1
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
2
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Poll BG, Xu J, Gupta K, Shubitowski TB, Pluznick JL. Olfactory receptor 78 modulates renin but not baseline blood pressure. Physiol Rep 2021; 9:e15017. [PMID: 34549531 PMCID: PMC8455973 DOI: 10.14814/phy2.15017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Olfactory receptor 78 (Olfr78) is a G protein-coupled receptor (GPCR) that is expressed in the juxtaglomerular apparatus (JGA) of the kidney as well as the peripheral vasculature, and is activated by gut microbial metabolites. We previously reported that Olfr78 plays a role in renin secretion in isolated glomeruli, and that Olfr78 knockout (KO) mice have lower plasma renin activity. We also noted that in anesthetized mice, Olfr78KO appeared to be hypotensive. In this study, we used radiotelemetry to determine the role of Olfr78 in chronic blood pressure regulation. We found that the blood pressure of Olfr78KO mice is not significantly different than that of their WT counterparts at baseline, or on high- or low-salt diets. However, Olfr78KO mice have depressed heart rates on high-salt diets. We also report that Olfr78KO mice have lower renin protein levels associated with glomeruli. Finally, we developed a mouse where Olfr78 was selectively knocked out in the JGA, which phenocopied the lower renin association findings. In sum, these experiments suggest that Olfr78 modulates renin, but does not play an active role in blood pressure regulation at baseline, and is more likely activated by high levels of short chain fatty acids or hypotensive events. This study provides important context to our knowledge of Olfr78 in BP regulation.
Collapse
Affiliation(s)
- Brian G. Poll
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jiaojiao Xu
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kunal Gupta
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tyler B. Shubitowski
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Oakland University William Beaumont School of MedicineRochesterMichiganUSA
| | - Jennifer L. Pluznick
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Piñol RA, Mogul AS, Hadley CK, Saha A, Li C, Škop V, Province HS, Xiao C, Gavrilova O, Krashes MJ, Reitman ML. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab 2021; 33:1389-1403.e6. [PMID: 34038711 PMCID: PMC8266747 DOI: 10.1016/j.cmet.2021.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022]
Abstract
The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.
Collapse
Affiliation(s)
- Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Allison S Mogul
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen K Hadley
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atreyi Saha
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haley S Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165907. [DOI: 10.1016/j.bbadis.2020.165907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
6
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
7
|
Solinski HJ, Dranchak P, Oliphant E, Gu X, Earnest TW, Braisted J, Inglese J, Hoon MA. Inhibition of natriuretic peptide receptor 1 reduces itch in mice. Sci Transl Med 2020; 11:11/500/eaav5464. [PMID: 31292265 DOI: 10.1126/scitranslmed.aav5464] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Patricia Dranchak
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erin Oliphant
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Thomas W Earnest
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - John Braisted
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - James Inglese
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
DeLalio LJ, Hahn S, Katayama PL, Wenner MM, Farquhar WB, Straub AC, Stocker SD. Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H1346-H1355. [PMID: 32302491 PMCID: PMC7346535 DOI: 10.1152/ajpheart.00601.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/18/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Renovascular hypertension is characterized by activation of the renin-angiotensin-aldosterone system, blunted natriuretic responses, and elevated sympathetic nerve activity. Excess dietary salt intake exaggerates arterial blood pressure (ABP) in multiple models of experimental hypertension. The present study tested whether a high-salt diet exaggerated ABP and vascular dysfunction in a 2-kidney, 1-clip (2K1C) murine model. Male C57BL/6J mice (8-12 wk) were randomly assigned, and fed a 0.1% or 4.0% NaCl diet, and instrumented with telemetry units to measure ABP. Then, the 2K1C model was produced by placing a cuff around the right renal artery. Systolic, diastolic, and mean ABP were significantly higher in mice fed 4.0% vs. 0.1% NaCl at 1 wk but not after 3 wk. Interestingly, 2K1C hypertension progressively increased arterial pulse pressure in both groups; however, the magnitude was significantly greater in mice fed 4.0% vs. 0.1% NaCl at 3 wk. Moreover, pulse wave velocity was significantly greater in 2K1C mice fed 4.0% vs. 0.1% NaCl diet or sham-operated mice fed either diet. Histological assessment of aortas indicated no structural differences among groups. Finally, endothelium-dependent vasodilation was significantly and selectively attenuated in the aorta but not mesenteric arteries of 2K1C mice fed 4.0% NaCl vs. 0.1% NaCl or sham-operated control mice. The findings suggest that dietary salt loading transiently exaggerates 2K1C renovascular hypertension but promotes chronic aortic stiffness and selective aortic vascular dysfunction.NEW & NOTEWORTHY High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott Hahn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pedro L Katayama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight 2020; 5:130553. [PMID: 32255763 DOI: 10.1172/jci.insight.130553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.
Collapse
Affiliation(s)
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Leah Liu
- McGill University, Montreal, Quebec, Canada
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szilvia Heja
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald E Kohan
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML. Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 2019; 17:e3000161. [PMID: 30822301 PMCID: PMC6415873 DOI: 10.1371/journal.pbio.3000161] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1−/−;Adora2a−/−;Adora2b−/−;Adora3−/− (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5′-monophosphate (AMP)–induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature. A study of mice lacking all four adenosine receptors shows that while they mediate effects of uridine, inosine and adenosine, these receptors are dispensable for growth, metabolism, breeding, and body temperature regulation. This suggests that extracellular adenosine is a damage or danger signal, rather than a major regulator of baseline physiology. Elevated extracellular adenosine generally indicates metabolic stress or cell damage and regulates many aspects of physiology. We studied “QKO” mice lacking all four adenosine receptors. Young QKO mice do not appear obviously ill, but do show decreased survival later in life. QKO mice demonstrate that adenosine receptors are not required for growth, metabolism, breeding, and body temperature regulation. QKO mice are missing the pharmacologic effects of adenosine on body temperature, heart rate, and blood pressure. Therefore, all of these effects are mediated by the four adenosine receptors. We also determined that the hypothermic effects of a pharmacologic adenosine kinase inhibitor (A134974), uridine, or inosine each requires adenosine receptors. The uridine-induced hypothermia is likely due to its inhibition of adenosine uptake into cells. QKO mouse physiology appears to be the sum of the individual knockout mice, without evidence for synergy, indicating that the actions of the four adenosine receptors are generally complementary.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Piñol RA, Zahler SH, Li C, Saha A, Tan BK, Škop V, Gavrilova O, Xiao C, Krashes MJ, Reitman ML. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci 2018; 21:1530-1540. [PMID: 30349101 PMCID: PMC6203600 DOI: 10.1038/s41593-018-0249-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/28/2018] [Indexed: 01/01/2023]
Abstract
Bombesin-like receptor 3 (BRS3) is an orphan G protein-coupled receptor that regulates energy homeostasis and heart rate. We report that acute activation of Brs3-expressing neurons in the dorsomedial hypothalamus (DMHBrs3) increased body temperature (Tb), brown adipose tissue temperature, energy expenditure, heart rate and blood pressure, with no effect on food intake or physical activity. Conversely, activation of Brs3 neurons in the paraventricular nucleus of the hypothalamus (PVHBrs3) had no effect on Tb or energy expenditure, but suppressed food intake. Inhibition of DMHBrs3 neurons decreased Tb and energy expenditure, suggesting a necessary role in Tb regulation. We found that the preoptic area provides major input (excitatory and inhibitory) to DMHBrs3 neurons. Optogenetic stimulation of DMHBrs3 projections to the raphe pallidus (RPa) increased Tb. Thus, DMHBrs3→RPa neurons regulate Tb, energy expenditure and heart rate, and PVHBrs3 neurons regulate food intake. Brs3 expression is a useful marker for delineating energy metabolism regulatory circuitry.
Collapse
Affiliation(s)
- Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sebastian H Zahler
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Atreyi Saha
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon K Tan
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Poulsen CB, Wang T, Assersen K, Iversen NK, Damkjaer M. Does mean arterial blood pressure scale with body mass in mammals? Effects of measurement of blood pressure. Acta Physiol (Oxf) 2018; 222:e13010. [PMID: 29210189 DOI: 10.1111/apha.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023]
Abstract
For at least the last 30 years, it has been discussed whether mean arterial blood pressure (MAP) is independent of body mass or whether it increases in accordance with the vertical height between the heart and the brain. The debate has centred on the most appropriate mathematical models for analysing allometric scaling and phylogenetic relationships; there has been previously little focus on evaluating the validity of underlying physiological data. Currently, the 2 most comprehensive scaling analyses are based on data from 47 species of mammals, based on 114 references. We reviewed all available references to determine under which physiological conditions MAP had been recorded. In 44 (38.6%) of the cited references, MAP was measured in anaesthetized animals. Data from conscious animals were reported in 59 (51.8%) of references; of these, 3 (2.6%) were radiotelemetric studies. In 5 species, data were reported from both anaesthetized and conscious animals, and the mean difference in the MAP between these settings was 20 ± 29 mm Hg. From a literature search, we identified MAP measurements performed by radiotelemetry in 11 of the 47 species included in the meta-analyses. A Bland-Altman analysis showed a bias of 1 mm Hg with 95% confidence interval (from -35 to 36 mm Hg); that is, the limits of agreement between radiotelemetric studies and studies in restrained animals were double the supposed difference in the MAP between the mouse and elephant. In conclusion, the existing literature does not provide evidence for either a positive or neutral scaling of arterial pressure to body mass across taxa.
Collapse
Affiliation(s)
- C. B. Poulsen
- Department of Cardiology; Regional Hospital West Jutland; Herning Denmark
| | - T. Wang
- Department of Zoophysiology; Aarhus University; Aarhus Denmark
| | - K. Assersen
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
| | - N. K. Iversen
- Department of Zoophysiology; Aarhus University; Aarhus Denmark
- Center for Functionally Integrative Neuroscience; Institute of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - M. Damkjaer
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
- Department of Paediatrics; Kolding Hospital; Kolding Denmark
| |
Collapse
|
13
|
OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis. Sci Rep 2016; 6:37205. [PMID: 27853306 PMCID: PMC5112561 DOI: 10.1038/srep37205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
We investigated the role of oxidative stress-responsive kinase-1 (OSR1) and STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase (SPAK), upstream regulators of the Na+-K+-2Cl− cotransporter (NKCC1)—essential for spermatogenesis—in mouse models of male fertility. Global OSR1+/− gene mutations, but not global SPAK−/− or Sertoli cell (SC)-specific OSR1 gene knockout (SC-OSR1−/−), cause subfertility with impaired sperm function and are associated with reduced abundance of phosphorylated (p)-NKCC1 but increased p-SPAK expression in testicular tissue and spermatozoa. To dissect further in a SC-specific manner the compensatory effect of OSR1 and SPAK in male fertility, we generated SC-OSR1−/− and SPAK−/− double knockout (DKO) male mice. These are infertile with defective spermatogenesis, presenting a SC-only-like syndrome. Disrupted meiotic progression and increased germ cell apoptosis occurred in the first wave of spermatogenesis. The abundance of total and p-NKCC1 was significantly decreased in the testicular tissues of DKO mice. These results indicate that OSR1 and SPAK cooperatively regulate NKCC1-dependent spermatogenesis in a SC-restricted manner.
Collapse
|
14
|
Poulsen CB, Damkjær M, Hald BO, Wang T, Holstein-Rathlou NH, Jacobsen JCB. Vascular flow reserve as a link between long-term blood pressure level and physical performance capacity in mammals. Physiol Rep 2016; 4:4/11/e12813. [PMID: 27255360 PMCID: PMC4908491 DOI: 10.14814/phy2.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Mean arterial pressure (MAP) is surprisingly similar across different species of mammals, and it is, in general, not known which factors determine the arterial pressure level. Mammals often have a pronounced capacity for sustained physical performance. This capacity depends on the vasculature having a flow reserve that comes into play as tissue metabolism increases. We hypothesize that microvascular properties allowing for a large vascular flow reserve is linked to the level of the arterial pressure.To study the interaction between network properties and network inlet pressure, we developed a generic and parsimonious computational model of a bifurcating microvascular network where diameter and growth of each vessel evolves in response to changes in biomechanical stresses. During a simulation, the network develops well-defined arterial and venous vessel characteristics. A change in endothelial function producing a high precapillary resistance and thus a high vascular flow reserve is associated with an increase in network inlet pressure. Assuming that network properties are independent of body mass, and that inlet pressure of the microvascular network is a proxy for arterial pressure, the study provides a conceptual explanation of why high performing animals tend to have a high MAP.
Collapse
Affiliation(s)
- Christian B Poulsen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense C, Denmark
| | - Bjørn O Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
15
|
Bazúa-Valenti S, Castañeda-Bueno M, Gamba G. Physiological role of SLC12 family members in the kidney. Am J Physiol Renal Physiol 2016; 311:F131-44. [DOI: 10.1152/ajprenal.00071.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 12/30/2022] Open
Abstract
The solute carrier family 12, as numbered according to Human Genome Organisation (HUGO) nomenclature, encodes the electroneutral cation-coupled chloride cotransporters that are expressed in many cells and tissues; they play key roles in important physiological events, such as cell volume regulation, modulation of the intracellular chloride concentration, and transepithelial ion transport. Most of these family members are expressed in specific regions of the nephron. The Na-K-2Cl cotransporter NKCC2, which is located in the thick ascending limb, and the Na-Cl cotransporter, which is located in the distal convoluted tubule, play important roles in salt reabsorption and serve as the receptors for loop and thiazide diuretics, respectively (Thiazide diuretics are among the most commonly prescribed drugs in the world.). The activity of these transporters correlates with blood pressure levels; thus, their regulation has been a subject of intense research for more than a decade. The K-Cl cotransporters KCC1, KCC3, and KCC4 are expressed in several nephron segments, and their role in renal physiology is less understood but nevertheless important. Evidence suggests that they are involved in modulating proximal tubule glucose reabsorption, thick ascending limb salt reabsorption and collecting duct proton secretion. In this work, we present an overview of the physiological roles of these transporters in the kidney, with particular emphasis on the knowledge gained in the past few years.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - María Castañeda-Bueno
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| |
Collapse
|
16
|
Lateef DM, Xiao C, Brychta RJ, Diedrich A, Schnermann J, Reitman ML. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H891-8. [PMID: 26801314 DOI: 10.1152/ajpheart.00963.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.
Collapse
Affiliation(s)
- Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - André Diedrich
- Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jurgen Schnermann
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
17
|
Hübner CA, Schroeder BC, Ehmke H. Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle. Pflugers Arch 2015; 467:605-14. [DOI: 10.1007/s00424-014-1684-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
|
18
|
Orlov SN, Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension. BIOCHEMISTRY (MOSCOW) 2015; 79:1546-61. [DOI: 10.1134/s0006297914130070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch 2014; 467:565-76. [DOI: 10.1007/s00424-014-1668-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
|
20
|
Schreier B, Rabe S, Winter S, Ruhs S, Mildenberger S, Schneider B, Sibilia M, Gotthardt M, Kempe S, Mäder K, Grossmann C, Gekle M. Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor. Sci Rep 2014; 4:7430. [PMID: 25503263 PMCID: PMC4262830 DOI: 10.1038/srep07430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showed that EGFR is required for physiological homeostasis and function of heart and arteries in adult animals. We hypothesize that moderate high aldosterone/NaCl, at normal blood pressure, affects the cardiovascular system depending on cardiovascular EGFR. Therefore we performed an experimental series in male and female animals each, using a recently established mouse model with EGFR knockout in vascular smooth muscle cells and cardiomyocytes and determined the effects of a mild-high aldosterone-to-NaCl constellation on a.o. marker gene expression, heart size, systolic blood pressure, impulse conduction and heart rate. Our data show that (i) cardiac tissue of male but not of female mice is sensitive to mild aldosterone/NaCl treatment, (ii) EGFR knockout induces stronger cardiac disturbances in male as compared to female animals and (iii) mild aldosterone/NaCl treatment requires the EGFR in order to disturb cardiac tissue homeostasis whereas beneficial effects of aldosterone seem to be independent of EGFR.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sabrina Winter
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Bettina Schneider
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Sabine Kempe
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
21
|
Kolypetri P, Randell E, Van Vliet BN, Carayanniotis G. High salt intake does not exacerbate murine autoimmune thyroiditis. Clin Exp Immunol 2014; 176:336-40. [PMID: 24528002 DOI: 10.1111/cei.12286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2014] [Indexed: 01/02/2023] Open
Abstract
Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2(h4)) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549-2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases.
Collapse
Affiliation(s)
- P Kolypetri
- Division of Endocrinology, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada; Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | |
Collapse
|
22
|
Fraser SA, Davies M, Katerelos M, Gleich K, Choy SW, Steel R, Galic S, Mount PF, Kemp BE, Power DA. Activation of AMPK reduces the co-transporter activity of NKCC1. Mol Membr Biol 2014; 31:95-102. [PMID: 24702155 DOI: 10.3109/09687688.2014.902128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The co-transporter activity of Na(+)-K(+)-2Cl(-) 1 (NKCC1) is dependent on phosphorylation. In this study we show the energy-sensing kinase AMPK inhibits NKCC1 activity. Three separate AMPK activators (AICAR, Phenformin and A-769662) inhibited NKCC1 flux in a variety of nucleated cells. Treatment with A-769662 resulted in a reduction of NKCC1(T212/T217) phosphorylation, and this was reversed by treatment with the non-selective AMPK inhibitor Compound C. AMPK dependence was confirmed by treatment of AMPK null mouse embryonic fibroblasts, where A-769662 had no effect on NKCC1 mediated transport. AMPK was found to directly phosphorylate a recombinant human-NKCC1 N-terminal fragment (1-293) with the phosphorylated site identified as S77. Mutation of Serine 77 to Alanine partially prevented the inhibitory effect of A-769662 on NKCC1 activity. In conclusion, AMPK can act to reduce NKCC1-mediated transport. While the exact mechanism is still unclear there is evidence for both a direct effect on phosphorylation of S77 and reduced phosphorylation of T212/217.
Collapse
Affiliation(s)
- Scott A Fraser
- Institute for Breathing and Sleep, Kidney Laboratory , Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the past century clearly shows that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the regulation mechanism of renal potassium transport by the circadian clock is warranted to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
24
|
Ding B, Frisina RD, Zhu X, Sakai Y, Sokolowski B, Walton JP. Direct control of Na(+)-K(+)-2Cl(-)-cotransport protein (NKCC1) expression with aldosterone. Am J Physiol Cell Physiol 2013; 306:C66-75. [PMID: 24173102 DOI: 10.1152/ajpcell.00096.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sodium/potassium/chloride cotransporter (NKCC1) proteins play important roles in Na(+) and K(+) concentrations in key physiological systems, including cardiac, vascular, renal, nervous, and sensory systems. NKCC1 levels and functionality are altered in certain disease states, and tend to decline with age. A sensitive, effective way of regulating NKCC1 protein expression has significant biotherapeutic possibilities. The purpose of the present investigation was to determine if the naturally occurring hormone aldosterone (ALD) could regulate NKCC1 protein expression. Application of ALD to a human cell line (HT-29) revealed that ALD can regulate NKCC1 protein expression, quite sensitively and rapidly, independent of mRNA expression changes. Utilization of a specific inhibitor of mineralocorticoid receptors, eplerenone, implicated these receptors as part of the ALD mechanism of action. Further experiments with cycloheximide (protein synthesis inhibitor) and MG132 (proteasome inhibitor) revealed that ALD can upregulate NKCC1 by increasing protein stability, i.e., reducing ubiquitination of NKCC1. Having a procedure for controlling NKCC1 protein expression opens the doors for therapeutic interventions for diseases involving the mis-regulation or depletion of NKCC1 proteins, for example during aging.
Collapse
Affiliation(s)
- Bo Ding
- Department of Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida
| | | | | | | | | | | |
Collapse
|
25
|
Recruitment of Specificity Protein 1 by CpG hypomethylation upregulates Na+-K+-2Cl− cotransporter 1 in hypertensive rats. J Hypertens 2013; 31:1406-13; discussion 1413. [DOI: 10.1097/hjh.0b013e3283610fed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Gagnon KB, Delpire E. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am J Physiol Cell Physiol 2013; 304:C693-714. [PMID: 23325410 DOI: 10.1152/ajpcell.00350.2012] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
27
|
Orlov SN, Koltsova SV, Tremblay J, Baskakov MB, Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. Ann Med 2012; 44 Suppl 1:S111-8. [PMID: 22713139 DOI: 10.3109/07853890.2011.653395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-ceiling diuretics (HCD), known potent inhibitors of housekeeping Na(+),K(+),2Cl cotransporter (NKCC1) and renal-specific NKCC2, decrease [Cl(-)](i), hyperpolarize vascular smooth muscle cells (VSMC), and suppress contractions evoked by modest depolarization, phenylephrine, angiotensin II, and UTP. These actions are absent in nkcc1 (/) knock-out mice, indicating that HCD interact with NKCC1 rather than with other potential targets. These findings also suggest that VSMC-specific inhibitors of NKCC1 may be considered potential pharmacological therapeutic tools in treatment of hypertension. It should be underlined that side by side with attenuation of peripheral resistance and systemic blood pressure, HCD blocked myogenic tone (MT) in renal afferent arterioles. Keeping this in mind, attenuation of MT might be a mechanism underlying the prevalence of end-stage renal disease documented in hypertensive African-Americans with decreased NKCC1 activity and in hypertensive patients subjected to chronic HCD treatment. The role of NKCC1-mediated MT in protection of the brain, heart, and other encapsulated organs deserves further investigation.
Collapse
Affiliation(s)
- Sergei N Orlov
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Technôpole Angus, and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
28
|
Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na+-K+-2Cl− cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats. Hypertens Res 2012; 35:819-24. [DOI: 10.1038/hr.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Doblinger E, Höcherl K, Mederle K, Kattler V, Walter S, Hansen PB, Jensen B, Castrop H. Angiotensin AT1 receptor-associated protein Arap1 in the kidney vasculature is suppressed by angiotensin II. Am J Physiol Renal Physiol 2012; 302:F1313-24. [PMID: 22357923 DOI: 10.1152/ajprenal.00620.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Arap1 is a protein that interacts with angiotensin II type 1 (AT(1)) receptors and facilitates increased AT(1) receptor surface expression in vitro. In the present study, we assessed the tissue localization and regulation of Arap1 in vivo. Arap1 was found in various mouse organs, with the highest expression in the heart, kidney, aorta, and adrenal gland. Renal Arap1 protein was restricted to the vasculature and to glomerular mesangial cells and was absent from tubular epithelia. A similar localization was found in human kidneys. To test the hypothesis that angiotensin II may control renal Arap1 expression, mice were subjected to various conditions to alter the activity of the renin-angiotensin system. A high-salt diet (4% NaCl, 7 days) upregulated Arap1 expression in mice by 47% compared with controls (0.6% NaCl, P = 0.03). Renal artery stenosis (7 days) or water restriction (48 h) suppressed Arap1 levels compared with controls (-64 and -62% in the clipped and contralateral kidney, respectively; and -50% after water restriction, P < 0.01). Angiotensin II infusion (2 μg·kg(-1)·min(-1), 7 days) reduced Arap1 mRNA levels compared with vehicle by 29% (P < 0.01), whereas AT(1) antagonism (losartan, 30 mg·kg(-1)·day(-1), 7 days) enhanced Arap1 mRNA expression by 52% (P < 0.01); changes in mRNA were paralleled by Arap1 protein abundance. Experiments with hydralazine and epithelial nitric oxide synthase-/- mice further suggested that Arap1 expression changed in parallel with angiotensin II, rather than with blood pressure per se. Similar to in vivo, Arap1 mRNA and protein were suppressed by angiotensin II in a time- and dose-dependent manner in cultured mesangial cells. In summary, Arap1 is highly expressed in the renal vasculature, and its expression is suppressed by angiotensin II. Thus Arap1 may serve as a local modulator of vascular AT(1) receptor function in vivo.
Collapse
Affiliation(s)
- Elisabeth Doblinger
- Institute of Physiology, Univ. of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schnermann J, Briggs JP. Synthesis and secretion of renin in mice with induced genetic mutations. Kidney Int 2012; 81:529-38. [PMID: 22258323 DOI: 10.1038/ki.2011.451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The juxtaglomerular (JG) cell product renin is rate limiting in the generation of the bioactive octapeptide angiotensin II. Rates of synthesis and secretion of the aspartyl protease renin by JG cells are controlled by multiple afferent and efferent pathways originating in the CNS, cardiovascular system, and kidneys, and making critical contributions to the maintenance of extracellular fluid volume and arterial blood pressure. Since both excesses and deficits of angiotensin II have deleterious effects, it is not surprising that control of renin is secured by a complex system of feedforward and feedback relationships. Mice with genetic alterations have contributed to a better understanding of the networks controlling renin synthesis and secretion. Essential input for the setting of basal renin generation rates is provided by β-adrenergic receptors acting through cyclic adenosine monophosphate, the primary intracellular activation mechanism for renin mRNA generation. Other major control mechanisms include COX-2 and nNOS affecting renin through PGE2, PGI2, and nitric oxide. Angiotensin II provides strong negative feedback inhibition of renin synthesis, largely an indirect effect mediated by baroreceptor and macula densa inputs. Adenosine appears to be a dominant factor in the inhibitory arms of the baroreceptor and macula densa mechanisms. Targeted gene mutations have also shed light on a number of novel aspects related to renin processing and the regulation of renin synthesis and secretion.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
31
|
Oi K, Sohara E, Rai T, Misawa M, Chiga M, Alessi DR, Sasaki S, Uchida S. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo. Biol Open 2011; 1:120-7. [PMID: 23213404 PMCID: PMC3507202 DOI: 10.1242/bio.2011048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutations in WNK1 and WNK4 kinase genes have been shown to cause a human hereditary hypertensive disease, pseudohypoaldosteronism type II (PHAII). We previously discovered that WNK kinases phosphorylate and activate OSR1/SPAK kinases that regulate renal SLC12A family transporters such as NKCC2 and NCC, and clarified that the constitutive activation of this cascade causes PHAII. WNK3, another member of the WNK kinase family, was reported to be a strong activator of NCC/NKCC2 when assayed in Xenopus oocytes, suggesting that WNK3 also plays a major role in regulating blood pressure and sodium reabsorption in the kidney. However, it remains to be determined whether WNK3 is in fact involved in the regulation of these transporters in vivo. To clarify this issue, we generated and analyzed WNK3 knockout mice. Surprisingly, phosphorylation and expression of OSR1, SPAK, NKCC2 and NCC did not decrease in knockout mouse kidney under normal and low-salt diets. Similarly, expression of epithelial Na channel and Na/H exchanger 3 were not affected in knockout mice. Na+ and K+ excretion in urine in WNK3 knockout mice was not affected under different salt diets. Blood pressure in WNK3 knockout mice was not lower under normal diet. However, lower blood pressure was observed in WNK3 knockout mice fed low-salt diet. WNK4 and WNK1 expression was slightly elevated in the knockout mice under low-salt diet, suggesting compensation for WNK3 knockout by these WNKs. Thus, WNK3 may have some role in the WNK-OSR1/SPAK-NCC/NKCC2 signal cascade in the kidney, but its contribution to total WNK kinase activity may be minimal.
Collapse
Affiliation(s)
- Katsuyuki Oi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci U S A 2011; 108:17538-43. [PMID: 21972418 DOI: 10.1073/pnas.1107452108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Na(+)-K(+)-2Cl(-) cotransporters (NKCCs), including NKCC1 and renal-specific NKCC2, and the Na(+)-Cl(-) cotransporter (NCC) play pivotal roles in the regulation of blood pressure (BP) and renal NaCl reabsorption. Oxidative stress-responsive kinase-1 (OSR1) is a known upstream regulator of N(K)CCs. We generated and analyzed global and kidney tubule-specific (KSP) OSR1 KO mice to elucidate the physiological role of OSR1 in vivo, particularly on BP and kidney function. Although global OSR1(-/-) mice were embryonically lethal, OSR1(+/-) mice had low BP associated with reduced phosphorylated (p) STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase (SPAK) and p-NKCC1 abundance in aortic tissue and attenuated p-NKCC2 abundance with increased total and p-NCC expression in the kidney. KSP-OSR1(-/-) mice had normal BP and hypercalciuria and maintained significant hypokalemia on a low-K(+) diet. KSP-OSR1(-/-) mice exhibited impaired Na(+) reabsorption in the thick ascending loop on a low-Na(+) diet accompanied by remarkably decreased expression of p-NKCC2 and a blunted response to furosemide, an NKCC2 inhibitor. The expression of total SPAK and p-SPAK was significantly increased in parallel to that of total NCC and p-NCC despite unchanged total NKCC2 expression. These results suggest that, globally, OSR1 is involved in the regulation of BP and renal tubular Na(+) reabsorption mainly via the activation of NKCC1 and NKCC2. In the kidneys, NKCC2 but not NCC is the main target of OSR1 and the reduced p-NKCC2 in KSP-OSR1(-/-) mice may lead to a Bartter-like syndrome.
Collapse
|
33
|
NKCC1 and hypertension: a novel therapeutic target involved in the regulation of vascular tone and renal function. Curr Opin Nephrol Hypertens 2010; 19:163-8. [PMID: 20061948 DOI: 10.1097/mnh.0b013e3283360a46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The present review summarizes recent advances in our understanding of the mechanisms involving the housekeeping Na+, K+, 2Cl(-) cotransporter (NKCC1) in blood pressure (BP) regulation. RECENT FINDINGS High-ceiling diuretics (HCDs), known potent inhibitors of NKCC1, renal-specific NKCC2 and four isoforms of K+, Cl(-) cotransporters decrease [Cl(-)]i, hyperpolarize vascular smooth muscle cells and suppress myogenic tone and contractions evoked by modest depolarization, phenylephrine, angiotensin II and uridine triphosphate. These actions are absent in NKCC1(-/-) mice, indicating that HCDs interact with NKCC1 rather than with other potential targets. NKCC1-null mice have decreased baseline BP but exhibit augmented BP increment evoked by high-salt diets. NKCC1 deficiency causes approximately three-fold elevation in plasma renin concentrations and attenuates HCD-induced renin production. In addition to HCDs, NKCC1 is also inhibited by extracellular HCO3(-) in the range corresponding to its concentration in ischemic extracellular fluids. SUMMARY NKCC1 modulates BP through vascular and renal effects. In addition to BP regulation, the decreased baseline activity of this carrier or its suppression by chronic treatment with HCDs may lead to inhibition of myogenic tone and progression of end-stage renal disease. NKCC1 activation in ischemia-induced acidosis may contribute to stroke via glutamate release caused by astrocyte swelling.
Collapse
|
34
|
Promoter hypomethylation upregulates Na+-K+-2Cl- cotransporter 1 in spontaneously hypertensive rats. Biochem Biophys Res Commun 2010; 396:252-7. [PMID: 20406621 DOI: 10.1016/j.bbrc.2010.04.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/16/2022]
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) is one of several transporters that have been implicated for development of hypertension since NKCC1 activity is elevated in hypertensive aorta and vascular contractions are inhibited by bumetanide, an inhibitor of NKCC1. We hypothesized that promoter hypomethylation upregulates the NKCC1 in spontaneously hypertensive rats (SHR). Thoracic aortae and mesenteric arteries were excised, cut into rings, mounted in organ baths and subjected to vascular contraction. The expression levels of nkcc1 mRNA and protein in aortae and heart tissues were measured by real-time PCR and Western blot, respectively. The methylation status of nkcc1 promoter region was analyzed by combined bisulfite restriction assay (COBRA) and bisulfite sequencing. Phenylephrine-induced vascular contraction in a dose-dependent manner, which was inhibited by bumetanide. The inhibition of dose-response curves by bumetanide was much greater in SHR than in Wistar Kyoto (WKY) normotensive rats. The expression levels of nkcc1 mRNA and of NKCC1 protein in aortae and heart tissues were higher in SHR than in WKY. Nkcc1 gene promoter was hypomethylated in aortae and heart than those of WKY. These results suggest that promoter hypomethylation upregulates the NKCC1 expression in aortae and heart of SHR.
Collapse
|
35
|
Orlov SN, Gossard F, Pausova Z, Akimova OA, Tremblay J, Grim CE, Kotchen JM, Kotchen TA, Gaudet D, Cowley AW, Hamet P. Decreased NKCC1 activity in erythrocytes from African Americans with hypertension and dyslipidemia. Am J Hypertens 2010; 23:321-6. [PMID: 20044742 DOI: 10.1038/ajh.2009.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Recent studies demonstrated a key role of ubiquitous isoform of Na+,K+,2Cl- co-transport (NKCC1) in regulation of myogenic tone and peripheral resistance. We examined the impact of race, gender, and plasma lipid on NKCC1 activity in French Canadians and African Americans with hypertension and dyslipidemia. METHODS NKCC and passive erythrocyte membrane permeability to K+, measured as ouabain-resistant, bumetanide-sensitive, and (ouabain+bumetanide)-resistant 86Rb influx, respectively, were compared in 111 French-Canadian men, 107 French-Canadian women, 26 African-American men, and 45 African-American women with essential hypertension and dyslipidemia. RESULTS The African-American men and women were 7 years younger and presented twofold decreased plasma triglycerides compared to their French-Canadian counterparts (P < 0.01) whereas body mass index (BMI), total cholesterol, low-density lipoprotein, and high-density lipoprotein (HDL) were not different. NKCC was respectively 50 and 38% lower in the African-American men and women than in the French Canadians (P < 0.005) without any differences in passive erythrocyte membrane permeability for K+. We did not observe any impact of age on NKCC in all groups under investigation, whereas plasma triglycerides correlated positively with the activity of this carrier in the French-Canadian men only. CONCLUSIONS NKCC1 activity is lower in erythrocytes of African Americans with essential hypertension and dyslipidemia than in Caucasian counterparts. We suggest that decreased NKCC1 may contribute to the feature of the pathogenesis of salt-sensitive hypertension seen in African Americans.
Collapse
|
36
|
Abstract
Hypertension is a major risk factor for cardiovascular disease and death. The "silent" rise of blood pressure that occurs over time is largely asymptomatic. However, its impact is deafening-causing and exacerbating cardiovascular disease, end-organ damage, and death. The present article addresses recent observations from human and animal studies that provide new insights into how the circadian clock regulates blood pressure, contributes to hypertension, and ultimately evolves vascular disease. Further, the molecular components of the circadian clock and their relationship with locomotor activity, metabolic control, fluid balance, and vascular resistance are discussed with an emphasis on how these novel, circadian clock-controlled mechanisms contribute to hypertension.
Collapse
Affiliation(s)
- R Daniel Rudic
- Department of Pharmacology and Toxicology, 1120 15th St., Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
37
|
Wakamatsu S, Nonoguchi H, Ikebe M, Machida K, Izumi Y, Memetimin H, Nakayama Y, Nakanishi T, Kohda Y, Tomita K. Vasopressin and hyperosmolality regulate NKCC1 expression in rat OMCD. Hypertens Res 2009; 32:481-7. [PMID: 19390537 DOI: 10.1038/hr.2009.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretory-type Na-K-2Cl cotransporter (NKCC1) is known to play roles in both acid and sodium excretion, and is more abundant in dehydration. To determine the mechanisms by which dehydration stimulates NKCC1 expression, the effects of vasopressin, oxytocin and hyperosmolality on NKCC1 mRNA and protein expressions in the outer medullary collecting duct (OMCD) of rats were investigated using RT-competitive PCR and western blot analysis. Microdissected OMCD was incubated in isotonic or hypertonic solution, or with AVP or oxytocin for 60 min at 37 degrees C. Hyperosmolality induced by NaCl, mannitol or raffinose increased NKCC1 mRNA expression in OMCD by 130-240% in vitro. The stimulation of NKCC1 mRNA expression by NaCl was highest at 690 mosmol kg(-1) H(2)O and gradually decreased at higher osmolalities. The incubation of OMCD with AVP (10(-7) M) for 60 min increased NKCC1 mRNA expression by 100%. The administration of AVP to rats for 4 days using an osmotic mini-pump also increased NKCC1 mRNA and protein expressions in OMCD by 130%. In contrast, oxytocin (10(-7) M) did not stimulate the NKCC1 mRNA expression in OMCD in vitro. Chronic injection of oxytocin increased the NKCC1 mRNA expression by 36%. These data showed that hyperosmolality and vasopressin stimulate NKCC1 mRNA and protein expressions in rat OMCD. It is concluded that NKCC1 expression is regulated directly and indirectly by vasopressin.
Collapse
Affiliation(s)
- Shiho Wakamatsu
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|