1
|
Peng A, Li J, Xing J, Yao Y, Niu X, Zhang K. The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases. Front Mol Biosci 2024; 11:1480617. [PMID: 39513038 PMCID: PMC11540786 DOI: 10.3389/fmolb.2024.1480617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is a rate-limiting enzyme in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway, and plays a vital role in the regulation of cell metabolic activity, reprogramming, aging and apoptosis. NAMPT synthesizes nicotinamide mononucleotide (NMN) through enzymatic action, which is a key protein involved in host defense mechanism and plays an important role in metabolic homeostasis and cell survival. NAMPT is involved in NAD metabolism and maintains intracellular NAD levels. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs), the members are capable of sensing cellular NAD+ levels. NAMPT-NAD and SIRT constitute a powerful anti-stress defense system. In this paper, the structure, biological function and correlation with diseases of NAMPT are introduced, aiming to provide new ideas for the targeted therapy of related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| |
Collapse
|
2
|
Liu Y, Zhao D, Chai S, Zhang X. Association of visceral adipose tissue with albuminuria and interaction between visceral adiposity and diabetes on albuminuria. Acta Diabetol 2024; 61:909-916. [PMID: 38558152 PMCID: PMC11182824 DOI: 10.1007/s00592-024-02271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
AIMS To explore the correlation between visceral adipose tissue and albuminuria, and whether there is interaction between visceral adipose tissue and diabetes on albuminuria. METHODS The study subjects were adult subjects (age ≥ 18 years) from the National Health and Nutrition Examination Surveys (NHANES) database of the USA in 2017-2018. Visceral fat area (VFA) was measured by dual-energy X-ray absorptiometry (DXA). Subjects were divided into three groups according to VFA: low (VFA 0-60cm2), medium (VFA 60-120 cm2) and high (VFA ≥ 120 cm2). Albuminuria was defined as urinary albumin-to-creatinine ratio (UACR) ≥ 30 mg/g. The statistical analysis software used is STATA 17.0. RESULTS Data pertaining to 2965 participants (2706 without albuminuria) were included in the analysis. High VFA is an independent risk factor for albuminuria (OR 1.367, 95% CI 1.023-1.827). In the low-VFA group, there is no significant association between diabetes and albuminuria (OR 1.415, 95% CI 0.145-13.849). In the medium-VFA group, diabetes is an independent risk factor for albuminuria (OR 2.217, 95% CI 1.095-4.488). In the high-VFA group, diabetes is also an independent risk factor for albuminuria (OR 5.150, 95% CI 3.150-8.421). There is an additive interaction between high VFA (VFA ≥ 120 cm2) and diabetes on the effect of albuminuria (RERI 3.757, 95% CI 0.927-6.587, p = 0.009), while no multiplication interaction (OR 1.881, 95% CI 0.997-1.023, p = 0.141). CONCLUSIONS High VFA may represent an independent risk factor for albuminuria. The amount of visceral fat may affect the effect of diabetes on albuminuria. The higher the visceral fat, the stronger the correlation between diabetes and albuminuria should be present. We suppose an additive interaction between VFA and diabetes on the effect of albuminuria.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Endocrinology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Dan Zhao
- Department of Endocrinology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Sanbao Chai
- Department of Endocrinology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Xiaomei Zhang
- Department of Endocrinology, Peking University International Hospital, Beijing, 102206, People's Republic of China.
| |
Collapse
|
3
|
Mlyczyńska E, Rytelewska E, Zaobidna E, Respekta-Długosz N, Kopij G, Dobrzyń K, Kieżun M, Smolińska N, Kamiński T, Rak A. In vitro effect of visfatin on endocrine functions of the porcine corpus luteum. Sci Rep 2024; 14:14780. [PMID: 38926439 PMCID: PMC11208563 DOI: 10.1038/s41598-024-65102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
5
|
Koka S, Surineni S, Singh GB, Boini KM. Contribution of membrane raft redox signalling to visfatin-induced inflammasome activation and podocyte injury. Aging (Albany NY) 2023; 15:12738-12748. [PMID: 38032896 DOI: 10.18632/aging.205243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Recently we have shown that adipokine visfatin-induced NLRP3 inflammasome activation contributes to podocyte injury. However, the molecular mechanisms of how visfatin-induces the Nlrp3 inflammasome activation and podocyte damage is still unknown. The present study tested whether membrane raft (MR) redox signalling pathway plays a central role in visfatin-induced NLRP3 inflammasomes formation and activation in podocytes. Upon visfatin stimulation an aggregation of NADPH oxidase subunits, gp91phox and p47phox was observed in the membrane raft (MR) clusters, forming a MR redox signalling platform in podocytes. The formation of this signalling platform was blocked by prior treatment with MR disruptor MCD or NADPH oxidase inhibitor DPI. In addition, visfatin stimulation significantly increased the colocalization of Nlrp3 with Asc or Nlrp3 with caspase-1, IL-β production, cell permeability in podocytes compared to control cells. Pretreatment with MCD, DPI, WEHD significantly abolished the visfatin-induced colocalization of NLRP3 with Asc or NLRP3 with caspase-1, IL-1β production and cell permeability in podocytes. Furthermore, Immunofluorescence analysis demonstrated that visfatin treatment significantly decreased the podocin and nephrin expression (podocyte damage) and prior treatments with DPI, WEHD, MCD attenuated this visfatin-induced podocin and nephrin reduction. In conclusion, our results suggest that visfatin stimulates membrane raft clustering in the membrane of podocytes to form redox signaling platforms by aggregation and activation of NADPH oxidase subunits enhancing O2·- production and leading to NLRP3 inflammasome activation in podocytes and ultimate podocyte injury.
Collapse
Affiliation(s)
- Saisudha Koka
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sreenidhi Surineni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Division of Biomedical Sciences, University of California, Riverside, CA 92130, USA
| | - Gurinder Bir Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Mlyczyńska E, Kurowska P, Rytelewska E, Zaobina E, Pich K, Kieżun M, Dobrzyń K, Kisielewska K, Kopij G, Smolińska N, Kamiński T, Rak A. Expression of visfatin in the ovarian follicles of prepubertal and mature gilts and in vitro effect of gonadotropins, insulin, steroids, and prostaglandins on visfatin levels. Theriogenology 2023; 211:28-39. [PMID: 37562189 DOI: 10.1016/j.theriogenology.2023.07.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Ewa Zaobina
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
7
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
8
|
Mlyczyńska E, Zaobidna E, Rytelewska E, Dobrzyń K, Kieżun M, Kopij G, Szymańska K, Kurowska P, Dall'Aglio C, Smolińska N, Kamiński T, Rak A. Expression and regulation of visfatin/NAMPT in the porcine corpus luteum during the estrous cycle and early pregnancy. Anim Reprod Sci 2023; 250:107212. [PMID: 36913896 DOI: 10.1016/j.anireprosci.2023.107212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Visfatin/NAMPT creates a hormonal link between energy metabolism and female reproduction. A recent study documented visfatin expression in the ovary and its action on follicular cells; however, the expression of visfatin in luteal cells is still unknown. The aim of this study, therefore, was to investigate the transcript and protein expression of visfatin as well as its immunolocalization in the corpus luteum (CL) and to examine the involvement of extracellular signal-regulated kinases (ERK1/2) in the regulation of visfatin level in response to LH, insulin, progesterone (P4), prostaglandin E2 (PGE2) and F2α (PGF2α). Corpora lutea were harvested from gilts on days 2-3, 10-12 and 14-16 of the estrous cycle and on days 10-11, 12-13, 15-16 and 27-28 of pregnancy. The current study demonstrated that visfatin expression depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Visfatin was immunolocalized to the cytoplasm of small and large luteal cells. Moreover, visfatin protein abundance was increased by P4, and decreased by both prostaglandins, while LH and insulin have modulatory effects, depending on the phase of the cycle. Interestingly, LH, P4 and PGE2 effects were abolished in response to the inhibition of ERK1/2 kinase. Thus, this study demonstrated that expression of visfatin in the porcine CL is determined by the endocrine status related to the estrous cycle and early pregnancy and by the action of LH, insulin, P4 and prostaglandins via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymańska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Cecylia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
9
|
Zhou C, Zhang Y, Yang S, He P, Wu Q, Ye Z, Liu M, Zhang Y, Li R, Liu C, Jiang J, Hou FF, Nie J, Qin X. Associations between visceral adiposity index and incident nephropathy outcomes in diabetic patients: Insights from the ACCORD trial. Diabetes Metab Res Rev 2023; 39:e3602. [PMID: 36546623 DOI: 10.1002/dmrr.3602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
AIMS Visceral adiposity index (VAI) was a reliable marker for visceral adiposity accumulation and dysfunction. The association between VAI and nephropathy outcomes remains uncertain in patients with type 2 diabetes (T2DM). We aimed to evaluate the longitudinal relationships between VAI and incident nephropathy outcomes in T2DM patients. MATERIALS AND METHODS Ten thousand one hundred and thirty two participants with T2DM from the ACCORD trial were included in the present study. Cumulative average VAI based on VAI measurements at baseline and follow-up was used to represent long-term VAI status. The primary outcome was the incident composite nephropathy outcome defined as: (1) serum creatinine doubling or >20 ml/min decrease in eGFR; or (2) development of macro-albuminuria; or (3) renal failure or end stage kidney disease (dialysis) or serum creatinine >3.3 mg/dl. RESULTS During 26,168 person-years follow-up duration, 6094 (60.1%) participants developed the incident composite nephropathy outcome. When assessing cumulative average VAI as quartiles, compared with those in the 1-2 quartiles (<2.6), a significantly higher risk of incident composite nephropathy outcomes was observed among participants in the 3-4 quartiles (≥2.6, adjusted HR: 1.09, 95% CI: 1.01, 1.18). Moreover, the positive association was consistent in participants with or without single abnormal VAI components, including general obesity, abdominal obesity, elevated triglycerides, and low high-density lipoprotein cholesterol, or with different numbers of abnormal VAI components. Additionally, the positive association was stronger in participants with cumulative average systolic blood pressure <130 mmHg (vs. ≥130 mmHg; p-interaction < 0.001). CONCLUSIONS In T2DM patients, higher cumulative average VAI was associated with a higher risk of incident composite nephropathy outcomes. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, identifier: NCT00000620.
Collapse
Affiliation(s)
- Chun Zhou
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Zhang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sisi Yang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Panpan He
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qimeng Wu
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziliang Ye
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyi Liu
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Zhang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Biomedicine, Anhui Medical University, Hefei, Anhui, China
| | - Chengzhang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Biomedicine, Anhui Medical University, Hefei, Anhui, China
| | - Jianping Jiang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Effect of Berberis vulgaris Fruit Powder on Visfatin and Metabolic Profiles in Type 2 Diabetes Mellitus Patients: A Randomized, Double-Blind, Placebo-controlled Trial. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Helman T, Braidy N. Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders. Drugs Aging 2023; 40:33-48. [PMID: 36510042 DOI: 10.1007/s40266-022-00989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.
Collapse
Affiliation(s)
- Tessa Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
12
|
Chanvillard L, Tammaro A, Sorrentino V. NAD + Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease. Cells 2022; 12:21. [PMID: 36611814 PMCID: PMC9818486 DOI: 10.3390/cells12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Premature aging causes morphological and functional changes in the kidney, leading to chronic kidney disease (CKD). CKD is a global public health issue with far-reaching consequences, including cardio-vascular complications, increased frailty, shortened lifespan and a heightened risk of kidney failure. Dialysis or transplantation are lifesaving therapies, but they can also be debilitating. Currently, no cure is available for CKD, despite ongoing efforts to identify clinical biomarkers of premature renal aging and molecular pathways of disease progression. Kidney proximal tubular epithelial cells (PTECs) have high energy demand, and disruption of their energy homeostasis has been linked to the progression of kidney disease. Consequently, metabolic reprogramming of PTECs is gaining interest as a therapeutic tool. Preclinical and clinical evidence is emerging that NAD+ homeostasis, crucial for PTECs' oxidative metabolism, is impaired in CKD, and administration of dietary NAD+ precursors could have a prophylactic role against age-related kidney disease. This review describes the biology of NAD+ in the kidney, including its precursors and cellular roles, and discusses the importance of NAD+ homeostasis for renal health. Furthermore, we provide a comprehensive summary of preclinical and clinical studies aimed at increasing NAD+ levels in premature renal aging and CKD.
Collapse
Affiliation(s)
- Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, 1105AZ Amsterdam, The Netherlands
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
13
|
Rajput PK, Sharma JR, Yadav UCS. Cellular and molecular insights into the roles of visfatin in breast cancer cells plasticity programs. Life Sci 2022; 304:120706. [PMID: 35691376 DOI: 10.1016/j.lfs.2022.120706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Obesity has reached a pandemic proportion and is responsible for the augmentation of multimorbidity including certain cancers. With the rise in obesity amongst the female population globally, a concomitant increase in breast cancer (BC) incidence and related mortality has been observed. In the present review, we have elucidated the cellular and molecular insight into the visfatin-mediated cellular plasticity programs such as Epithelial to mesenchymal transition (EMT) and Endothelial to mesenchymal transition (EndoMT), and stemness-associated changes in BC cells. EMT and EndoMT are responsible for inducing metastasis in cancer cells and conferring chemotherapy resistance, immune escape, and infinite growth potential. Visfatin, an obesity-associated adipokine implicated in metabolic syndrome, has emerged as a central player in BC pathogenesis. Several studies have indicated the presence of visfatin in the tumor microenvironment (TME) where it augments EMT and EndoMT of BC cells. Further, Visfatin also modulates the TME by acting on the tumor stroma cells such as adipocytes, infiltrated immune cells, and adipose-associated stem cells that secrete factors such as cytokines, and extracellular vesicles responsible for augmenting cellular plasticity program. Visfatin induced altered metabolism of the cancer cells and molecular determinants such as non-coding RNAs involved in EMT and EndoMT have been discussed. We have also highlighted specific therapeutic targets that can be exploited for the development of effective BC treatment. Taken together, these advanced understandings of cellular and molecular insight into the visfatin-mediated cellular plasticity programs may stimulate the development of better approaches for the prevention and therapy of BC, especially in obese patients.
Collapse
Affiliation(s)
- Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Umesh C S Yadav
- Special Center for Molecular medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
14
|
Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. Int J Mol Sci 2021; 22:ijms22031444. [PMID: 33535537 PMCID: PMC7867092 DOI: 10.3390/ijms22031444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adiposity is associated with an increased risk of various types of carcinoma. One of the plausible mechanisms underlying the tumor-promoting role of obesity is an aberrant secretion of adipokines, a group of hormones secreted from adipose tissue, which have exhibited both oncogenic and tumor-suppressing properties in an adipokine type- and context-dependent manner. Increasing evidence has indicated that these adipose tissue-derived hormones differentially modulate cancer cell-specific metabolism. Some adipokines, such as leptin, resistin, and visfatin, which are overproduced in obesity and widely implicated in different stages of cancer, promote cellular glucose and lipid metabolism. Conversely, adiponectin, an adipokine possessing potent anti-tumor activities, is linked to a more favorable metabolic phenotype. Adipokines may also play a pivotal role under the reciprocal regulation of metabolic rewiring of cancer cells in tumor microenvironment. Given the fact that metabolic reprogramming is one of the major hallmarks of cancer, understanding the modulatory effects of adipokines on alterations in cancer cell metabolism would provide insight into the crosstalk between obesity, adipokines, and tumorigenesis. In this review, we summarize recent insights into putative roles of adipokines as mediators of cellular metabolic rewiring in obesity-associated tumors, which plays a crucial role in determining the fate of tumor cells.
Collapse
|
15
|
Balachandiran M, Bobby Z, Dorairajan G, Gladwin V, Vinayagam V, Packirisamy RM. Decreased maternal serum adiponectin and increased insulin-like growth factor-1 levels along with increased placental glucose transporter-1 expression in gestational diabetes mellitus: Possible role in fetal overgrowth. Placenta 2020; 104:71-80. [PMID: 33285436 DOI: 10.1016/j.placenta.2020.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The placental glucose transporter - 1 (GLUT-1) is involved in the transplacental glucose transport to the fetus. GLUT-1 expressions are increased in diabetic pregnancies and associated with altered fetal growth. However, the factors regulating the GLUT-1 expressions are largely unknown. We hypothesised that maternal adipokines and insulin-like growth factor-1 (IGF1) modulate the placental expressions of GLUT-1 through the activation of insulin/IGF-1 signalling which may contribute to a fetal overgrowth in GDM. METHODS Maternal blood, cord blood and placental samples were collected from GDM and control pregnant women (CPW). The biochemical parameters, IGF1, adipokines, and high sensitive C- reactive protein were measured. We analysed the placental expressions of GLUT-1 and proteins related to insulin/IGF-1 signalling - insulin receptor -β, insulin receptor substrate - 1, phosphatidylinositol-3-kinase p110α, phospho Akt-1, phospho extracellular signal-regulated kinase 1/2, and nuclear factor-κB p65 in GDM and CPW. RESULTS Increased maternal IGF-1 and decreased adiponectin levels were found in the GDM women. Maternal IGF-1 levels were positively correlated, whereas adiponectin levels were negatively correlated with the birth weight of GDM newborns. Increased phosphorylation of Akt and ERK 1/2 was found in the placenta of GDM women. Placental expressions of GLUT-1 were significantly higher in the GDM women and positively correlated to the maternal IGF-1 levels in the GDM group. DISCUSSION Decreased maternal adiponectin and increased IGF-1 levels might have caused increased GLUT-1 expression via the increased activation of insulin/IGF-1 signalling in the placenta of GDM women which might have influenced the fetal growth.
Collapse
Affiliation(s)
- Manoharan Balachandiran
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Gowri Dorairajan
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Victorraj Gladwin
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Rajaa Muthu Packirisamy
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
16
|
Polyakova YV, Zavodovsky BV, Sivordova LE, Akhverdyan YR, Zborovskaya IA. Visfatin and Rheumatoid Arthritis: Pathogenetic Implications and Clinical Utility. Curr Rheumatol Rev 2020; 16:224-239. [DOI: 10.2174/1573397115666190409112621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Objective:
Analysis and generalization of data related to visfatin involvement in the
pathogenesis of inflammation at various stages of rheumatoid arthritis.
Data Synthesis:
Visfatin is an adipocytokine which has also been identified in non-adipose tissues.
It influences directly on the maturation of B cells, which are involved in autoantibody production
and T cell activation. Visfatin can promote inflammation via regulation of pro-inflammatory cytokines
including TNF, IL-1β and IL-6. The concentration of circulating visfatin in rheumatoid arthritis
patients is higher compared to healthy individuals. Several studies suggest that visfatin level is
associated with rheumatoid arthritis activity, and its elevation may precede clinical signs of the relapse.
In murine collagen-induced arthritis, visfatin levels were also found to be elevated both in
inflamed synovial cells and in joint vasculature. Visfatin blockers have been shown to confer fast
and long-term attenuation of pathological processes; however, most of their effects are transient.
Other factors responsible for hyperactivation of the immune system can participate in this process
at a later stage. Treatment of rheumatoid arthritis with a combination of these blockers and inhibitors
of other mediators of inflammation can potentially improve treatment outcomes compared to
current therapeutic strategies. Recent advances in the treatment of experimental arthritis in mice as
well as the application of emerging treatment strategies obtained from oncology for rheumatoid arthritis
management could be a source of novel adipokine-mediated anti-rheumatic drugs.
Conclusion:
The ongoing surge of interest in anticytokine therapy makes further study of visfatin
highly relevant as it may serve as a base for innovational RA treatment.
Collapse
Affiliation(s)
- Yulia V. Polyakova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Boris V. Zavodovsky
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Larisa E. Sivordova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Yuri R. Akhverdyan
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Irina A. Zborovskaya
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| |
Collapse
|
17
|
Samir N, Alyafrasi RM, Ashour SS, Shalaby S. Study of visfatin expression in acne patients in tissue and serum. Indian J Dermatol Venereol Leprol 2020; 88:70-73. [PMID: 32242871 DOI: 10.4103/ijdvl.ijdvl_856_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/01/2019] [Indexed: 11/04/2022]
Abstract
Background Acne is a chronic inflammatory disease of the pilosebaceous units, of multifactorial pathogenesis, one of which could be an adipokine such as visfatin. Aim The aim of this study was to study visfatin expression both in lesional skin and serum, of acne patients versus healthy controls. The secondary aim was to study the relationship of visfatin levels with dyslipidemia/metabolic syndrome. Methods This study included 30 patients with moderate and severe acne vulgaris and 30 age- and sex-matched healthy controls. Serum and tissue visfatin were estimated by enzyme-linked immune-sorbent assay. Clinical and laboratory examinations were done to assess the anthropometric data and various criteria of metabolic syndrome. Results Tissue and serum visfatin levels were significantly higher in patients as compared to healthy controls. Tissue visfatin levels were significantly higher than its serum levels in both patients and controls. Serum visfatin was significantly higher in overweight individuals. No correlations were found between tissue and serum visfatin levels in both patients and controls. Moreover, serum and tissue visfatin levels did not correlate to any of the lipid profile parameters or criteria of metabolic syndrome in acne patients. Limitations The study had a small sample size and did not localize the exact source of tissue visfatin. Polycystic ovary syndrome PCOS was not evaluated. Conclusion Visfatin is an important proinflammatory adipokine, with significantly higher expression in acne patients. Tissue rather than serum visfatin might play a key role in acne.
Collapse
Affiliation(s)
- Nesrin Samir
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R M Alyafrasi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sara S Ashour
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Suzan Shalaby
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Sepandar F, Daneshpazhooh M, Djalali M, Mohammadi H, Yaghubi E, Fakhri Z, Tavakoli H, Ghaedi E, Keshavarz A, Zarei M, Shahrbaf MA, Ghandi N, Darand M, Javanbakht MH. The effect of
l
‐carnitine supplementation on serum levels of omentin‐1, visfatin and SFRP5 and glycemic indices in patients with pemphigus vulgaris: A randomized, double‐blind, placebo‐controlled clinical trial. Phytother Res 2019; 34:859-866. [DOI: 10.1002/ptr.6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Farnaz Sepandar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Department of DermatologyTehran University of Medical Sciences Tehran Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical Sciences Isfahan Iran
| | - Elham Yaghubi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Zahra Fakhri
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Hajar Tavakoli
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | - Mahnaz Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| | | | - Narges Ghandi
- Autoimmune Bullous Diseases Research Center, Department of DermatologyTehran University of Medical Sciences Tehran Iran
| | - Mina Darand
- Student Research Committee, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohamad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Hormonal regulation of visfatin gene in avian Leghorn male hepatoma (LMH) cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110592. [PMID: 31669171 DOI: 10.1016/j.cbpa.2019.110592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Visfain has been extensively studied in mammals and has been shown to play an important role in obesity and insulin resistance. However, there is a paucity of information on visfatin regulation in non-mammalian species. After characterization of chicken visfatin gene, we undertook this study to determine its hormonal regulation in avian (non-mammalian) liver cells. Addition of 5 ng/mL TNFα, 100 ng/mL leptin, 1, 3, 10 or 100 ng/mL T3 for 24 h upregulated visfatin gene expression by 1.2, 1.8, 1.95, 1.75, 1.80, and 2.45 folds (P < .05), respectively, compared to untreated LMH cells. Administration of 10 ng/mL of orexin A significantly down regulated visfatin gene expression by 1.35 folds compared to control cells. In contrast, treatment with IL-6 or orexin B for 24 h did not influence visfatin mRNA abundance. These pro-inflammatory cytokines and obesity-related hormones modulate the expression of CRP, INSIG2, and nuclear orphan receptors. Hepatic CRP gene expression was significantly upregulated by IL-6, TNFα, orexin B, and T3 and down regulated by leptin and orexin A. LXR mRNA abundances were increased by orexin A, decreased by orexin B, and T3, and did not affected by IL6, TNFα, or leptin. The expression of FXR gene was induced by IL-6, leptin, and T3, but it was not influenced by TNFα, orexin A or B. CXR gene expression was up regulated by TNFα, leptin, orexin B, and T3, down regulated by 5 ng/mL orexin A, and did not affected by IL-6. INSIG2 mRNA levels were increased by TNFα (5 ng/mL), leptin (100 ng/mL), and T3 (1, 3, 10, and 100 ng/mL), decreased by orexin A, and remained unchanged with IL-6 or orexin B treatment. Together, this is the first report showing hormonal regulation of visfatin in avian hepatocyte cells and suggesting a potential role of CRP, INSIG2, and nuclear orphan receptor LXR, FXR, and CXR in mediating these hormonal effects.
Collapse
|
20
|
Singh M, Benencia F. Inflammatory processes in obesity: focus on endothelial dysfunction and the role of adipokines as inflammatory mediators. Int Rev Immunol 2019; 38:157-171. [DOI: 10.1080/08830185.2019.1638921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
21
|
Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20:381-395. [PMID: 30838484 DOI: 10.1007/s10522-019-09805-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) has been described as central coenzyme of redox reactions and is a key regulator of stress resistance and longevity. Aging is a multifactorial and irreversible process that is characterized by a gradual diminution in physiological functions in an organism over time, leading to development of age-associated pathologies and eventually increasing the probability of death. Ischemia is the lack of nutritive blood flow that causes damage and mortality that mostly occurs in various organs during aging. During the process of aging and related ischemic conditions, NAD+ levels decline and lead to nuclear and mitochondrial dysfunctions, resulting in age-related pathologies. The majority of studies have shown that restoring of NAD+ using supplementation with intermediates such as nicotinamide mononucleotide and nicotinamide riboside can be a valuable strategy for recovery of ischemic injury and age-associated defects. This review summarizes the molecular mechanisms responsible for the reduction in NAD+ levels during ischemic disorders and aging, as well as a particular focus is given to the recent progress in the understanding of NAD+ precursor's effects on aging and ischemia.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr S Vafaee
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.,Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Vahdat S. The complex effects of adipokines in the patients with kidney disease. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:60. [PMID: 30181742 PMCID: PMC6091131 DOI: 10.4103/jrms.jrms_1115_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/12/2018] [Accepted: 04/29/2018] [Indexed: 12/27/2022]
Abstract
Kidney diseases are categorized as the highest prevalent ones with worldwide noticeable incidence. They cause accelerated cardiovascular diseases and noticeable mortalities. Adipose tissue and its messengers, adipokines, are reported to have the highest relationship with end-stage renal diseases or chronic kidney diseases. Over recent years, with shifting of scientists’ mindset from a simple overview of adipose tissue as a fat store to the complex paradigm of this issue as a multipotential secretory organ, the importance of studies on this tissue has emerged.
Collapse
Affiliation(s)
- Sahar Vahdat
- Isfahan Kidney Diseases Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Tabassum A, Mahboob T. Role of peroxisome proliferator-activated receptor-gamma activation on visfatin, advanced glycation end products, and renal oxidative stress in obesity-induced type 2 diabetes mellitus. Hum Exp Toxicol 2018; 37:1187-1198. [PMID: 29441829 DOI: 10.1177/0960327118757588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study focused on the role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation on renal oxidative damages, serum visfatin, and advanced glycation end products (AGEs) in high-fat diet (HFD)-induced type 2 diabetes mellitus. Following the institutional animal ethics committee guidelines, Wistar rats were categorized into five groups: group 1: fed on a normal rat diet; group 2: HFD-induced obese rats (HFD for 8 weeks); group 3: HFD-fed rats treated with rosiglitazone (RSG; 3 mg/kg orally for 7 days); group 4: T2DM rats induced by HFD and low dose of streptozotocin (i.p. 35 mg/kg); group 5: T2DM rats treated with RSG (3 mg/kg orally for 7 days). Serum levels of AGEs and visfatin, renal damage, and oxidative stress were analyzed. Results showed that HFD-induced obesity and T2DM caused an elevated blood glucose, serum AGEs, visfatin, insulin, urea, creatinine, and tissue malondialdehyde, whereas a decreased catalase and superoxide dismutase activity were observed. The PPAR-γ activation via agonist restored these changes. Our findings suggest that AGEs and visfatin possess an important role in the progression of renal oxidative stress, which can be reduced by the PPAR-γ agonist that impede deleterious effects of HFD and HFD-induced T2DM on renal damage.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cytokines/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/enzymology
- Glycation End Products, Advanced/blood
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Kidney/drug effects
- Kidney/enzymology
- Lipid Peroxidation/drug effects
- Nicotinamide Phosphoribosyltransferase/blood
- Obesity/complications
- Oxidative Stress/drug effects
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Rats, Wistar
- Rosiglitazone/pharmacology
- Signal Transduction/drug effects
- Streptozocin
Collapse
Affiliation(s)
- A Tabassum
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - T Mahboob
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
24
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
25
|
Chen Y, Liang Y, Hu T, Wei R, Cai C, Wang P, Wang L, Qiao W, Feng L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp Ther Med 2017; 14:4181-4193. [PMID: 29104634 PMCID: PMC5658765 DOI: 10.3892/etm.2017.5098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway. Exogenous extra cellular Nampt has been reported to increase the synthesis of pro-fibrotic molecules in various types of renal cells. However, the role of endogenous Namptenzymatic activity in diabetic renal cells, particularly those associated with inflammation and fibrosis through the nuclear factor (NF)-κB p65 and sirtuin 1 (Sirt1) pathway is still unknown. In the present study, a possible mechanism by which endogenous Nampt upregulation affects the expression of pro-inflammatory and pro-fibrotic cytokines in vivo and in vitro, is reported. The present results demonstrate that the expression of vimentin and fibronectin was directly implicated in endogenous Nampt upregulation. The expression levels of Poly(ADP-ribose) polymerase-1, NF-κB p65, forkhead box protein O1 and B-cell lymphoma 2-like protein 4 were also significantly increased at 96 h compared with control group (P<0.01) respectively in response to endogenous Nampt upregulation. Furthermore, the expression level of Sirt1 was significantly reduced (P<0.05), and the NAD and NADH levels, and the NAD/NADH ratio are significantly altered in STZ-induced diabetic rats (P<0.01). Treatment with FK866 and nicotinamide mononucleotide (NMN) led to downregulation of vimentin and fibronectin, respectively. These results suggest a novel role of Nampt as a pro-inflammatory cytokine of mesangial fibrotic signaling. The Nampt-NF-κB p65 and Sirt1 signaling pathway serves a pivotal role in affecting the expression of fibrosis factors in diabetic nephropathy (DN) glomerular fibrosis processing. It is also suggested that prevention of endogenous Nampt upregulation may be critical in the treatment of DN pro-inflammatory fibrosis and NMN is likely to be a potential pharmacological agent for the treatment of resistant DN nephritic fibrosis.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yuzhen Liang
- Endocrinology Department, Diabetic Metabolic Center, First Affiliated Clinical Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingting Hu
- Scientific Experiment Center, Biotechnology School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Riming Wei
- Scientific Experiment Center, Biotechnology School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Congjie Cai
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ping Wang
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Lingyu Wang
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Wei Qiao
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Leping Feng
- Department of Nutrition and Health, Public Health School, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
26
|
El Samahi MH, Ismail NA, Matter RM, Selim A, Ibrahim AA, Nabih W. Study of Visfatin Level in Type 1 Diabetic Children and Adolescents. Open Access Maced J Med Sci 2017; 5:299-304. [PMID: 28698746 PMCID: PMC5503726 DOI: 10.3889/oamjms.2017.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Visfatin is an intracellular enzyme, known as nicotinamide phosphoribosyltransferase (Nampt) and pre-B-cell colony-enhancing factor (PBEF-1). It has insulin-mimetic effects and lowers plasma glucose levels. AIM The aim of the work was to assess serum concentration of Visfatin in type 1 diabetic children and adolescents and study its relationships with duration of diabetes, body mass index (BMI), glycemic control, insulin dosage, lipid profile and microvascular complications. MATERIAL AND METHODS Fifty children and adolescents with type 1 diabetes mellitus were recruited with 30 ages and gender-matched healthy subjects. They were subjected to history taking; anthropometric measurements and chronic diabetic complications were recorded if present. Laboratory analysis included urinary microalbumin, serum triglycerides, HDL, LDL, cholesterol, fasting blood glucose, glycosylated Hb (HbA1c) and serum visfatin which was measured with enzyme-linked immunosorbent assay. RESULTS Diabetic patients showed highly significant decrease in the level of visfatin compared to the control group (P = 0.0001). There was significant further decrease in visfatin level in diabetics with microalbuminuria (n = 13) compared to normoalbuminuric patients (n = 37) (P = 0.015). There was highly significant inverse correlation between visfatin level with age (r = -0.379, p = 0.007), BMI (r = -0.418, p = 0.003), waist circumference (r = -0.430, p = 0.002), hip circumference (r = -0.389, p = 0.005) and microalbuminuria (r = -0.323, p = 0.022). CONCLUSIONS Type 1 diabetic children and adolescents had a significantly lower visfatin level compared to controls. A marked decrease in the level of visfatin was shown in patients with microalbuminuria with an inverse correlation with BMI suggesting an important role of visfatin in the pathogenesis of type 1 diabetics and type 1 diabetic nephropathy.
Collapse
Affiliation(s)
- Mona H El Samahi
- Pediatrics Department and Pediatric Endocrinology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Randa M Matter
- Pediatrics Department and Pediatric Endocrinology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Selim
- Pediatrics Department, National Research Centre, Cairo, Egypt
| | | | - Walaa Nabih
- Pediatrics Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
27
|
Obesity and Cardiovascular Risk: Variations in Visfatin Gene Can Modify the Obesity Associated Cardiovascular Risk. Results from the Segovia Population Based-Study. Spain. PLoS One 2016; 11:e0153976. [PMID: 27166797 PMCID: PMC4864316 DOI: 10.1371/journal.pone.0153976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2016] [Indexed: 01/19/2023] Open
Abstract
Objectives Our aim was to investigate if genetic variations in the visfatin gene (SNPs rs7789066/ rs11977021/rs4730153) could modify the cardiovascular-risk (CV-risk) despite the metabolic phenotype (obesity and glucose tolerance). In addition, we investigated the relationship between insulin sensitivity and variations in visfatin gene. Material and Methods A population-based study in rural and urban areas of the Province of Segovia, Spain, was carried out in the period of 2001–2003 years. A total of 587 individuals were included, 25.4% subjects were defined as obese (BMI ≥30 Kg/m2). Results Plasma visfatin levels were significantly higher in obese subjects with DM2 than in other categories of glucose tolerance. The genotype AA of the rs4730153 SNP was significantly associated with fasting glucose, fasting insulin and HOMA-IR (Homeostasis model assessment-insulin resistance) after adjustment for gender, age, BMI and waist circumference. The obese individuals carrying the CC genotype of the rs11977021 SNP showed higher circulating levels of fasting proinsulin after adjustment for the same variables. The genotype AA of the rs4730153 SNP seems to be protective from CV-risk either estimated by Framingham or SCORE charts in general population; and in obese and non-obese individuals. No associations with CV-risk were observed for other studied SNPs (rs11977021/rs7789066). Conclusions In summary, this is the first study which concludes that the genotype AA of the rs4730153 SNP appear to protect against CV-risk in obese and non–obese individuals, estimated by Framingham and SCORE charts. Our results confirm that the different polymorphisms in the visfatin gene might be influencing the glucose homeostasis in obese individuals.
Collapse
|
28
|
Mascali A, Franzese O, Nisticò S, Campia U, Lauro D, Cardillo C, Di Daniele N, Tesauro M. Obesity and kidney disease: Beyond the hyperfiltration. Int J Immunopathol Pharmacol 2016; 29:354-63. [PMID: 27044633 DOI: 10.1177/0394632016643550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/23/2016] [Indexed: 01/13/2023] Open
Abstract
In industrialized countries, overweight and obesity account for approximately 13.8% and 24.9% of the kidney disease observed in men and women, respectively. Moreover, obesity-associated glomerulopathy is now considered as "an emerging epidemic." Kidney function can be negatively impacted by obesity through several mechanisms, either direct or indirect. While it is well established that obesity represents the leading risk factor for type 2 diabetes and hypertension, awareness that obesity is associated with direct kidney damage independently of hypertension and diabetes is still not widespread. In this paper we will discuss the emerging role of adipose tissue, particularly in the visceral depot, in obesity-induced chronic kidney damage.
Collapse
Affiliation(s)
- A Mascali
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - O Franzese
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Nisticò
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - U Campia
- MedStar Cardiovascular Research Network, Washington, DC, USA
| | - D Lauro
- Endocrinology Unit, University of Rome Tor Vergata, Rome, Italy
| | - C Cardillo
- Internal Medicine, Catholic University, Rome, Italy
| | - N Di Daniele
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - M Tesauro
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
29
|
Hsu CY, Huang PH, Chen TH, Chiang CH, Leu HB, Huang CC, Chen JW, Lin SJ. Increased Circulating Visfatin Is Associated With Progression of Kidney Disease in Non-Diabetic Hypertensive Patients. Am J Hypertens 2016; 29:528-36. [PMID: 26298010 DOI: 10.1093/ajh/hpv132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/20/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUD Declining renal function is an independent risk factor for all-cause mortality in cardiovascular disease. Visfatin has been described as a marker of inflammation and endothelial dysfunction, but whether circulating visfatin levels are predictive to a subsequent decline in renal function remains unclear. METHODS In total, 200 nondiabetic, non-proteinuric hypertensive outpatients with initial serum creatinine (Scr) ≤1.5 mg/dl were enrolled. Plasma visfatin concentration and endothelial function estimated by brachial artery flow-mediated dilatation (FMD) were determined in the study subjects. The primary endpoints were the occurrence of renal events including doubling of Scr, 25% loss of glomerular filtration rate (GFR) from baseline values, and the occurrence of end-stage renal disease during follow-up. RESULTS The mean annual rate of GFR decline (ΔGFR/y) was -1.26±2.76 ml/min/1.73 m(2) per year during follow-up (8.6±2.5 years). At baseline, plasma visfatin was negatively correlated with estimated GFR. In longitudinal analysis, the ΔGFR/y was correlated with visfatin, baseline GFR, FMD, systolic blood pressure, and fasting blood glucose (FBG). Multivariate analysis indicated that increased visfatin (r = -0.331, P <0.001), baseline GFR (r = -0.234, P = 0.001), FMD (r = 0.163, P = 0.015), and FBG (r = -0.160, P = 0.015) are independent predictors of ΔeGFR/y. Cox regression model analysis showed that visfatin (hazard ratio (HR), 1.09; 95% confidence interval (CI), 1.05-1.13, P <0.001), FBG (HR, 1.01; 95% CI, 1.00-1.02, P = 0.020), and FMD (HR, 0.87; 95% CI, 0.76-1.00, P = 0.049) were independently associated with the risk of developing future renal events. CONCLUSIONS Increased circulating visfatin are associated with subsequent decline in renal function in nondiabetic hypertensive patients.
Collapse
Affiliation(s)
- Chien-Yi Hsu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan;
| | - Tz-Heng Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hung Chiang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Bang Leu
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Chou Huang
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Nagy K, Nagaraju SP, Rhee CM, Mathe Z, Molnar MZ. Adipocytokines in renal transplant recipients. Clin Kidney J 2016; 9:359-73. [PMID: 27274819 PMCID: PMC4886901 DOI: 10.1093/ckj/sfv156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
In the last two decades, perceptions about the role of body fat have changed. Adipocytes modulate endocrine and immune homeostasis by synthesizing hundreds of hormones, known as adipocytokines. Many studies have been investigating the influences and effects of these adipocytokines and suggest that they are modulated by the nutritional and immunologic milieu. Kidney transplant recipients (KTRs) are a unique and relevant population in which the function of adipocytokines can be examined, given their altered nutritional and immune status and subsequent dysregulation of adipocytokine metabolism. In this review, we summarize the recent findings about four specific adipocytokines and their respective roles in KTRs. We decided to evaluate the most widely described adipocytokines, including leptin, adiponectin, visfatin and resistin. Increasing evidence suggests that these adipocytokines may lead to cardiovascular events and metabolic changes in the general population and may also increase mortality and graft loss rate in KTRs. In addition, we present findings on the interrelationship between serum adipocytokine levels and nutritional and immunologic status, and mechanisms by which adipocytokines modulate morbidity and outcomes in KTRs.
Collapse
Affiliation(s)
- Kristof Nagy
- Department of Transplantation and Surgery , Semmelweis University , Budapest , Hungary
| | | | - Connie M Rhee
- Harold Simmons Center for Chronic Disease Research and Epidemiology, Division of Nephrology and Hypertension , University of California Irvine , Orange, CA , USA
| | - Zoltan Mathe
- Department of Transplantation and Surgery , Semmelweis University , Budapest , Hungary
| | - Miklos Z Molnar
- Division of Nephrology, Department of Medicine , University of Tennessee Health Science Center , Memphis, TN , USA
| |
Collapse
|
31
|
Kacso AC, Bondor CI, Coman AL, Potra AR, Georgescu CE. Determinants of visfatin in type 2 diabetes patients with diabetic kidney disease: Relationship to inflammation, adiposity and undercarboxylated osteocalcin. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:217-25. [PMID: 26922969 DOI: 10.3109/00365513.2015.1137349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Visfatin is a proinflammatory molecule with possible actions on glucose metabolism. Interactions to bone metabolism and undercarboxylated osteocalcin (uOC) in diabetic patients (T2DP) with diabetic kidney disease (DKD) have not been reported. MATERIALS AND METHODS We included 51 incident T2DP with DKD. History, laboratory evaluation, anthropometry, visfatin, uOC were obtained. Fifteen T2DP without DKD were used as controls. RESULTS Visfatin was similar in DKD patients and controls: 1.56(0.97-3.03) versus 2.04(1.08-3.21) ng/mL, p = 0.51. In controls, visfatin positively correlated with diabetes duration (r = 0.63, p = 0.01) and negatively with uOC (r = -0.57, p = 0.03). In multivariate regression, diabetes duration remained significant (p = 0.01). In patients with DKD, visfatin was positively linked to C reactive protein (r = 0.27, p = 0.05), tricipital skin fold (TSF) (r = 0.41, p = 0.004) and leukocytes (r = 0.37, p = 0.01); the latter two parameters predicted visfatin in multivariate model (p = 0.001). In normoalbuminuric patients, visfatin was linked to body mass index (r = 0.32, p = 0.04), waist circumference (r = 0.42, p < 0.0001), LDL cholesterol (r = 0.33, p = 0.03), serum glucose (r = 0.36, p = 0.03) and glycated hemoglobin (r = 0.41, p = 0.007); there was a trend towards negative correlation to uOC (r = -0.28, p = 0.07); only glycaemia remained significant in multivariate analysis (p = 0.04). Albuminuric patients displayed a positive correlation of visfatin to waist to hip ratio (r = 0.41, p = 0.04) and leukocytes (r = 0.56, p = 0.04); the latter remained significant in multivariate regression (p = 0.005). CONCLUSION The main determinant of visfatin in T2D patients with DKD is inflammation; in normoalbuminuric patients, a positive link to adiposity and altered glycemic control and a trend towards a negative correlation to uOC was observable; the latter relationship was evident in patients without DKD.
Collapse
Affiliation(s)
- Alex C Kacso
- a University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj , Cluj Napoca
| | - Cosmina I Bondor
- b Department of Informatics and Biostatistics , University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj , Cluj Napoca , Romania
| | - Anca L Coman
- c Department of Nephrology , University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj , Cluj Napoca , Romania
| | - Alina R Potra
- c Department of Nephrology , University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj , Cluj Napoca , Romania
| | - Carmen E Georgescu
- d Department of Endocrinology , University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj , Cluj Napoca , Romania
| |
Collapse
|
32
|
El-Shishtawy SH, Mosbah O, Sherif N, Metwaly A, Hanafy A, Kamel L. Association between serum visfatin and carotid atherosclerosis in diabetic and non-diabetic patients on maintenance hemodialysis. Electron Physician 2016; 8:1966-72. [PMID: 27054006 PMCID: PMC4821312 DOI: 10.19082/1966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/28/2016] [Indexed: 01/26/2023] Open
Abstract
Introduction Adipose tissue releases bioactive factors termed adipokines. Visfatin is an adipokine that plays an active role promoting vascular inflammation and atherosclerosis. The purpose of this study was to determine the association between serum visfatin levels and carotid atherosclerosis in diabetic and non-diabetic patients on maintenance hemodialysis (HD) in order to clarify the role of serum visfatinas, a risk factor for cardiovascular complications in HD patients. Methods Forty patients on maintenance hemodialysis were enrolled in this case-control study in 2015. They were subdivided into two groups, i.e., a diabetic group (n = 20) and a non-diabetic group (n = 20). Twenty healthy subjects who were age and gender matched were included as a control group. Carotid Duplex studies were performed on all patients, and serum visfatin was determined by a competitive enzyme immunoassay. Results HD patients showed a highly significant increase in serum visfatin, urea, creatinine, Ca×Ph, K, fasting glucose, triglycerides, LDL levels, and a significant decrease in eGFR, Na, HDL, and Hb compared to the control group. Also, serum visfatin levels showed a highly significant increase in the diabetic HD group compared to both the non-diabetic HD and control groups. Serum visfatin showed a highly significant increase in non-diabetic HD patients compared to the control group. Carotid intima-media thickness (IMT) showed a highly significant increase in HD group compared to the control group. Serum visfatin correlated positively with serum urea, creatinine, glucose, and IMT, but it was negatively correlated with eGFR, Na, and HDL Conclusion We concluded that serum visfatin is increased in HD patients with and without diabetes. Moreover, its association with IMT may be involved in the pathogenesis of atherosclerosis in CRF patients.
Collapse
Affiliation(s)
| | - Osama Mosbah
- Nephrology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Nevine Sherif
- Nephrology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amna Metwaly
- Intensive Care Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amr Hanafy
- Cardiology Department, Aswan University, Aswan, Egypt
| | - Laila Kamel
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
33
|
Rodrigues KF, Pietrani NT, Bosco AA, Ferreira CN, Sandrim VC, Gomes KB. Visfatin levels are decreased in advanced stages of diabetic nephropathy. Ren Fail 2015; 37:1529-30. [PMID: 26335623 DOI: 10.3109/0886022x.2015.1074520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kathryna F Rodrigues
- a Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Nathália T Pietrani
- a Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Adriana A Bosco
- b Santa Casa de Belo Horizonte , Belo Horizonte , Minas Gerais , Brazil
| | - Cláudia N Ferreira
- c Colégio Técnico - COLTEC, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Valéria C Sandrim
- d Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho , Botucatu, São Paulo , Brazil , and
| | - Karina B Gomes
- a Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil .,e Faculdade de Farmácia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
34
|
Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 2015. [PMID: 26215259 DOI: 10.1038/nrendo.2015.117] [Citation(s) in RCA: 487] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions and is a substrate for NAD-dependent enzymes. In various metabolic disorders and during ageing, levels of NAD are decreased. Through its NAD-biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic function, extracellular NAMPT (eNAMPT) has cytokine-like activity. Abnormal levels of eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes involved in the pathogenesis of obesity and related disorders such as nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell metabolism, is often overexpressed in tumour tissues and is an experimental target for antitumour therapies. In this Review, we discuss current understanding of the functions of NAMPT and highlight progress made in identifying the physiological role of NAMPT and its relevance in various human diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing.
Collapse
Affiliation(s)
- Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Susanne Schuster
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Theresa Gorski
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Tommaso de Giorgis
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| |
Collapse
|
35
|
The association between plasma visfatin levels and ED. Int J Impot Res 2015; 27:157-60. [PMID: 25693971 DOI: 10.1038/ijir.2015.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 11/08/2022]
Abstract
Visfatin was initially proposed as a clinical marker of atherosclerosis, endothelial dysfunction and vascular damage, with a potential prognostic value. It has been shown that endothelial dysfunction has an important role in ED. We aimed to determine the levels of visfatin in ED patients and characterize the relationship between visfatin levels and ED. This case-control study was conducted between October 2010 and August 2012, and 41 severe ED patients (group 1) and 36 healthy controls (group 2) were involved. Fasting visfatin level was measured with enzyme-linked immunosorbent assay method. The groups were compared in terms of some clinical (height, weight and body mass index) and biochemical parameters (glucose, triglycerides, cholesterol, low-density lipoprotein and high-density lipoprotein). No statistically significant difference in the visfatin levels was found between the patients and the controls (17, 5±14.4, 14, 9±7 and 9, respectively, P=0.399). No difference in the other clinical and biochemical parameters was observed between the two groups. No significant difference in the serum visfatin levels of ED patients compared with healthy patients was noticed. Further studies are needed to confirm the effect of visfatin on cardiometabolic diseases and ED, indeed.
Collapse
|
36
|
Peng Q, Jia SH, Parodo J, Ai Y, Marshall JC. Pre-B cell colony enhancing factor induces Nampt-dependent translocation of the insulin receptor out of lipid microdomains in A549 lung epithelial cells. Am J Physiol Endocrinol Metab 2015; 308:E324-33. [PMID: 25516545 DOI: 10.1152/ajpendo.00006.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-B cell colony-enhancing factor (PBEF) is a highly conserved pleiotropic protein reported to be an alternate ligand for the insulin receptor (IR). We sought to clarify the relationship between PBEF and insulin signaling by evaluating the effects of PBEF on the localization of the IRβ chain to lipid rafts in A549 epithelial cells. We isolated lipid rafts from A549 cells and detected the IR by immunoprecipitation from raft fractions or whole cell lysates. Cells were treated with rPBEF, its enzymatic product nicotinamide adenine dinucleotide (NAD), or the Nampt inhibitor daporinad to study the effect of PBEF on IRβ movement. We used coimmunoprecipitation studies in cells transfected with PBEF and IRβ constructs to detect interactions between PBEF, the IRβ, and caveolin-1 (Cav-1). PBEF was present in both lipid raft and nonraft fractions, whereas the IR was found only in lipid raft fractions of resting A549 cells. The IR-, PBEF-, and Cav-1-coimmunoprecipitated rPBEF treatment resulted in the movement of IRβ- and tyrosine-phosphorylated Cav-1 from lipid rafts to nonrafts, an effect that could be blocked by daporinad, suggesting that this effect was facilitated by the Nampt activity of PBEF. The addition of PBEF to insulin-treated cells resulted in reduced Akt phosphorylation of both Ser⁴⁷³ and Thr³⁰⁸. We conclude that PBEF can inhibit insulin signaling through the IR by Nampt-dependent promotion of IR translocation into the nonraft domains of A549 epithelial cells. PBEF-induced alterations in the spatial geometry of the IR provide a mechanistic explanation for insulin resistance in inflammatory states associated with upregulation of PBEF.
Collapse
Affiliation(s)
- Qianyi Peng
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Song Hui Jia
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jean Parodo
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - John C Marshall
- Department of Surgery, Department of Critical Care Medicine, and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
37
|
Liang NL, Men R, Zhu Y, Yuan C, Wei Y, Liu X, Yang L. Visfatin: an adipokine activator of rat hepatic stellate cells. Mol Med Rep 2014; 11:1073-8. [PMID: 25351242 DOI: 10.3892/mmr.2014.2795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/29/2014] [Indexed: 02/05/2023] Open
Abstract
The present study was conducted to investigate the effects of visfatin on the activation of hepatic stellate cells (HSC) and the possible underlying mechanism. HSC were isolated from the livers of Sprague‑Dawley rats by in situ perfusion of collagenase and pronase and a single‑step density Nycodenz gradient. The culture‑activated cells were serum‑starved and incubated with different concentrations of recombinant visfatin (0, 25, 50, 100 or 200 ng/ml) for 24 h. The expression of α‑smooth muscle actin (α‑SMA), collagen types I and III and connective tissue growth factor (CTGF) were then measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The results demonstrated that 100 and 200 ng/ml concentrations of visfatin induced the expression of α‑SMA in culture‑activated rat HSC, which was accompanied by a significant increase in collagen types I and III, as confirmed by western blot and RT‑qPCR analyses. In addition, treatment of the HSC with certain concentrations of visfatin upregulated the expression of CTGF. These findings suggested that visfatin activated HSC and induced the production of collagen types I and III.
Collapse
Affiliation(s)
- Ning-Lin Liang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruoting Men
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongjun Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cong Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
38
|
Abstract
The rapid growth in obesity worldwide contributes to an increase in metabolic syndrome and obesity-related kidney disease with an enhanced increased risk for chronic kidney disease, finally progressing to end-stage renal disease. Adipose tissue is a highly active endocrine organ secreting numerous factors that contribute to renal and cardiovascular complications. In renal damage, various adipokines are involved through mediating endothelial dysfunction, inducing oxidative stress and inflammation as well as stimulating renal sympathetic nervous activity, and it reduces cancellous bone but conversely increases cortical bone. Adipokines may also be involved in the development of renal anaemia. A balance exists between more protective adipokines (adiponectin) and factors mediating pathophysiological effects (angiotensin II, TNFα). Obesity may cause a disruption of this delicate balance, thereby inducing renal disease. Consequently, weight reduction and lifestyle changes affecting all components of the metabolic syndrome are essential to disrupt this vicious cycle.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
39
|
Abstract
Increasing incidence of chronic kidney disease (CKD) which leads to end-stage renal disease (ESRD) is one of the major health issues in the modern world and requires novel strategies for treatment. Adipose tissue has been recognized to have endocrine function and secretes a variety of hormones called adipokines. Several adipokines have been implicated in the pathogenesis of CKD and may have a strong impact as a risk factor for renal decline. The aim of this review is to provide an overview of the role of adipokines in the progression of CKD, with focus on recent experimental and clinical advances.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Center for Renal Translational Medicine, University of California San Diego/Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | | |
Collapse
|
40
|
The function of nicotinamide phosphoribosyltransferase in the heart. DNA Repair (Amst) 2014; 23:64-8. [PMID: 25277684 DOI: 10.1016/j.dnarep.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/30/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
In addition to its roles as a coenzyme and an electron transfer molecule, nicotinamide adenine dinucleotide (NAD+) has emerged as a substrate of sirtuins, a family of enzymes that control aging and metabolism. Nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the NAD+ salvage pathway, plays an important role in controlling the level of NAD+ and the activity of Sirt1 in the heart and the cardiomyocytes therein. Nampt protects the heart from ischemia and reperfusion injury by stimulating Sirt1. In this review, we summarize what is currently known regarding the function of Nampt in the heart.
Collapse
|
41
|
Gouranton E, Romier B, Marcotorchino J, Tourniaire F, Astier J, Peiretti F, Landrier JF. Visfatin is involved in TNFα-mediated insulin resistance via an NAD(+)/Sirt1/PTP1B pathway in 3T3-L1 adipocytes. Adipocyte 2014; 3:180-9. [PMID: 25068084 PMCID: PMC4110094 DOI: 10.4161/adip.28729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a well-known mediator of inflammation in the context of obesity in adipose tissue. Its action appears to be directly linked to perturbations of the insulin pathway, leading to the development of insulin resistance. Visfatin has been suspected to be linked to insulin sensitivity, but the mechanism involved is still partly unknown. The aim of this study was to evaluate the role of visfatin in the impairment of the insulin pathway by TNFα activity in 3T3-L1 adipocytes and to unveil the mechanisms involved in such impairment.
We demonstrated in 3T3-L1 adipocytes that visfatin was involved in TNFα-mediated insulin resistance in adipocytes. Indeed, after TNFα treatment in 3T3-L1 cells, visfatin was downregulated, leading to decreased nicotinamide adenine dinucleotide (NAD+) concentrations in cells. This decrease was followed by a decrease in Sirt1 activity, which was linked to an increase in PTP1B expression. The modulation of PTP1B by visfatin was likely responsible for the observed decreases in glucose uptake and Akt phosphorylation in 3T3-L1 adipocytes.
Here, we demonstrated a complete pathway involving visfatin, NAD+, Sirt1, and PTP1B that led to the perturbation of insulin signaling by TNFα in 3T3-L1 adipocytes.
Collapse
|
42
|
Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells. Biochim Biophys Acta Mol Basis Dis 2013; 1842:293-303. [PMID: 24287278 DOI: 10.1016/j.bbadis.2013.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and identification of new therapeutic targets is needed. Nicotinamide phosphoribosyltransferase (NAMPT) is both an extracellular and intracellular protein. Circulating NAMPT is increased in diabetics and in chronic kidney disease patients. The role of NAMPT in renal cell biology is poorly understood. NAMPT mRNA and protein were increased in the kidneys of rats with streptozotocin-induced diabetes. Immunohistochemistry localized NAMPT to glomerular and tubular cells in diabetic rats. The inflammatory cytokine TNFα increased NAMPT mRNA, protein and NAD production in cultured kidney human tubular cells. Exogenous NAMPT increased the mRNA expression of chemokines MCP-1 and RANTES. The NAMPT enzymatic activity inhibitor FK866 prevented these effects. By contrast, FK866 boosted TNFα-induced expression of MCP-1 and RANTES mRNA and endogenous NAMPT targeting by siRNA also had a proinflammatory effect. Furthermore, FK866 promoted tubular cell apoptosis in an inflammatory milieu containing the cytokines TNFα/IFNγ. In an inflammatory environment FK866 promoted tubular cell expression of the lethal cytokine TRAIL. These data are consistent with a role of endogenous NAMPT activity as an adaptive, protective response to an inflammatory milieu that differs from the proinflammatory activity of exogenous NAMPT. Thus, disruption of endogenous NAMPT function in stressed cells promotes tubular cell death and chemokine expression. This information may be relevant for the design of novel therapeutic strategies in DN.
Collapse
|
43
|
Briffa JF, McAinch AJ, Poronnik P, Hryciw DH. Adipokines as a link between obesity and chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F1629-36. [PMID: 24107418 DOI: 10.1152/ajprenal.00263.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipocytes secrete a number of bioactive adipokines that activate a variety of cell signaling pathways in central and peripheral tissues. Obesity is associated with the altered production of many adipokines and is linked to a number of pathologies. As an increase in body weight is directly associated with an increased risk for developing chronic kidney disease (CKD), there is significant interest in the link between obesity and renal dysfunction. Altered levels of the adipokines leptin, adiponectin, resistin, and visfatin can decrease the glomerular filtration rate and increase albuminuria, which are pathophysiological changes typical of CKD. Specifically, exposure of the glomerulus to altered adipokine levels can increase its permeability, fuse the podocytes, and cause mesangial cell hypertrophy, all of which alter the glomerular filtration rate. In addition, the adipokines leptin and adiponectin can act on tubular networks. Thus, adipokines can act on multiple cell types in the development of renal pathophysiology. Importantly, most studies have been performed using in vitro models, with future studies in vivo required to further elucidate the specific roles that adipokines play in the development and progression of CKD.
Collapse
Affiliation(s)
- Jessica F Briffa
- Dept. of Physiology, The Univ. of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | |
Collapse
|
44
|
Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev 2013; 24:433-42. [PMID: 23787158 DOI: 10.1016/j.cytogfr.2013.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 05/12/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
Abstract
Pre-B cell colony enhancing factor (PBEF) is regarded as a proinflammatory cytokine. Named for its first discovered function as a pre-B cell colony enhancing factor, it has since been found to have many other functions relating to cell metabolism, inflammation, and immune modulation. It has also been found to have intracellular and extracellular forms, with the two overlapping in function. Most of the intracellular functions of PBEF are due to its role as a nicotinamide phosphoribosyltransferase (Nampt). It has been found in human endothelial cells, where it is able to induce angiogenesis through upregulation of VEGF and VEGFR and secretion of MCP-1. In human umbilical endothelial cells, PBEF increases levels of the protease MMP 2/9. PBEF has also been found in a variety of immune cells other than B cells and has been shown to inhibit apoptosis of macrophages. Extracellular PBEF has been shown to increase inflammatory cytokines, such as TNF-α, IL-1β, IL-16, and TGF-β1, and the chemokine receptor CCR3. PBEF also increases the production of IL-6, TNF-α, and IL-1β in CD14(+) monocyctes, macrophages, and dendritic cells, enhances the effectiveness of T cells, and is vital to the development of both B and T lymphocytes. The purpose of this review is to summarize the recent advances in PBEF research.
Collapse
Affiliation(s)
- Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | | | | |
Collapse
|
45
|
Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm 2013; 2013:946427. [PMID: 23843684 PMCID: PMC3697395 DOI: 10.1155/2013/946427] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/20/2013] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is acknowledged as an endocrine organ that releases bioactive factors termed adipokines. Visfatin was initially identified as a novel adipokine with insulin-mimetic properties in mice. This adipokine was identical to two previously described molecules, namely, pre-B cell colony-enhancing factor (PBEF) and the enzyme nicotinamide phosphoribosyltransferase (Nampt). Enhanced circulating visfatin/Nampt levels have been reported in metabolic diseases, such as obesity and type 2 diabetes. Moreover, visfatin/Nampt circulating levels correlate with markers of systemic inflammation. In cardiovascular diseases, visfatin/Nampt was initially proposed as a clinical marker of atherosclerosis, endothelial dysfunction, and vascular damage, with a potential prognostic value. Nevertheless, beyond being a surrogate clinical marker, visfatin/Nampt is an active player promoting vascular inflammation, and atherosclerosis. Visfatin/Nampt effects on cytokine and chemokine secretion, macrophage survival, leukocyte recruitment by endothelial cells, vascular smooth muscle inflammation and plaque destabilization make of this adipokine an active factor in the development and progression of atherosclerosis. Further research is required to fully understand the mechanisms mediating the cellular actions of this adipokine and to better characterize the factors regulating visfatin/Nampt expression and release in all these pathologic scenarios. Only then, we will be able to conclude whether visfatin/Nampt is a therapeutical target in cardiometabolic diseases.
Collapse
|
46
|
Abstract
Pyridine nucleotides (PNs), such as NAD(H) and NADP(H), mediate electron transfer in many catabolic and anabolic processes. In general, NAD(+) and NADP(+) receive electrons to become NADH and NADPH by coupling with catabolic processes. These electrons are utilized for biologically essential reactions such as ATP production, anabolism and cellular oxidation-reduction (redox) regulation. Thus, in addition to ATP, NADH and NADPH could be defined as high-energy intermediates and "molecular units of currency" in energy transfer. We discuss the significance of PNs as energy/electron transporters and signal transducers, in regulating cell death and/or survival processes. In the first part of this review, we describe the role of NADH and NADPH as electron donors for NADPH oxidases (Noxs), glutathione (GSH), and thioredoxin (Trx) systems in cellular redox regulation. Noxs produce superoxide/hydrogen peroxide yielding oxidative environment, whereas GSH and Trx systems protect against oxidative stress. We then describe the role of NAD(+) and NADH as signal transducers through NAD(+)-dependent enzymes such as PARP-1 and Sirt1. PARP-1 is activated by damaged DNA in order to repair the DNA, which attenuates energy production through NAD(+) consumption; Sirt1 is activated by an increased NAD(+)/NADH ratio to facilitate signal transduction for metabolic adaption as well as stress responses. We conclude that PNs serve as an important interface for distinct cellular responses, including stress response, energy metabolism, and cell survival/death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Cardiovascular Research Institute, UMDNJ-Newark, 185 S Orange Ave, MSB G609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
47
|
Abstract
Nicotinamide phosphoribosyltransferase is the rate-limiting enzyme that catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide from nicotinamide. This protein was originally cloned as a putative pre-B cell colony-enhancing factor and also found to be a visceral fat-derived adipokine (visfatin). As a multifunctional protein, visfatin plays an important role in immunity, metabolism, aging, inflammation, and responses to stress. Visfatin also participates in several pathophysiological processes contributing to cardio-cerebro-vascular diseases, including hypertension, atherosclerosis, ischemic heart disease, and ischemic stroke. However, whether visfatin is a friend or a foe in these diseases remains uncertain. This brief review focuses on the current understanding of the complex role of visfatin in the cardio-cerebro-vascular system under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | |
Collapse
|
48
|
Lim S, Choi SH, Shin H, Cho BJ, Park HS, Ahn BY, Kang SM, Yoon JW, Jang HC, Kim YB, Park KS. Effect of a dipeptidyl peptidase-IV inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats. PLoS One 2012; 7:e35007. [PMID: 22493727 PMCID: PMC3320861 DOI: 10.1371/journal.pone.0035007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/08/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. METHODS AND FINDINGS Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. CONCLUSIONS Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hayley Shin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bong Jun Cho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Yong Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
49
|
Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, De-Álvaro F, Navarro-González JF. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 2012; 3:7-18. [PMID: 22253941 PMCID: PMC3258536 DOI: 10.4239/wjd.v3.i1.7] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading to the development and progression of renal injury are not well known. Therefore, it is very important to find new pathogenic pathways to provide opportunities for early diagnosis and targets for novel treatments. At the present time, we know that activation of innate immunity with development of a chronic low grade inflammatory response is a recognized factor in the pathogenesis of diabetic nephropathy. Numerous experimental and clinical studies have shown the participation of different inflammatory molecules and pathways in the pathophysiology of this complication.
Collapse
Affiliation(s)
- Desirée Luis-Rodríguez
- Desirée Luis-Rodríguez, Alberto Martínez-Castelao, José Luis Górriz, Fernando de Álvaro, Juan F Navarro-González, Grupo Español para el Estudio de la Nefropatía Diabética (GEENDIAB), Spain
| | | | | | | | | |
Collapse
|
50
|
Akbarzadeh S, Nabipour I, Jafari SM, Movahed A, Motamed N, Assadi M, Hajian N. Serum visfatin and vaspin levels in normoglycemic first-degree relatives of Iranian patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2012; 95:132-8. [PMID: 22024288 DOI: 10.1016/j.diabres.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 09/11/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
Abstract
AIM To investigate circulating visfatin and vaspin levels in first-degree relatives of subjects with type 2 diabetes mellitus (FDRs) who frequently have higher value of HOMA-IR and beta cell dysfunction. METHODS Serum visfatin and vaspin concentrations were measured in 179 Iranian subjects (90 normoglycemic FDRs and 89 age- and sex-matched healthy controls) using enzyme-linked immunosorbent assay (ELISA) methods. RESULT Serum visfatin levels were significantly lower in the FDRs when compared to the controls (1.71±0.93 ng/ml versus 2.69±2.02 ng/ml, p=0.0001). However, no significant difference was found in serum vaspin concentrations between the FDRs and the controls (0.452±0.254 ng/ml versus 0.409±0.275 ng/ml, p>0.05). In multiple logistic regression analysis, the FDRs showed a significant association with lower visfatin levels after adjustments for age, sex, Body Mass Index, systolic and diastolic blood pressures, lipid profile, blood glucose levels and HOMA-IR [odds ratios (OR)=1.71, 95% confidence interval (1.30-2.25); p<0.0001]. CONCLUSION The FDRs showed a significant association with lower visfatin levels. The observed lower circulating visfatin levels in FDRs may suggest a pathophysiological role for visfatin in beta cell dysfunction in this group.
Collapse
Affiliation(s)
- Samad Akbarzadeh
- Department of Endocrine and Metabolic Diseases, The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini St, Bushehr 7514763448, Iran
| | | | | | | | | | | | | |
Collapse
|