1
|
Isakovich R, Cates VC, Pentz BA, Bird JD, Vanden Berg ER, de Freitas EM, Nysten CE, Leacy JK, O'Halloran KD, Brutsaert TD, Sherpa MT, Day TA. Using modified Fenn diagrams to assess ventilatory acclimatization during ascent to high altitude: Effect of acetazolamide. Exp Physiol 2024; 109:1080-1098. [PMID: 38747161 PMCID: PMC11215491 DOI: 10.1113/ep091748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 07/02/2024]
Abstract
High altitude (HA) ascent imposes systemic hypoxia and associated risk of acute mountain sickness. Acute hypoxia elicits a hypoxic ventilatory response (HVR), which is augmented with chronic HA exposure (i.e., ventilatory acclimatization; VA). However, laboratory-based HVR tests lack portability and feasibility in field studies. As an alternative, we aimed to characterize area under the curve (AUC) calculations on Fenn diagrams, modified by plotting portable measurements of end-tidal carbon dioxide (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) against peripheral oxygen saturation (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to characterize and quantify VA during incremental ascent to HA (n = 46). Secondarily, these participants were compared with a separate group following the identical ascent profile whilst self-administering a prophylactic oral dose of acetazolamide (Az; 125 mg BID; n = 20) during ascent. First, morningP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ andS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ measurements were collected on 46 acetazolamide-free (NAz) lowland participants during an incremental ascent over 10 days to 5160 m in the Nepal Himalaya. AUC was calculated from individually constructed Fenn diagrams, with a trichotomized split on ranked values characterizing the smallest, medium, and largest magnitudes of AUC, representing high (n = 15), moderate (n = 16), and low (n = 15) degrees of acclimatization. After characterizing the range of response magnitudes, we further demonstrated that AUC magnitudes were significantly smaller in the Az group compared to the NAz group (P = 0.0021), suggesting improved VA. These results suggest that calculating AUC on modified Fenn diagrams has utility in assessing VA in large groups of trekkers during incremental ascent to HA, due to the associated portability and congruency with known physiology, although this novel analytical method requires further validation in controlled experiments. HIGHLIGHTS: What is the central question of this study? What are the characteristics of a novel methodological approach to assess ventilatory acclimatization (VA) with incremental ascent to high altitude (HA)? What is the main finding and its importance? Area under the curve (AUC) magnitudes calculated from modified Fenn diagrams were significantly smaller in trekkers taking an oral prophylactic dose of acetazolamide compared to an acetazolamide-free group, suggesting improved VA. During incremental HA ascent, quantifying AUC using modified Fenn diagrams is feasible to assess VA in large groups of trekkers with ascent, although this novel analytical method requires further validation in controlled experiments.
Collapse
Affiliation(s)
- Rodion Isakovich
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Valerie C. Cates
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Brandon A. Pentz
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Jordan D. Bird
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Emily R. Vanden Berg
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Emily M. de Freitas
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Cassandra E. Nysten
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Jack K. Leacy
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
- Department of Physiology, School of Medicine, College of Medicine & HealthUniversity Cork CollegeCorkIreland
| | - Ken D. O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & HealthUniversity Cork CollegeCorkIreland
| | | | | | - Trevor A. Day
- Department of Biology, Faculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| |
Collapse
|
2
|
Oeung B, Pham K, Olfert IM, De La Zerda DJ, Gaio E, Powell FL, Heinrich EC. The normal distribution of the hypoxic ventilatory response and methodological impacts: a meta-analysis and computational investigation. J Physiol 2023; 601:4423-4440. [PMID: 37589511 PMCID: PMC10543592 DOI: 10.1113/jp284767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.
Collapse
Affiliation(s)
- Britney Oeung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - I. Mark Olfert
- West Virginia University School of Medicine, Department of Physiology & Pharmacology and Division of Exercise Physiology
| | | | - Eduardo Gaio
- School of Medicine, Deakin University, Geelong, Australia
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| |
Collapse
|
3
|
Joyce KE, Balanos GM, Bradley C, Fountain A, Bradwell AR, Lucas SJE. Post-exercise urinary alpha-1 acid glycoprotein is not dependent on hypoxia. J Appl Physiol (1985) 2021; 132:261-269. [PMID: 34762527 PMCID: PMC8791839 DOI: 10.1152/japplphysiol.00476.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinuria is a transient physiological phenomenon that occurs with a range of physical activities and during ascent to altitude. Exercise intensity appears to dictate the magnitude of postexercise proteinuria; however, evidence also indicates the possible contributions from exercise-induced hypoxemia or reoxygenation. Using an environmental hypoxic chamber, this crossover-designed study aimed to evaluate urinary alpha-1 acid glycoprotein (α1-AGP) excretion pre/postexercise performed in hypoxia (HYP) and normoxia (NOR). Sixteen individuals underwent experimental sessions in normoxia (NOR, 20.9% O2) and hypoxia (HYP, 12.0% O2). Sessions began with a 2-h priming period before completing a graded maximal exercise test (GXT) on a cycle ergometer, which was followed by continuation of exposure for an additional 2 h. Physiological responses (i.e., blood pressure, heart rate, and peripheral oxygenation), Lake Louise Scores (LLSs), and urine specimens (analyzed for albumin and α1-AGP) were collected pre- and postexercise (after 30, 60, and 120 min). Peak power output was significantly reduced in HYP (193 ± 45 W) compared with NOR (249 ± 59 W, P < 0.01). Postexercise urinary α1-AGP was greater in NOR (20.04 ± 14.84 µg·min−1) than in HYP (15.08 ± 13.46 µg·min−1), albeit the difference was not significant (P > 0.05). Changes in urinary α1-AGP from pre- to post-30 min were not related to physiological responses or performance outcomes observed during GXT in NOR or HYP. Despite profound systemic hypoxemia with maximal exercise in hypoxia, postexercise α1-AGP excretion was not elevated above the levels observed following normoxic exercise. NEW & NOTEWORTHY By superimposing hypoxic exposure and maximal exercise, we were able to investigate the impact of hypoxia on postexercise proteinuria. Urinalysis for α1-AGP (via particle-enhanced immunoturbidimetry) in specimens collected pre-/postexercise enabled the sensitive detection of altered glomerular permeability. Data indicated that exercise intensity, rather than the degree of exercise-induced hypoxemia, determines postexercise proteinuria.
Collapse
Affiliation(s)
- Kelsey Elizabeth Joyce
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George M Balanos
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Bradley
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Amy Fountain
- Research & Development, The Binding Site Ltd, Birmingham, United Kingdom
| | - Arthur Randell Bradwell
- The Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J E Lucas
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Szymczak RK, Grzywacz T, Ziemann E, Sawicka M, Laskowski R. Prolonged Sojourn at Very High Altitude Decreases Sea-Level Anaerobic Performance, Anaerobic Threshold, and Fat Mass. Front Physiol 2021; 12:743535. [PMID: 34675820 PMCID: PMC8523780 DOI: 10.3389/fphys.2021.743535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The influence of high altitude on an organism’s physiology depends on the length and the level of hypoxic exposure it experiences. This study aimed to determine the effect of a prolonged sojourn at very high altitudes (above 3,500m) on subsequent sea-level physical performance, body weight, body composition, and hematological parameters. Materials and Methods: Ten alpinists, nine males and one female, with a mean age of 27±4years, participated in the study. All had been on mountaineering expeditions to 7,000m peaks, where they spent 30±1days above 3,500m with their average sojourn at 4,900±60m. Their aerobic and anaerobic performance, body weight, body composition, and hematological parameters were examined at an altitude of 100m within 7days before the expeditions and 7days after they descended below 3,500m. Results: We found a significant (p<0.01) decrease in maximal anaerobic power (MAPWAnT) from 9.9±1.3 to 9.2±1.3W·kg−1, total anaerobic work from 248.1±23.8 to 228.1±20.1J·kg−1, anaerobic threshold from 39.3±8.0 to 27.8±5.6 mlO2·kg−1·min−1, body fat mass from 14.0±3.1 to 11.5±3.3%, and a significant increase (p<0.05) in maximal tidal volume from 3.2 [3.0–3.2] to 3.5 [3.3–3.9] L after their sojourn at very high attitude. We found no significant changes in maximal aerobic power, maximal oxygen uptake, body weight, fat-free mass, total body water, hemoglobin, and hematocrit. Conclusion: A month-long exposure to very high altitude led to impaired sea-level anaerobic performance and anaerobic threshold, increased maximal tidal volume, and depleted body fat mass, but had no effect on maximal aerobic power, maximal oxygen uptake, or hemoglobin and hematocrit levels.
Collapse
Affiliation(s)
- Robert K Szymczak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Grzywacz
- Department of Sport, Institute of Physical Culture, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznan, Poland
| | - Magdalena Sawicka
- Department of Neurology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Radosław Laskowski
- Department of Physiology and Biochemistry, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
5
|
Holmström PK, Bird JD, Thrall SF, Kalker A, Herrington BA, Soriano JE, Mann LM, Rampuri ZH, Brutsaert TD, Karlsson Ø, Sherpa MT, Schagatay EKA, Day TA. The effects of high altitude ascent on splenic contraction and the diving response during voluntary apnoea. Exp Physiol 2020; 106:160-174. [DOI: 10.1113/ep088571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
| | - Jordan D. Bird
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Scott F. Thrall
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Ann Kalker
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
- Radboud University Nijmegen Netherlands
| | - Brittney A. Herrington
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Jan E. Soriano
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Leah M. Mann
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Zahrah H. Rampuri
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Tom D. Brutsaert
- Department of Exercise Science Syracuse University Syracuse NY USA
| | - Øyvind Karlsson
- Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | | | - Erika K. A. Schagatay
- Department of Health Sciences Mid Sweden University Östersund Sweden
- Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | - Trevor A. Day
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| |
Collapse
|
6
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Holmström P, Mulder E, Sundström AL, Limbu P, Schagatay E. The Magnitude of Diving Bradycardia During Apnea at Low-Altitude Reveals Tolerance to High Altitude Hypoxia. Front Physiol 2019; 10:1075. [PMID: 31507443 PMCID: PMC6714063 DOI: 10.3389/fphys.2019.01075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Acute mountain sickness (AMS) is a potentially life-threatening illness that may develop during exposure to hypoxia at high altitude (HA). Susceptibility to AMS is highly individual, and the ability to predict it is limited. Apneic diving also induces hypoxia, and we aimed to investigate whether protective physiological responses, i.e., the cardiovascular diving response and spleen contraction, induced during apnea at low-altitude could predict individual susceptibility to AMS. Eighteen participants (eight females) performed three static apneas in air, the first at a fixed limit of 60 s (A1) and two of maximal duration (A2-A3), spaced by 2 min, while SaO2, heart rate (HR) and spleen volume were measured continuously. Tests were conducted in Kathmandu (1470 m) before a 14 day trek to mount Everest Base Camp (5360 m). During the trek, participants reported AMS symptoms daily using the Lake Louise Questionnaire (LLQ). The apnea-induced HR-reduction (diving bradycardia) was negatively correlated with the accumulated LLQ score in A1 (r s = -0.628, p = 0.005) and A3 (r s = -0.488, p = 0.040) and positively correlated with SaO2 at 4410 m (A1: r = 0.655, p = 0.003; A2: r = 0.471, p = 0.049; A3: r = 0.635, p = 0.005). Baseline spleen volume correlated negatively with LLQ score (r s = -0.479, p = 0.044), but no correlation was found between apnea-induced spleen volume reduction with LLQ score (r s = 0.350, p = 0.155). The association between the diving bradycardia and spleen size with AMS symptoms suggests links between physiological responses to HA and apnea. Measuring individual responses to apnea at sea-level could provide means to predict AMS susceptibility prior to ascent.
Collapse
Affiliation(s)
- Pontus Holmström
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Eric Mulder
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
| | | | - Prakash Limbu
- Department of Clinical Physiology, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Erika Schagatay
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
| |
Collapse
|
8
|
Sanz-Quinto S, López-Grueso R, Brizuela G, Flatt AA, Moya-Ramón M. Influence of Training Models at 3,900-m Altitude on the Physiological Response and Performance of a Professional Wheelchair Athlete: A Case Study. J Strength Cond Res 2019; 33:1714-1722. [PMID: 29927887 DOI: 10.1519/jsc.0000000000002667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sanz-Quinto, S, López-Grueso, R, Brizuela, G, Flatt, AA, and Moya-Ramón, M. Influence of training models at 3,900-m altitude on the physiological response and performance of a professional wheelchair athlete: A case study. J Strength Cond Res 33(6): 1715-1723, 2019-This case study compared the effects of two training camps using flexible planning (FP) vs. inflexible planning (IP) at 3,860-m altitude on physiological and performance responses of an elite marathon wheelchair athlete with Charcot-Marie-Tooth disease (CMT). During IP, the athlete completed preplanned training sessions. During FP, training was adjusted based on vagally mediated heart rate variability (HRV) with specific sessions being performed when a reference HRV value was attained. The camp phases were baseline in normoxia (BN), baseline in hypoxia (BH), specific training weeks 1-4 (W1, W2, W3, W4), and Post-camp (Post). Outcome measures included the root mean square of successive R-R interval differences (rMSSD), resting heart rate (HRrest), oxygen saturation (SO2), diastolic blood pressure and systolic blood pressure, power output and a 3,000-m test. A greater impairment of normalized rMSSD (BN) was shown in IP during BH (57.30 ± 2.38% vs. 72.94 ± 11.59%, p = 0.004), W2 (63.99 ± 10.32% vs. 81.65 ± 8.87%, p = 0.005), and W4 (46.11 ± 8.61% vs. 59.35 ± 6.81%, p = 0.008). At Post, only in FP was rMSSD restored (104.47 ± 35.80%). Relative changes were shown in power output (+3 W in IP vs. +6 W in FP) and 3,000-m test (-7s in IP vs. -16s in FP). This case study demonstrated that FP resulted in less suppression and faster restoration of rMSSD and more positive changes in performance than IP in an elite wheelchair marathoner with CMT.
Collapse
Affiliation(s)
| | | | - Gabriel Brizuela
- Department of Physical and Sports Education, University of Valencia, Valencia, Spain
| | - Andrew A Flatt
- Department of Health Science and Kinesiology, Georgia Southern University, Savannah, Georgia
| | - Manuel Moya-Ramón
- Sports Research Center, Miguel Hernandez University, Elche, Spain.,Department of Health Psychology, Miguel Hernandez University, Elche, Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| |
Collapse
|
9
|
Affiliation(s)
- John B West
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
11
|
Wagner PD. Operation Everest II and the 1978 Habeler/Messner ascent of Everest without bottled O2: what might they have in common? J Appl Physiol (1985) 2017; 123:1682-1688. [DOI: 10.1152/japplphysiol.00140.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In 1978, Peter Habeler and Reinhold Messner climbed Everest without supplemental O2. Subsequently, Oelz et al. (Oelz O, Howald H, Di Prampero PE, Hoppeler H, Claassen H, Jenni R, Bühlmann A, Ferretti G, Brückner JC, Veicsteinas A, Gussoni M, Cerretelli P. J Appl Physiol (1985) 60: 1734–1742, 1986) assessed their cardiopulmonary function, finding no advantageous physiological attributes to explain their success, and leading West (West JB. High Life: A History of High-Altitude Physiology and Medicine. New York: Oxford University, 1998) to suggest that grit and determination were more important. In 1985, Charlie Houston, John Sutton, and Al Cymerman hosted a scientific project assessing a simulated ascent of Everest (OE II) at the U.S. Army Research Institute of Environmental Medicine. Included were measurements of O2 transport. In particular, mixed venous Po2 was measured at/near maximal exercise, for calculating pulmonary O2-diffusing capacity. A serendipitous observation was made: while both V̇o2max and mixed venous Po2 fell with altitude (as expected), it was how they fell—in direct proportion—that was remarkable. It later became clear that this reflected diffusion limitation of O2 transport from muscle microvessels to the mitochondria, and that this last step in O2 transport plays a major role in limiting V̇o2max. Thus, how Habeler and Messner made it up Everest without bottled O2 and no special cardiopulmonary attributes might be explained if their muscle O2-diffusing capacity, which depends largely on muscle capillarity, was unusually high. Oelz et al. mention that muscle capillary density was substantially—40%—above normal, but did not suggest that this accounted for the climbersʼ success. Therefore, high muscle capillarity, enhancing diffusive unloading of O2, may have been a major enabling physiological attribute for Habeler and Messner and that OE II, by chance, played a key role in bringing this to light.
Collapse
Affiliation(s)
- Peter D. Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Avellanas Chavala ML. A journey between high altitude hypoxia and critical patient hypoxia: What can it teach us about compression and the management of critical disease? Med Intensiva 2017; 42:380-390. [PMID: 28919307 DOI: 10.1016/j.medin.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 01/02/2023]
Abstract
High altitude sickness (hypobaric hypoxia) is a form of cellular hypoxia similar to that suffered by critically ill patients. The study of mountaineers exposed to extreme hypoxia offers the advantage of involving a relatively homogeneous and healthy population compared to those typically found in Intensive Care Units (ICUs), which are heterogeneous and generally less healthy. Knowledge of altitude physiology and pathology allows us to understanding how hypoxia affects critical patients. Comparable changes in mitochondrial biogenesis between both groups may reflect similar adaptive responses and suggest therapeutic interventions based on the protection or stimulation of such mitochondrial biogenesis. Predominance of the homozygous insertion (II) allele of the angiotensin-converting enzyme gene is present in both individuals who perform successful ascensions without oxygen above 8000 m and in critical patients who overcome certain disease conditions.
Collapse
|
13
|
Tipton MJ, Harper A, Paton JFR, Costello JT. The human ventilatory response to stress: rate or depth? J Physiol 2017. [PMID: 28650070 DOI: 10.1113/jp274596] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many stressors cause an increase in ventilation in humans. This is predominantly reported as an increase in minute ventilation (V̇E). But, the same V̇E can be achieved by a wide variety of changes in the depth (tidal volume, VT ) and number of breaths (respiratory frequency, ƒR ). This review investigates the impact of stressors including: cold, heat, hypoxia, pain and panic on the contributions of ƒR and VT to V̇E to see if they differ with different stressors. Where possible we also consider the potential mechanisms that underpin the responses identified, and propose mechanisms by which differences in ƒR and VT are mediated. Our aim being to consider if there is an overall differential control of ƒR and VT that applies in a wide range of conditions. We consider moderating factors, including exercise, sex, intensity and duration of stimuli. For the stressors reviewed, as the stress becomes extreme V̇E generally becomes increased more by ƒR than VT . We also present some tentative evidence that the pattern of ƒR and VT could provide some useful diagnostic information for a variety of clinical conditions. In The Physiological Society's year of 'Making Sense of Stress', this review has wide-ranging implications that are not limited to one discipline, but are integrative and relevant for physiology, psychophysiology, neuroscience and pathophysiology.
Collapse
Affiliation(s)
- Michael J Tipton
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, PO1 2ER, UK
| | - Abbi Harper
- Clinical Fellow in Intensive Care Medicine, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, PO1 2ER, UK
| |
Collapse
|
14
|
MEDEX2015: Greater Sea-Level Fitness Is Associated with Lower Sense of Effort During Himalayan Trekking Without Worse Acute Mountain Sickness. High Alt Med Biol 2017; 18:152-162. [DOI: 10.1089/ham.2016.0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
15
|
Horiuchi M, Oda S, Uno T, Endo J, Handa Y, Fukuoka Y. Effects of Short-Term Acclimatization at the Summit of Mt. Fuji (3776 m) on Sleep Efficacy, Cardiovascular Responses, and Ventilatory Responses. High Alt Med Biol 2017; 18:171-178. [PMID: 28375664 DOI: 10.1089/ham.2016.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horiuchi, Masahiro, Shiro Oda, Tadashi Uno, Junko Endo, Yoko Handa, and Yoshiyuki Fukuoka. Effects of short-term acclimatization at the summit of Mt. Fuji (3776 m) on sleep efficacy, cardiovascular responses, and ventilatory responses. High Alt Med Biol. 18:171-178, 2017.-We investigated the effects of a short period of acclimatization, at 3776 m on Mt. Fuji, on sleep parameters and related physiological responses. Physiological responses were assessed in seven healthy lowlander men during both daytime and sleep while at sea level (SL), as well as for three consecutive nights at high altitude (HA; 3776 m, day 1 [D1], D2, D3, and morning only of D4). Blood pressure variables, heart rate (HR), pulmonary ventilation (VE), and breathing frequency (Bf) progressively increased each day, with significant differences between SL and HA (p < 0.05, respectively). In contrast, end-tidal PCO2 (PETCO2) progressively decreased each day with statistical differences between SL and D3 at HA (p < 0.05). During sleep at HA, mean arterial pressure (MAP) was stable, whereas it decreased during sleep at SL. Sleep efficacy, which was assessed by actigraphy, was linearly impaired with statistical differences between SL and D3 (p < 0.05). These impairments in sleep efficacy at HA were associated with higher MAP and HR, as well as lower Bf and PETCO2 during the daytime (pooled data, p < 0.05, respectively). These results suggest that hypoxia-induced cardiovascular and ventilatory responses may be crucial contributors to changes in sleep efficacy at HA.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Shiro Oda
- 2 Department of Health and Welfare, School of Life Long Sport, Hokusho University , Hokkaido, Japan
| | - Tadashi Uno
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Junko Endo
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Yoko Handa
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Yoshiyuki Fukuoka
- 3 Faculty of Health and Sports Science, Doshisha University , Kyoto, Japan
| |
Collapse
|
16
|
Townsend NE, Gore CJ, Ebert TR, Martin DT, Hahn AG, Chow CM. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur J Sport Sci 2016; 16:895-902. [PMID: 26894371 DOI: 10.1080/17461391.2016.1139190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM The aim of this study was to examine the relationship between ventilatory adaptation and performance during altitude training at 2700 m. METHODS Seven elite cyclists (age: 21.2 ± 1.1 yr, body mass: 69.9 ± 5.6 kg, height 176.3 ± 4.9 cm) participated in this study. A hypoxic ventilatory response (HVR) test and a submaximal exercise test were performed at sea level prior to the training camp and again after 15 d at altitude (ALT15). Ventilation (VE), end-tidal carbon-dioxide partial pressure (PETCO2) and oxyhaemoglobin saturation via pulse oximetry (SpO2) were measured at rest and during submaximal cycling at 250 W. A hill climb (HC) performance test was conducted at sea level and after 14 d at altitude (ALT14) using a road of similar length (5.5-6 km) and gradient (4.8-5.3%). Power output was measured using SRM cranks. Average HC power at ALT14 was normalised to sea level power (HC%). Multiple regression was used to identify significant predictors of performance at altitude. RESULTS At ALT15, there was a significant increase in resting VE (10.3 ± 1.9 vs. 12.2 ± 2.4 L·min(-1)) and HVR (0.34 ± 0.24 vs. 0.71 ± 0.49 L·min(-1)·%(-1)), while PETCO2 (38.4 ± 2.3 vs. 32.1 ± 3.3 mmHg) and SpO2 (97.9 ± 0.7 vs. 94.0 ± 1.7%) were reduced (P < .05). Multiple regression revealed ΔHVR and exercise VE at altitude as significant predictors of HC% (adjusted r(2) = 0.913; P = 0.003). CONCLUSIONS Ventilatory acclimatisation occurred during a 2 wk altitude training camp in elite cyclists and a higher HVR was associated with better performance at altitude, relative to sea level. These results suggest that ventilatory acclimatisation is beneficial for cycling performance at altitude.
Collapse
Affiliation(s)
- Nathan E Townsend
- a Athlete Health and Performance Research Centre , Aspetar Orthopaedic and Sports Medicine Hospital , Doha , Qatar.,b School of Exercise and Nutrition Sciences, Deakin University , Burwood , Australia
| | - Christopher J Gore
- c Department of Physiology , Australian Institute of Sport , Canberra , Australia
| | - Tammie R Ebert
- c Department of Physiology , Australian Institute of Sport , Canberra , Australia
| | - David T Martin
- c Department of Physiology , Australian Institute of Sport , Canberra , Australia
| | - Allan G Hahn
- c Department of Physiology , Australian Institute of Sport , Canberra , Australia
| | - Chin-Moi Chow
- d School of Exercise and Sport Science, University of Sydney , Lidcombe , Australia
| |
Collapse
|
17
|
|
18
|
Erken HA, Erken G, Colak R, Genç O. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity. High Alt Med Biol 2014; 14:360-6. [PMID: 24377343 DOI: 10.1089/ham.2012.1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA.
Collapse
Affiliation(s)
- Haydar Ali Erken
- 1 Department of Physiology, Faculty of Medicine, Balikesir University , Balikesir, Turkey
| | | | | | | |
Collapse
|
19
|
Chapman RF, Laymon AS, Levine BD. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt Med Biol 2014; 14:319-24. [PMID: 24377334 DOI: 10.1089/ham.2013.1022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the wide array of endurance sport competition offerings at moderate and high altitudes, clinicians are frequently asked about best practice recommendations regarding arrival times prior to the event and acclimatization guidelines. This brief review will offer data and current advice on when to arrive at altitude and various potential sea level-based pre-acclimatization strategies in an effort to maximize performance and minimize the risk of altitude sickness.
Collapse
Affiliation(s)
- Robert F Chapman
- 1 Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | | | | |
Collapse
|
20
|
Cheung SS, Mutanen NE, Karinen HM, Koponen AS, Kyröläinen H, Tikkanen HO, Peltonen JE. Ventilatory chemosensitivity, cerebral and muscle oxygenation, and total hemoglobin mass before and after a 72-day mt. Everest expedition. High Alt Med Biol 2014; 15:331-40. [PMID: 25211648 DOI: 10.1089/ham.2013.1153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We investigated the effects of chronic hypobaric hypoxic acclimatization, performed over the course of a 72-day self-supported Everest expedition, on ventilatory chemosensitivity, arterial saturation, and tissue oxygenation adaptation along with total hemoglobin mass (tHb-mass) in nine experienced climbers (age 37±6 years, [Formula: see text] 55±7 mL·kg(-1)·min(-1)). METHODS Exercise-hypoxia tolerance was tested using a constant treadmill exercise of 5.5 km·h(-1) at 3.8% grade (mimicking exertion at altitude) with 3-min steps of progressive normobaric poikilocapnic hypoxia. Breath-by-breath ventilatory responses, Spo2, and cerebral (frontal cortex) and active muscle (vastus lateralis) oxygenation were measured throughout. Acute hypoxic ventilatory response (AHVR) was determined by linear regression slope of ventilation vs. Spo2. PRE and POST (<15 days) expedition, tHb-mass was measured using carbon monoxide-rebreathing. RESULTS Post-expedition, exercise-hypoxia tolerance improved (11:32±3:57 to 16:30±2:09 min, p<0.01). AHVR was elevated (1.25±0.33 to 1.63±0.38 L·min(-1.)%(-1) Spo2, p<0.05). Spo2 decreased throughout exercise-hypoxia in both trials, but was preserved at higher values at 4800 m post-expedition. Cerebral oxygenation decreased progressively with increasing exercise-hypoxia in both trials, with a lower level of deoxyhemoglobin POST at 2400, 3500 and 4800 m. Muscle oxygenation also decreased throughout exercise-hypoxia, with similar patterns PRE and POST. No relationship was observed between the slope of AHVR and cerebral or muscle oxygenation either PRE or POST. Absolute tHb-mass response exhibited great individual variation with a nonsignificant 5.4% increasing trend post-expedition (975±154 g PRE and 1025±124 g POST, p=0.17). CONCLUSIONS We conclude that adaptation to chronic hypoxia during a climbing expedition to Mt. Everest will increase hypoxic tolerance, AHVR, and cerebral but not muscle oxygenation, as measured during simulated acute hypoxia at sea level. However, tHb-mass did not increase significantly and improvement in cerebral oxygenation was not associated with the change in AHVR.
Collapse
Affiliation(s)
- Stephen S Cheung
- 1 Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University , St. Catharines, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Performance in athletic activities that include a significant aerobic component at mild or moderate altitudes shows a large individual variation. Physiologically, a large portion of the negative effect of altitude on exercise performance can be traced to limitations of oxygen diffusion, either at the level of the alveoli or the muscle microvasculature. In the lung, the ability to maintain arterial oxyhaemoglobin saturation (SaO2) appears to be a primary factor, ultimately influencing oxygen delivery to the periphery. SaO2 in hypoxia can be defended by increasing ventilatory drive; however, during heavy exercise, many athletes demonstrate limitations to expiratory flow and are unable to increase ventilation in hypoxia. Additionally, increasing ventilatory work in hypoxia may actually be negative for performance, if dyspnoea increases or muscle blood flow is reduced secondary to an increased sympathetic outflow (eg, the muscle metaboreflex response). Taken together, some athletes are clearly more negatively affected during exercise in hypoxia than other athletes. With careful screening, it may be possible to develop a protocol for determining which athletes may be the most negatively affected during competition and/or training at altitude.
Collapse
Affiliation(s)
- Robert F Chapman
- Department of Kinesiology, Indiana University, , Bloomington, Indiana, USA
| |
Collapse
|
22
|
Responses to exercise in normobaric hypoxia: comparison of elite and recreational ski mountaineers. Int J Sports Physiol Perform 2014; 9:978-84. [PMID: 24664934 DOI: 10.1123/ijspp.2013-0524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Hypoxia is known to reduce maximal oxygen uptake (VO(2max)) more in trained than in untrained subjects in several lowland sports. Ski mountaineering is practiced mainly at altitude, so elite ski mountaineers spend significantly longer training duration at altitude than their lower-level counterparts. Since acclimatization in hypobaric hypoxia is effective, the authors hypothesized that elite ski mountaineers would exhibit a VO2max decrement in hypoxia similar to that of recreational ski mountaineers. METHODS Eleven elite (E, Swiss national team) and 12 recreational (R) ski mountaineers completed an incremental treadmill test to exhaustion in normobaric hypoxia (H, 3000 m, F(1)O(2) 14.6% ± 0.1%) and in normoxia (N, 485 m, F(1)O(2) 20.9% ± 0.0%). Pulse oxygen saturation in blood (SpO(2)), VO(2max), minute ventilation, and heart rate were recorded. RESULTS At rest, hypoxic ventilatory response was higher (P < .05) in E than in R (1.4 ± 1.9 vs 0.3 ± 0.6 L · min⁻¹ · kg⁻¹). At maximal intensity, SpO(2) was significantly lower (P < .01) in E than in R, both in N (91.1% ± 3.3% vs 94.3% ± 2.3%) and in H (76.4% ± 5.4% vs 82.3% ± 3.5%). In both groups, SpO(2) was lower (P < .01) in H. Between N and H, VO(2max) decreased to a greater extent (P < .05) in E than in R (-18% and -12%, P < .01). In E only, the VO(2max) decrement was significantly correlated with the SpO(2) decrement (r = .74, P < .01) but also with VO(2max) measured in N (r = .64, P < .05). CONCLUSION Despite a probable better acclimatization to altitude, VO(2max) was more reduced in E than in R ski mountaineers, confirming previous results observed in lowlander E athletes.
Collapse
|
23
|
Considerations for resuscitation at high altitude in elderly and untrained populations and rescuers. Am J Emerg Med 2014; 32:270-6. [DOI: 10.1016/j.ajem.2013.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
|
24
|
Cerebral oxygenation during the Richalet hypoxia sensitivity test and cycling time-trial performance in severe hypoxia. Eur J Appl Physiol 2014; 114:1037-48. [DOI: 10.1007/s00421-014-2835-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/25/2014] [Indexed: 02/03/2023]
|
25
|
Mounier R, Brugniaux JV. Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. J Appl Physiol (1985) 2012; 112:1784-6. [PMID: 22589489 DOI: 10.1152/japplphysiol.00067.2012a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Remi Mounier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, France.
| | | |
Collapse
|
26
|
Wilhite DP, Mickleborough TD, Laymon AS, Chapman RF. Increases in $$ \dot{V} $$ O2max with “live high–train low” altitude training: role of ventilatory acclimatization. Eur J Appl Physiol 2012; 113:419-26. [DOI: 10.1007/s00421-012-2443-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
|
27
|
Acclimatisation in trekkers with and without recent exposure to high altitude. Eur J Appl Physiol 2012; 112:3287-94. [DOI: 10.1007/s00421-012-2308-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/03/2012] [Indexed: 11/25/2022]
|
28
|
Exercise intolerance at high altitude (5050m): Critical power and W′. Respir Physiol Neurobiol 2011; 177:333-41. [DOI: 10.1016/j.resp.2011.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022]
|
29
|
The genetics of altitude tolerance: the evidence for inherited susceptibility to acute mountain sickness. J Occup Environ Med 2011; 53:159-68. [PMID: 21270658 DOI: 10.1097/jom.0b013e318206b112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Acute mountain sickness (AMS) has become a significant environmental health issue as improvements in transportation, "environmental tourism," and resource development lure more people to the highlands. Whether there is a genetic contribution to AMS susceptibility is a central question in high-altitude medicine. This article provides a systematic review of the evidence supporting such an innate predisposition. METHODS Scientific literature databases were screened using the terms "acute mountain sickness/AMS" and "altitude illness" combined with the terms "DNA," "gene," "genetic," or "polymorphism." RESULTS Sixteen genes from a variety of pathways have been tested for association with AMS and variants in eight showed positive associations suggesting that AMS is an environmentally mediated polygenic disorder. CONCLUSIONS The data suggest that genotype contributes to capacity to rapidly and efficiently acclimatize to altitude; nevertheless, the mechanisms by which this occurs have yet to be elucidated.
Collapse
|
30
|
Das Respiratorische System auf großer Höhe: Pathophysiologie und neue Therapieoptionen. Wien Klin Wochenschr 2011; 123:67-77. [DOI: 10.1007/s00508-010-1501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
31
|
Dempsey JA, Adams L, Ainsworth DM, Fregosi RF, Gallagher CG, Guz A, Johnson BD, Powers SK. Airway, Lung, and Respiratory Muscle Function During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Abstract
The Caudwell Xtreme Everest (CXE) expedition involved the detailed study of 222 subjects ascending to 5300 m or higher during the first half of 2007. Following baseline measurements at sea level, 198 trekker-subjects trekked to Everest Base Camp (EBC) following an identical ascent profile. An additional group of 24 investigator-subjects followed a similar ascent to EBC and remained there for the duration of the expedition, with a subgroup of 14 collecting data higher on Everest. This article focuses on published data obtained by the investigator-subjects at extreme altitude (>5500 m). Unique measurements of peak oxygen consumption, middle cerebral artery diameter and blood velocity, and microcirculatory blood flow were made on the South Col (7950 m). Unique arterial blood gas values were obtained from 4 subjects at 8400 m during descent from the summit of Everest. Arterial blood gas and microcirculatory blood flow data are discussed in detail.
Collapse
|
33
|
Abstract
The primary objective of the American Medical Research Expedition to Everest was to obtain information on human physiology at the highest possible altitude, including the Everest summit. An important data point was the barometric pressure on the summit, because this determines the inspired P(O(2)). The first measurement ever taken was 253.0 mmHg. Because modeling studies had shown that extreme hyperventilation was essential to reach these great altitudes, 34 alveolar gas samples were collected above an altitude of 8000 m, including 4 on the summit. These showed that hyperventilation reduced the alveolar P(CO(2)) to between 7 and 8 mmHg in one climber. An important finding was that alveolar P(O(2)) was defended at a value of about 35 mmHg by the increasing hyperventilation as the climbers ascended higher. Venous blood samples collected on two summiters gave a mean base excess of -7.2 meq.L(-1). Using the alveolar P(CO(2)) value, this gave an arterial pH of over 7.7, indicating an extreme degree of respiratory alkalosis. While climbing at an altitude of 8300 m, one summiter showed a respiratory frequency of 86 breaths.min(-1) and tidal volume of 1.26 L, indicating very rapid shallow breathing. Maximal oxygen consumption for the summit was derived by having well-acclimatized subjects exercise maximally at an altitude of 6300 m while breathing 14% oxygen. The V(O(2)) was just over 1 L.min(-1), which is sufficient to explain how exceptional humans can reach the summit without supplementary oxygen. In addition to the measurements at altitudes over 8000 m, data were obtained at two camps at 5400- and 6300-m altitude. These gave information on the control of ventilation, periodic breathing, blood physiology, cerebral function, and metabolism.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, 92093-0623, USA.
| |
Collapse
|
34
|
Abstract
With increasing altitude, there is a fall in barometric pressure and a progressive fall in the partial pressure of oxygen. Acclimatization describes the physiologic changes that help maintain tissue oxygen delivery and human performance in the setting of hypobaric hypoxemia. These changes include a marked increase in alveolar ventilation, increased hemoglobin concentration and affinity, and increased tissue oxygen extraction. In some individuals, these physiologic changes may be inadequate, such that the sojourn to altitude and the attendant hypoxia are complicated by altitude-associated medical illness. The rate of ascent, the absolute change in altitude, and individual physiology are the primary determinants whether illness will develop or not. The most common clinical manifestations of altitude illness are acute mountain sickness, high altitude pulmonary edema, and high altitude cerebral edema.
Collapse
|
35
|
|
36
|
Abstract
About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.
Collapse
|
37
|
Sheel AW, MacNutt MJ, Querido JS. The pulmonary system during exercise in hypoxia and the cold. Exp Physiol 2010; 95:422-30. [DOI: 10.1113/expphysiol.2009.047571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Douglas DJ, Schoene RB. End-tidal partial pressure of carbon dioxide and acute mountain sickness in the first 24 hours upon ascent to Cusco Peru (3326 meters). Wilderness Environ Med 2010; 21:109-13. [PMID: 20591371 DOI: 10.1016/j.wem.2010.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the association of end-title partial pressure (Petco(2)) and oxygen saturation (Spo(2)) with the development of AMS in travelers rapidly ascending to Cusco, Peru (3326 m). METHODS Using the 715 TIDAL WAVE Sp handheld, portable capnometer/oximeter, we measured Spo(2) and Petco(2) in 175 subjects upon ascent to Cusco, Peru (3326 m) from Lima (sea level) (a mean time of 3.9 hours.) Symptoms of AMS were recorded at the same initial time on arrival to altitude and 24 hours later using the Environmental Symptoms Questionnaire (ESQ). RESULTS This study showed that no subjects with the lowest Petco(2) of 23 to 30 mm Hg had AMS (P <.044). The data also demonstrate that subjects with a higher Petco(2) (36-40 mm Hg) and lower Sao(2) (72%-86%) have a higher incidence of AMS. CONCLUSION The most important finding of this study is that Petco(2) upon ascent was found to have a more significant effect than Spo(2) on a subject's ultimate ESQ score. This study demonstrates that those individuals with a brisk ventilatory response upon ascent to moderate altitude, as measured by Petco(2), did not develop AMS, whereas a blunted ventilatory response, as reflected in the highest Petco(2), was related to the subsequent development of AMS.
Collapse
Affiliation(s)
- Danielle J Douglas
- Department of Emergency Medicine, University of California, San Diego Medical Center, Naval Medical Center, San Diego, CA 92122, USA.
| | | |
Collapse
|
39
|
Abstract
Acclimatization to long-term hypoxia takes place at high altitude and allows gradual improvement of the ability to tolerate the hypoxic environment. An important component of this process is the hypoxic ventilatory acclimatization (HVA) that develops over several days. HVA reveals profound cellular and neurochemical re-organization occurring both in the peripheral chemoreceptors and in the central nervous system (in brainstem respiratory groups). These changes lead to an enhanced activity of peripheral chemoreceptor and re-inforce the central translation of peripheral inputs to efficient respiratory motor activity under the steady low O(2) pressure. We will review the cellular processes underlying these changes with a particular emphasis on changes of neurotransmitter function and ion channel properties in peripheral chemoreceptors, and present evidence that low O(2) level acts directly on brainstem nuclei to induce cellular changes contributing to maintain a high tonic respiratory drive under chronic hypoxia.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Quebec, QC, G1L 3L5, Canada.
| | | |
Collapse
|
40
|
Calbet JAL, Lundby C. Air to Muscle O2Delivery during Exercise at Altitude. High Alt Med Biol 2009; 10:123-34. [DOI: 10.1089/ham.2008.1099] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Spain
- Copenhagen Muscle Research Centre, Copenhagen, Denmark
| | - Carsten Lundby
- Copenhagen Muscle Research Centre, Copenhagen, Denmark
- Department of Sport Science, University of Århus, Århus, Denmark
| |
Collapse
|
41
|
Grocott MPW, Martin DS, Levett DZH, McMorrow R, Windsor J, Montgomery HE. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 2009; 360:140-9. [PMID: 19129527 DOI: 10.1056/nejmoa0801581] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The level of environmental hypobaric hypoxia that affects climbers at the summit of Mount Everest (8848 m [29,029 ft]) is close to the limit of tolerance by humans. We performed direct field measurements of arterial blood gases in climbers breathing ambient air on Mount Everest. METHODS We obtained samples of arterial blood from 10 climbers during their ascent to and descent from the summit of Mount Everest. The partial pressures of arterial oxygen (PaO(2)) and carbon dioxide (PaCO(2)), pH, and hemoglobin and lactate concentrations were measured. The arterial oxygen saturation (SaO(2)), bicarbonate concentration, base excess, and alveolar-arterial oxygen difference were calculated. RESULTS PaO(2) fell with increasing altitude, whereas SaO(2) was relatively stable. The hemoglobin concentration increased such that the oxygen content of arterial blood was maintained at or above sea-level values until the climbers reached an elevation of 7100 m (23,294 ft). In four samples taken at 8400 m (27,559 ft)--at which altitude the barometric pressure was 272 mm Hg (36.3 kPa)--the mean PaO(2) in subjects breathing ambient air was 24.6 mm Hg (3.28 kPa), with a range of 19.1 to 29.5 mm Hg (2.55 to 3.93 kPa). The mean PaCO(2) was 13.3 mm Hg (1.77 kPa), with a range of 10.3 to 15.7 mm Hg (1.37 to 2.09 kPa). At 8400 m, the mean arterial oxygen content was 26% lower than it was at 7100 m (145.8 ml per liter as compared with 197.1 ml per liter). The mean calculated alveolar-arterial oxygen difference was 5.4 mm Hg (0.72 kPa). CONCLUSIONS The elevated alveolar-arterial oxygen difference that is seen in subjects who are in conditions of extreme hypoxia may represent a degree of subclinical high-altitude pulmonary edema or a functional limitation in pulmonary diffusion.
Collapse
Affiliation(s)
- Michael P W Grocott
- Centre for Altitude, Space, and Extreme Environment Medicine, University College London Institute of Human Health and Performance, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Katayama K, Ishida K, Iwasaki KI, Miyamura M. Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in humans. Eur J Appl Physiol 2009; 105:815-21. [DOI: 10.1007/s00421-008-0960-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
|
43
|
Abstract
UNLABELLED Acute mountain sickness (AMS) develops when rapidly ascending to high altitudes. However, some mountaineers will suffer from AMS even at 2,000 m and others not until 5,000 m. The awareness of the individual susceptibility for AMS would be helpful for preventive strategies. Thus, the main purpose of this paper is the comparison of existing studies dealing with the prediction of AMS susceptibility and to draw conclusions on presently most valuable tests. DATA SOURCE A PubMed search has been performed, and preliminary observations from our laboratory have been included. The cautious conclusion derived from the reviewed 16 studies is that values of arterial oxygen saturation (SaO(2)), determined 20-30 min after exposure to simulated hypoxia equivalent to 2,300-4,200 m, seem to be the most useful predictors of AMS susceptibility (>80% correct prediction). Because the sympathetic activation during acute exposure to hypoxia may well contribute to the AMS development, parameters like heart rate variability or blood lactate could even enhance this predictability. The ventilatory response to hypoxia is easily trainable by pre-exposures to hypoxia but considers only part of the complex acclimatization process.
Collapse
|
44
|
Ogawa T, Hayashi K, Ichinose M, Nishiyasu T. Relationship between resting ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. J Appl Physiol (1985) 2007; 103:1221-6. [PMID: 17656629 DOI: 10.1152/japplphysiol.00153.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study tested the hypothesis that the extent of the decrement in V̇o2max and the respiratory response seen during maximal exercise in moderate hypobaric hypoxia (H; simulated 2,500 m) is affected by the hypoxia ventilatory and hypercapnia ventilatory responses (HVR and HCVR, respectively). Twenty men (5 untrained subjects, 7 long distance runners, 8 middle distance runners) performed incremental exhaustive running tests in H and normobaric normoxia (N) condition. During the running test, V̇o2, pulmonary ventilation (V̇e) and arterial oxyhemoglobin saturation (SaO2) were measured, and in two ventilatory response tests performed during N, a rebreathing method was used to evaluate HVR and HCVR. Mean HVR and HCVR were 0.36 ± 0.04 and 2.11 ± 0.2 l·min−1·mmHg−1, respectively. HVR correlated significantly with the percent decrements in V̇o2max (%dV̇o2max), SaO2 [%dSaO2 = (N−H)·N−1·100], and V̇e/V̇o2 seen during H condition. By contrast, HCVR did not correlate with any of the variables tested. The increment in maximal V̇e between H and N significantly correlated with %dV̇o2max. Our findings suggest that O2 chemosensitivity plays a significant role in determining the level of exercise hyperventilation during moderate hypoxia; thus, a higher O2 chemosensitivity was associated with a smaller drop in V̇o2max and SaO2 under those conditions.
Collapse
Affiliation(s)
- Takeshi Ogawa
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba City, Ibaraki 305-8574, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Under most conditions, the lungs compensate for the stresses of illness to ensure adequate acquisition of oxygen. Even with exposure to high altitude, the lungs' adaptations ensure that this process takes place. This process is challenged by global hypoxia, especially if there is impairment in the three processes needed for adequate tissue oxygenation: (1) intact ventilatory drive to breathe; (2) sufficient increase in alveolar ventilation, which is stimulated by that drive; and (3) intact gas exchange at the alveolar-capillary interface. This article reviews the mechanisms that make the study of high altitude relevant to patients who have heart or lung disease at low altitude.
Collapse
Affiliation(s)
- Robert B Schoene
- Division of Pulmonary and Critical Care Medicine, University of California--San Diego, School of Medicine, 200 West Arbor Drive, San Diego, CA 92103, USA.
| |
Collapse
|
46
|
Imray CHE, Myers SD, Pattinson KTS, Bradwell AR, Chan CW, Harris S, Collins P, Wright AD. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol (1985) 2005; 99:699-706. [PMID: 15920097 DOI: 10.1152/japplphysiol.00973.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of submaximal and maximal exercise on cerebral perfusion were assessed using a portable, recumbent cycle ergometer in nine unacclimatized subjects ascending to 5,260 m. At 150 m, mean (SD) cerebral oxygenation (rSo2%) increased during submaximal exercise from 68.4 (SD 2.1) to 70.9 (SD 3.8) ( P < 0.0001) and at maximal oxygen uptake (V̇o2 max) to 69.8 (SD 3.1) ( P < 0.02). In contrast, at each of the high altitudes studied, rSo2 was reduced during submaximal exercise from 66.2 (SD 2.5) to 62.6 (SD 2.1) at 3,610 m ( P < 0.0001), 63.0 (SD 2.1) to 58.9 (SD 2.1) at 4,750 m ( P < 0.0001), and 62.4 (SD 3.6) to 61.2 (SD 3.9) at 5,260 m ( P < 0.01), and at V̇o2 max to 61.2 (SD 3.3) at 3,610 m ( P < 0.0001), to 59.4 (SD 2.6) at 4,750 m ( P < 0.0001), and to 58.0 (SD 3.0) at 5,260 m ( P < 0.0001). Cerebrovascular resistance tended to fall during submaximal exercise ( P = not significant) and rise at V̇o2 max, following the changes in arterial oxygen saturation and end-tidal CO2. Cerebral oxygen delivery was maintained during submaximal exercise at 150 m with a nonsignificant fall at V̇o2 max, but at high altitude peaked at 30% of V̇o2 max and then fell progressively at higher levels of exercise. The fall in rSo2 and oxygen delivery during exercise may limit exercise at altitude and is likely to contribute to the problems of acute mountain sickness and high-altitude cerebral edema.
Collapse
Affiliation(s)
- C H E Imray
- Coventry and Warwickshire County Vascular Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Between 1960 and 2003, 13 Chinese expeditions successfully reached the summit of Chomolungma (Mt Everest or Sagarmatha). Forty-five of the 80 summiteers were Tibetan highlanders. During these and other high-altitude expeditions in Tibet, a series of medical and physiological investigations were carried out on the Tibetan mountaineers. The results suggest that these individuals are better adapted to high altitude and that, at altitude, they have a greater physical capacity than Han (ethnic Chinese) lowland newcomers. They have higher maximal oxygen uptake, greater ventilation, more brisk hypoxic ventilatory responses, larger lung volumes, greater diffusing capacities, and a better quality of sleep. Tibetans also have a lower incidence of acute mountain sickness and less body weight loss. These differences appear to represent genetic adaptations and are obviously significant for humans at extreme altitude. This paper reviews what is known about the physiologic responses of Tibetans at extreme altitudes.
Collapse
Affiliation(s)
- Tianyi Wu
- Department of Hypoxic Physiology and Mountain Sickness, High Altitude Medical Research Institute, Xining, Qinghai, People's Republic of China.
| | | | | |
Collapse
|
48
|
Virués-Ortega J, Buela-Casal G, Garrido E, Alcázar B. Neuropsychological Functioning Associated with High-Altitude Exposure. Neuropsychol Rev 2004; 14:197-224. [PMID: 15796116 DOI: 10.1007/s11065-004-8159-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article focuses on neuropsychological functioning at moderate, high, and extreme altitude. This article summarizes the available literature on respiratory, circulatory, and brain determinants on adaptation to hypoxia that are hypothesized to be responsible for neuropsychological impairment due to altitude. Effects on sleep are also described. At central level, periventricular focal damages (leuko-araiosis) and cortical atrophy have been observed. Frontal lobe and middle temporal lobe alterations are also presumed. A review is provided regarding the effects on psychomotor performance, perception, learning, memory, language, cognitive flexibility, and metamemory. Increase of reaction time and latency of P300 are observed. Reduced thresholds of tact, smell, pain, and taste, together with somesthetic illusions and visual hallucinations have been reported. Impairment in codification and short-term memory are especially noticeable above 6,000 m. Alterations in accuracy and motor speed are identified at lower altitudes. Deficits in verbal fluency, language production, cognitive fluency, and metamemory are also detected. The moderating effects of personality variables over the above-mentioned processes are discussed. Finally, methodological flaws found in the literature are detailed and some applied proposals are suggested.
Collapse
Affiliation(s)
- Javier Virués-Ortega
- Departamento de Personalidad, Evaluación y Tratamiento Psicológicos, Universidad de Granada, Facultad de Psicología, Campus Universitario de Cartuja, 18071 Granada, Spain.
| | | | | | | |
Collapse
|
49
|
McGuire BJ, Secomb TW. Theoretical predictions of maximal oxygen consumption in hypoxia: effects of transport limitations. Respir Physiol Neurobiol 2004; 143:87-97. [PMID: 15477175 DOI: 10.1016/j.resp.2004.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
A Krogh-type model for oxygen transport is used to predict maximal oxygen consumption (V(.-) O(2max)) of human skeletal muscle under hypoxic conditions. Assumed values of capillary density, blood flow, and hemoglobin concentration are based on measurements under normoxic and hypoxic exercise conditions. Arterial partial pressure of oxygen is assumed to decrease with reductions in inspired partial pressure of oxygen (P(I)O(2)), as observed experimentally. As a result of limitations of convective and diffusive oxygen delivery, predicted V(.-) O(2max) values decline gradually as P(I)O(2) is reduced from 150 mmHg to about 80 mmHg, and more rapidly as P(I)O(2) is further reduced. At very low levels of P(I)O(2), V(.-) O(2max) is limited primarily by convective oxygen supply. Experimentally observed values of V(.-) O(2max) in hypoxia show significant dispersion, with some values close to predicted levels and others substantially lower. These results suggest that maximal oxygen consumption rates in hypoxia are not necessarily determined by oxygen transport limitations and may instead reflect reduced muscle oxygen demand.
Collapse
Affiliation(s)
- B J McGuire
- Program in Biomedical Engineering, University of Arizona, Tucson, AZ 85724-5084, USA
| | | |
Collapse
|
50
|
Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol (1985) 2004; 97:149-59. [PMID: 15004003 DOI: 10.1152/japplphysiol.01385.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effect of high, normal, and uncontrolled end-tidal Pco2 (PetCO2) on the ventilatory, peak cerebral blood flow velocity ( V̄p), and mean arterial blood pressure (MAP) responses to acute hypoxia. Nine healthy subjects undertook, in random order, three hypoxic protocols (end-tidal Po2 was held at eight steps between 300 and 45 Torr) in conditions of hypercapnia, isocapnia, or poikilocapnia (PetCO2 +7.5 Torr, +1.0 Torr, or uncontrolled, respectively). Transcranial Doppler ultrasound was used to measure V̄p in the middle cerebral artery. The slopes of the linear regressions of ventilation, V̄p, and MAP with arterial O2 saturation were significantly greater in hypercapnia than in both isocapnia and poikilocapnia ( P < 0.05). Strong, significant correlations were observed between ventilation, V̄p, and MAP with each PetCO2 condition. These data suggest that 1) a high acute hypoxic ventilatory response (AHVR) decreases the acute hypoxic cerebral blood flow responses during poikilocapnia hypoxia, due to hypocapnic-induced cerebral vasoconstriction; and 2) in hypercapnic hypoxia, a high AHVR is associated with a high acute hypoxic cerebral blood flow response, demonstrating a linkage of individual sensitivities of ventilation and cerebral blood flow to the interaction of PetCO2 and hypoxia. In summary, the between-individual variability in AHVR is shown to be firmly linked to the variability in V̄p and MAP responses to hypoxia. Individuals with a high AHVR are found also to have high V̄p and MAP responses to hypoxia.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology & Biophysics, Faculty of Medicine, Univiversity of Calgary, Calgary Alberta, Canada T2N 4N1
| | | |
Collapse
|