen, and decreased mRNA expression of vasopressin V1A receptor (AVPR1A), suggesting a mechanism for the previously described reduction of renal vasopressin sensitivity by bradykinin. Additionally, reduced heart rate variability (HRV), increased cardiac output and frequency, and the development of cardiac hypertrophy are the main chronic effects observed in the cardiovascular system. In conclusion: (1) the transgenic KapBK rat is a useful model for studying chronic effects of bradykinin in kidney; (2) increased renal bradykinin causes changes in renin angiotensin system regulation; (3) decreased renal vasopressin sensitivity in KapBK rats is related to decreased V1A receptor expression; (4) although increased renal levels of bradykinin causes no changes in mean arterial pressure (MAP), it causes reduction in HRV, augmentation in cardiac frequency and output and consequently cardiac hypertrophy in rats after 6 months of age.
Collapse
Affiliation(s)
- Carlos C Barros
- Department of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Ines Schadock
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Ping Xu
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irina Lapidus
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Arnd Heuser
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ronaldo C Araujo
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Joao B Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Federal University of Minas Gerais, Belo Horizonte, Brazil.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG. Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 2017; 87:108-126. [PMID: 28216264 DOI: 10.1016/j.vascn.2017.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.
Collapse
Affiliation(s)
- James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | - Eric A G Blomme
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
6
|
Barry EF, Johns EJ. Intrarenal bradykinin elicits reno-renal reflex sympatho-excitation and renal nerve-dependent fluid retention. Acta Physiol (Oxf) 2015; 213:731-9. [PMID: 25369876 DOI: 10.1111/apha.12420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/01/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
AIMS The renal sensory nerves are importantly involved in the sympathetic regulation of cardiovascular and renal function. Two reno-renal reflexes are recognized, one in which activation of renal sensory nerves elicits a renal sympatho-inhibition, and one which causes a renal sympatho-excitation and about which little is known. This study investigated the role of bradykinin (BK) in engaging an excitatory reno-renal reflex. METHODS Rats were anaesthetized (chloralose/urethane) and prepared for the measurement of renal function or renal sympathetic nerve activity (RSNA). BK was infused into the cortico-medullary border of the ipsilateral kidney and the impact on contralateral renal function and RSNA evaluated. RESULTS Intrarenal infusion of BK at 3 × 10(-9) and 6 × 10(-9) g L(-1) had no effect on mean arterial pressure, at 104 ± 5 mmHg or glomerular filtration rate in either the ipsilateral or contralateral kidneys, at 4.31 ± 0.45 mL min(-1) kg(-1) . At the highest dose of BK, fractional sodium excretion (FENa) was 1.47% in the ipsilateral kidney and was significantly lower, at 0.64% (P < 0.05) in the contralateral kidney but this difference did not occur following ipsilateral renal denervation. Ipsilateral intrarenal infusion of BK at 3 × 10(-9) , 6 × 10(-9) and 1.2 × 10(-8) g L(-1) elicited dose-related increases (P < 0.05) in contralateral RSNA, reaching some 78% at the highest dose, but these responses were prevented by ipsilateral renal denervation. CONCLUSIONS Intrarenal infusion of BK produced an excitatory reno-renal reflex which was expressed as a renal nerve-dependent antinatriuresis in the contralateral kidney. The findings suggest that inflammatory mediators such as BK may be important in initiating a sympatho-excitation associated with renal and cardiovascular diseases.
Collapse
Affiliation(s)
- E. F. Barry
- Department of Physiology; University College Cork; Cork Ireland
| | - E. J. Johns
- Department of Physiology; University College Cork; Cork Ireland
| |
Collapse
|
7
|
Mamenko M, Zaika O, Boukelmoune N, Madden E, Pochynyuk O. Control of ENaC-mediated sodium reabsorption in the distal nephron by Bradykinin. VITAMINS AND HORMONES 2015; 98:137-154. [PMID: 25817868 DOI: 10.1016/bs.vh.2014.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Kinins, such as Bradykinin (BK), are peptide hormones of the kallikrein-kinin system. Apart from being a vasodilator, BK also increases urinary sodium excretion to reduce systemic blood pressure. It is becoming appreciated that BK modulates function of the epithelial Na(+) channel in the distal part of the renal nephron to affect tubular sodium reabsorption. In this chapter, we outline the molecular details, as well as discuss the physiological relevance of this regulation for the whole organism sodium homeostasis and setting chronic blood pressure.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eric Madden
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
8
|
Mamenko M, Zaika O, Pochynyuk O. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 2014; 23:122-129. [PMID: 24378775 PMCID: PMC4114036 DOI: 10.1097/01.mnh.0000441053.81339.61] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Locally produced peptide hormones kinins, such as bradykinin, are thought to oppose many of the prohypertensive actions of the renin-angiotensin-aldosterone system. In the kidney, bradykinin, via stimulation of B2 receptors (B2R), favors natriuresis mostly due to the inhibition of tubular Na reabsorption. Recent experimental evidence identifies the epithelial Na channel (ENaC) as a key end effector of bradykinin actions in the distal tubular segments. The focus of this review is the physiological relevance and molecular details of the bradykinin signal to ENaC. RECENT FINDINGS The recent epidemiological GenSalt study demonstrated that genetic variants of the gene encoding B2R show significant associations with the salt sensitivity of blood pressure. Bradykinin was shown to have an inhibitory effect on the distal nephron sodium transport via stimulation of B2 receptor-phospholipase C (B2R-PLC) cascade to decrease ENaC open probability. Genetic ablation of bradykinin receptors in mice led to an augmented ENaC function, particularly during elevated sodium intake, likely contributing to the salt-sensitive hypertensive phenotype. Furthermore, augmentation of bradykinin signaling in the distal nephron was demonstrated to be an important component of the natriuretic and antihypertensive effects of angiotensin converting enzyme inhibition. SUMMARY Salt-sensitive inhibition of ENaC activity by bradykinin greatly advances our understanding of the molecular mechanisms that are responsible for shutting down distal tubule sodium reabsorption during volume expanded conditions to avoid salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | | | | |
Collapse
|
9
|
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:59-109. [PMID: 25130040 DOI: 10.1007/978-3-319-06683-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.
Collapse
|
10
|
Mamenko M, Zaika O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin. Hypertension 2012; 60:1234-41. [PMID: 23033373 DOI: 10.1161/hypertensionaha.112.200469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensitive distal nephron. Under normal sodium intake (0.32% Na(+)), ENaC open probability (P(o)) was modestly elevated in B1R, B2R(-/-) mice compared with wild-type mice. This difference is augmented during elevated Na(+) intake (2.00% Na(+)) and negated during Na(+) restriction (<0.01% Na(+)). Saturation of systemic mineralocorticoid status with deoxycorticosterone acetate similarly increased ENaC activity in both mouse strains, suggesting that the effect of BK on ENaC is independent of aldosterone. It is accepted that angiotensin-converting enzyme represents the major pathway of BK degradation. Systemic inhibition of angiotensin-converting enzyme with captopril (30 mg/kg of body weight for 7 days) significantly decreases ENaC activity and P(o) in wild-type mice, but this effect is diminished in B1R, B2R(-/-) mice. At the cellular level, acute captopril (100 μmol/L) treatment sensitized BK signaling cascade and greatly potentiated the inhibitory effect of 100 nmol/L of BK on ENaC. We concluded that BK cascade has its own specific role in blunting ENaC activity, particularly under conditions of elevated sodium intake. Augmentation of BK signaling in the aldosterone-sensitive distal nephron inhibits ENaC-mediated Na(+) reabsorption, contributing to the natriuretic and antihypertensive effects of angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
11
|
Kittikulsuth W, Pollock JS, Pollock DM. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Renal Physiol 2012; 303:F659-66. [PMID: 22674027 DOI: 10.1152/ajprenal.00213.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Section of Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
12
|
Zaika O, Mamenko M, O'Neil RG, Pochynyuk O. Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol 2011; 300:F1105-F1115. [PMID: 21325499 PMCID: PMC3094057 DOI: 10.1152/ajprenal.00606.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/09/2011] [Indexed: 12/11/2022] Open
Abstract
Activation of the renal kallikrein-kinin system results in natriuresis and diuresis, suggesting its possible role in renal tubular sodium transport regulation. Here, we used patch-clamp electrophysiology to directly assess the effects of bradykinin (BK) on the epithelial Na(+) channel (ENaC) activity in freshly isolated split-opened murine aldosterone-sensitive distal nephrons (ASDNs). BK acutely inhibits ENaC activity by reducing channel open probability (P(o)) in a dose-dependent and reversible manner. Inhibition of B2 receptors with icatibant (HOE-140) abolished BK actions on ENaC. In contrast, activation of B1 receptors with the selective agonist Lys-des-Arg(9)-BK failed to reproduce BK actions on ENaC. This is consistent with B2 receptors playing a critical role in mediating BK signaling to ENaC. BK has little effect on ENaC P(o) when G(q/11) was inhibited with Gp antagonist 2A. Moreover, inhibition of phospholipase C (PLC) with U73122, but not saturation of cellular cAMP levels with the membrane-permeable nonhydrolysable cAMP analog 8-cpt-cAMP, prevents BK actions on ENaC activity. This argues that BK stimulates B2 receptors with subsequent activation of G(q/11)-PLC signaling cascade to acutely inhibit ENaC activity. Activation of BK signaling acutely depletes apical PI(4,5)P(2) levels. However, inhibition of Ca(2+) pump SERCA of the endoplasmic reticulum with thapsigargin does not prevent BK signaling to ENaC. Furthermore, caffeine, while producing a similar rise in [Ca(2+)](i) as in response to BK stimulation, fails to recapitulate BK actions on ENaC. Therefore, we concluded that BK acutely inhibits ENaC P(o) in mammalian ASDN via stimulation of B2 receptors and following depletion of PI(4,5)P(2), but not increases in [Ca(2+)](i).
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | |
Collapse
|
13
|
Biggi A, Musiari L, Iori M, De Iaco G, Magnani G, Pelloni I, Pinelli S, Pelà GM, Novarini A, Cabassi A, Montanari A. Contribution of bradykinin B2 receptors to the inhibition by valsartan of systemic and renal effects of exogenous angiotensin II in salt-repleted humans. J Pharmacol Exp Ther 2010; 334:911-6. [PMID: 20504911 DOI: 10.1124/jpet.110.166942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate whether bradykinin (BK) participates in the inhibition of renal effects of exogenous angiotensin II (AngII) by AngII type 1 receptor (AT1R) blockade, eight salt-repleted volunteers underwent four p-aminohippurate- and inulin-based renal studies of AngII infusion at increasing rates of 0.625, 1.25, and 2.5 ng.kg.min(-1) for 30 min. Studies 1 and 2 were preceded by 3 days of placebo, whereas studies 3 and 4 used 240 to 320 mg.day(-1) valsartan. Bradykinin B2-type receptor (BKB2R) antagonist icatibant (50 mug.kg(-1)) was coinfused in studies 2 and 4. Mean blood pressure (MBP), glomerular filtration rate (GFR), renal blood flow (RBF), and renal sodium excretion (UNaV) were measured. In study 1, MBP rose by 12.8%, UNaV decreased by 68%, and GFR and RBF also fell (p < 0.001 for all). In study 2, GFR and RBF fell as in study 1, but the rise in MBP and the fall in UNaV were accentuated [+20.0%, analysis of variance (ANOVA), p < 0.02 versus study 1 and -80.0%, p < 0.05, respectively]. In study 3, AngII had no effects, and in study 4, renal hemodynamics remained unaffected, but MBP still rose and UNaV fell (ANOVA, p < 0.02 and 0.005 versus study 3, respectively). Icatibant accentuated AngII-induced changes in MBP and UNaV. Previous AT1R blockade prevented any systemic and renal effects of AngII, but significant changes in MBP and UNaV still followed AngII plus icatibant even after AT1R blockade. BK, through BKB2Rs, participates in the inhibitory action of AT1R blockers toward actions of exogenous AngII on MBP and UNaV in healthy humans.
Collapse
Affiliation(s)
- Almerina Biggi
- Department of Clinical Sciences, University of Parma Medical School, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|