1
|
Malgoyre A, Prola A, Meunier A, Chapot R, Serrurier B, Koulmann N, Bigard X, Sanchez H. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle. Front Sports Act Living 2021; 3:663857. [PMID: 34124658 PMCID: PMC8193088 DOI: 10.3389/fspor.2021.663857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (−30% for citrate synthase, P < 0.01, and −23% for Vmax glut−succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (−29%, P < 0.001), for acceptor-control ratio (−36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (−48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adelie Meunier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Rachel Chapot
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Bernard Serrurier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France.,Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
2
|
Moraga FA, Osorio J, Jiménez D, Calderón-Jofré R, Moraga D. Aerobic Capacity, Lactate Concentration, and Work Assessment During Maximum Exercise at Sea Level and High Altitude in Miners Exposed to Chronic Intermittent Hypobaric Hypoxia (3,800 m). Front Physiol 2019; 10:1149. [PMID: 31555155 PMCID: PMC6742696 DOI: 10.3389/fphys.2019.01149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
We previously showed that arterial oxygen content during maximum exercise remains constant at high altitude (HA) in miners exposed to chronic intermittent hypobaric hypoxia (CIHH). Nevertheless, information about VO2, lactate concentration [Lac], and work efficiency are absent in this CIHH miner population. Our aim was to determine aerobic capacity, [Lac], and work efficiency at sea level (SL) and HA during maximum exercise in miners acclimatized to CIHH at 3,800 m. Eight volunteer miners acclimatized to CIHH at HA (> 4 years) performed an exercise test at SL and HA. The test was performed on the 4th day at HA or SL and consisted of three phases: Rest (5 min); Exercise test, where the load was increased by 50 W every 3 min until exhaustion; and a Recovery period of 30 min. During the procedure VO2, transcutaneous arterial saturation (SpO2, %), and HR (bpm) were assessed at each step by a pulse oximeter and venous blood samples were taken to measure [Lac] and hemoglobin concentration. No differences in VO2 and [Lac] in SL vs. HA were observed in this CIHH miner population. By contrast, a higher HR and lower SpO2 were observed at SL compared with HA. During maximum exercise, a reduction in VO2 and [Lac] was observed without differences in intensity (W) and HR. A decrease in [Lac] was observed at maximum effort (250 W) and recovery at HA vs. SL. These findings are related to an increased work efficiency assessment such as gross and net efficiency. This study is the first to show that miners exposed to CIHH maintain their work capacity (intensity) with a fall in oxygen consumption and a decrease in plasmatic lactate concentration at maximal effort at HA. These findings indicate that work efficiency at HA is enhanced.
Collapse
Affiliation(s)
- Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Jorge Osorio
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Daniel Jiménez
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Calderón-Jofré
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Ciencias Básicas, Universidad Santo Tomás, La Serena, Chile
| | - Daniel Moraga
- Carrera de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
3
|
Malgoyre A, Chabert C, Tonini J, Koulmann N, Bigard X, Sanchez H. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype. J Appl Physiol (1985) 2017; 122:666-674. [DOI: 10.1152/japplphysiol.00090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023] Open
Abstract
We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric restriction in oxidative muscle and to hypoxia in glycolytic one. In contrast, maximal oxidation for LCFA is decreased by chronic hypoxia in glycolytic muscle and can explain glucose dependence at exercise.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Clovis Chabert
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier and Institut National de la Santé et de la Recherche Médicale U1055, Grenoble France
| | - Julia Tonini
- Centre de Recherche du Service de Santé des Armées, La Tronche, La Tronche, France; and
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
4
|
Smith KJ, MacLeod D, Willie CK, Lewis NCS, Hoiland RL, Ikeda K, Tymko MM, Donnelly J, Day TA, MacLeod N, Lucas SJE, Ainslie PN. Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery. J Physiol 2014; 592:5507-27. [PMID: 25362150 PMCID: PMC4270509 DOI: 10.1113/jphysiol.2014.281212] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/18/2014] [Indexed: 11/08/2022] Open
Abstract
We examined the hypotheses that: (1) during incremental exercise and recovery following 4-6 days at high altitude (HA) global cerebral blood flow (gCBF) increases to preserve cerebral oxygen delivery (CDO2) in excess of that required by an increasing cerebral metabolic rate of oxygen ( CM RO2); (2) the trans-cerebral exchange of oxygen vs. carbohydrates (OCI; carbohydrates = glucose + ½lactate) would be similar during exercise and recovery at HA and sea level (SL). Global CBF, intra-cranial arterial blood velocities, extra-cranial blood flows, and arterial-jugular venous substrate differences were measured during progressive steady-state exercise (20, 40, 60, 80, 100% maximum workload (Wmax)) and through 30 min of recovery. Measurements (n = 8) were made at SL and following partial acclimatization to 5050 m. At HA, absolute Wmax was reduced by ∼50%. During submaximal exercise workloads (20-60% Wmax), despite an elevated absolute gCBF (∼20%, P < 0.05) the relative increases in gCBF were not different at HA and SL. In contrast, gCBF was elevated at HA compared with SL during 80 and 100% Wmax and recovery. Notwithstanding a maintained CDO2 and elevated absolute CM RO2 at HA compared with SL, the relative increase in CM RO2 was similar during 20-80% Wmax but half that of the SL response (i.e. 17 vs. 27%; P < 0.05 vs. SL) at 100% Wmax. The OCI was reduced at HA compared with SL during 20, 40, and 60% Wmax but comparable at 80 and 100% Wmax. At HA, OCI returned almost immediately to baseline values during recovery, whereas at SL it remained below baseline. In conclusion, the elevations in gCBF during exercise and recovery at HA serve to maintain CDO2. Despite adequate CDO2 at HA the brain appears to increase non-oxidative metabolism during exercise and recovery.
Collapse
Affiliation(s)
- K J Smith
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - D MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - C K Willie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - N C S Lewis
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - R L Hoiland
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - K Ikeda
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - M M Tymko
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - J Donnelly
- University of Otago, Dunedin, New Zealand University Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T A Day
- Department of Biology, Mount Royal Univeristy, Calgary, AB, Canada
| | - N MacLeod
- Carolina Friends School, Durham, NC, USA
| | - S J E Lucas
- University of Otago, Dunedin, New Zealand University of Birmingham, Birmingham, UK
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
5
|
Green HJ, Burnett M, Carter S, Jacobs I, Ranney D, Smith I, Tupling S. Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training. Eur J Appl Physiol 2013; 113:1965-78. [PMID: 23543067 DOI: 10.1007/s00421-013-2621-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/27/2013] [Indexed: 12/29/2022]
Abstract
This study aimed at investigating the relative roles of the duration versus intensity of exercise on the metabolic adaptations in vastus lateralis to short-term (10 day) aerobic-based cycle training. Healthy males with a peak aerobic power (VO2 peak) of 46.0 ± 2.0 ml kg(-1) min(-1) were assigned to either a 30-min (n = 7) or a 60-min (n = 8) duration performed at two different intensities (with order randomly assigned), namely moderate (M) and heavy (H), corresponding to 70 and 86 % VO2 peak, respectively. No change (P > 0.05) in VO2 peak was observed regardless of the training program. Based on the metabolic responses to prolonged exercise (60 % VO2 peak), both M and H and 30 and 60 min protocols displayed less of a decrease (P < 0.05) in phosphocreatine (PCr) and glycogen (Glyc) and less of an increase (P < 0.05) in free adenosine diphosphate (ADPf), free adenosine monophosphate (AMPf), inosine monophosphate (IMP) and lactate (La). Training for 60 min compared with 30 min resulted in a greater protection (P < 0.05) of ADPf, AMPf, PCr and Glyc during exercise, effects that were not displayed between M and H. The reduction in both VO2 and RER (P < 0.05) observed during submaximal exercise did not depend on training program specifics. These findings indicate that in conjunction with our earlier study (Green et al., Eur J Appl Physiol, 2012b), a threshold exists for duration rather than intensity of aerobic exercise to induce a greater training impact in reducing metabolic strain.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON , N2L3G1, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Green HJ, Burnett M, Jacobs I, Ranney D, Smith I, Tupling S. Adaptations in muscle metabolic regulation require only a small dose of aerobic-based exercise. Eur J Appl Physiol 2012; 113:313-24. [PMID: 22706580 DOI: 10.1007/s00421-012-2434-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/25/2012] [Indexed: 01/29/2023]
Abstract
This study investigated the hypothesis that the duration of aerobic-based cycle exercise would affect the adaptations in substrate and metabolic regulation that occur in vastus lateralis in response to a short-term (10 day) training program. Healthy active but untrained males (n = 7) with a peak aerobic power ([Formula: see text]) of 44.4 ± 1.4 ml kg(-1) min(-1) participated in two different training programs with order randomly assigned (separated by ≥2 weeks). The training programs included exercising at a single intensity designated as light (L) corresponding to 60 % [Formula: see text], for either 30 or 60 min. In response to a standardized task (60 % [Formula: see text]), administered prior to and following each training program, L attenuated the decrease (P < 0.05) in phosphocreatine and the increase (P < 0.05) in free adenosine diphosphate and free adenosine monophosphate but not lactate. These effects were not altered by daily training duration. In the case of muscle glycogen, training for 60 versus 30 min exaggerated the increase (P < 0.05) that occurred, an effect that extended to both rest and exercise concentrations. No changes were observed in [Formula: see text] measured during progressive exercise to fatigue or in [Formula: see text] and RER during submaximal exercise with either training duration. These findings indicate that reductions in metabolic strain, as indicated by a more protected phosphorylation potential, and higher glycogen reserves, can be induced with a training stimulus of light intensity applied for as little as 30 min over 10 days. Our results also indicate that doubling the duration of daily exercise at L although inducing increased muscle glycogen reserves did not result in a greater metabolic adaptation.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Saey D, Lemire BB, Gagnon P, Bombardier É, Tupling AR, Debigaré R, Côté CH, Maltais F. Quadriceps metabolism during constant workrate cycling exercise in chronic obstructive pulmonary disease. J Appl Physiol (1985) 2011; 110:116-24. [DOI: 10.1152/japplphysiol.00153.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired resting metabolism in peripheral muscles potentially contributes to exercise intolerance in chronic obstructive pulmonary disease (COPD). This study investigated the cytosolic energy metabolism of the quadriceps, from glycogen degradation to lactate accumulation, in exercising patients with COPD, in comparison to healthy controls. We measured, in 12 patients with COPD and 10 control subjects, resting and post-cycling exercise quadriceps levels of 1) energy substrates and end products of glycolysis (glycogen, glucose, pyruvate, and lactate) and intermediate markers of glycolysis (glucose-6-phosphate, glucose-1-phosphate, fructose-6-phosphate) and 2) the activity of key enzymes involved in the regulation of glycolysis (phosphofructokinase, lactate dehydrogenase). Exercise intensity ( P < 0.01), duration ( P = 0.049), and total work ( P < 0.01) were reduced in patients with COPD. The variations in energy substrates and end products of glycolysis after cycling exercise were of similar magnitude in patients with COPD and controls. Glucose-6-phosphate ( P = 0.036) and fructose-6-phosphate ( P = 0.042) were significantly elevated in patients with COPD after exercise. Phosphofructokinase ( P < 0.01) and lactate dehydrogenase ( P = 0.02) activities were greater in COPD. Muscle glycogen utilization ( P = 0.022) and lactate accumulation ( P = 0.025) per unit of work were greater in COPD. We conclude that cycling exercise induced changes in quadriceps metabolism in patients with COPD that were of similar magnitude to those of healthy controls. These intramuscular events required a much lower exercise work load and time to occur in COPD. Our data suggest a greater reliance on glycolysis during exercise in COPD, which may contribute to exercise intolerance in COPD.
Collapse
Affiliation(s)
- Didier Saey
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Sainte-Foy, Quebec, Canada
| | - Bruno B. Lemire
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Sainte-Foy, Quebec, Canada
| | - Philippe Gagnon
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Sainte-Foy, Quebec, Canada
| | - Éric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; and
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; and
| | - Richard Debigaré
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Sainte-Foy, Quebec, Canada
| | - Claude H. Côté
- Centre de recherche du Centre hospitalier universitaire de Québec, Pavillon CHUL, Université Laval, Sainte-Foy, Quebec, Canada
| | - François Maltais
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Sainte-Foy, Quebec, Canada
| |
Collapse
|
9
|
Ford RJ, Rush JWE. Endothelium-dependent vasorelaxation to the AMPK activator AICAR is enhanced in aorta from hypertensive rats and is NO and EDCF dependent. Am J Physiol Heart Circ Physiol 2010; 300:H64-75. [PMID: 20971768 DOI: 10.1152/ajpheart.00597.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) induces vasorelaxation in arteries from healthy animals, but the mechanisms coordinating this effect are unclear and the integrity of this response has not been investigated in dysfunctional arteries of hypertensive animals. Here we investigate the mechanisms of relaxation to the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) in isolated thoracic aorta rings from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Although AICAR generated dose-dependent (10(-6)-10(-2) M) relaxation in precontracted WKY and SHR aortic rings with (E(+)) or without (E(-)) endothelium, relaxation was enhanced in E(+) rings. Relaxation in SHR E(+) rings was also enhanced at low [AICAR] (10(-6) M) compared with that of WKY (57 ± 8% vs. 3 ± 2% relaxation in SHR vs. WKY E(+)), but was similar and near 100% in both groups at high [AICAR]. Pharmacological dissection showed that the mechanisms responsible for the endothelium-dependent component of relaxation across the dose range of AICAR are exclusively nitric oxide (NO) mediated in WKY rings, but partly NO dependent and partly cyclooxygenase (COX) dependent in SHR vessels. Further investigation revealed that ACh-stimulated COX-endothelium-derived contracting factors (EDCF)-mediated contractions were suppressed by AICAR, and this effect was reversed in the presence of the AMPK inhibitor Compound C in quiescent E(+) SHR aortic rings. Western blots demonstrated that P(Thr(172))-AMPK and P(Ser(79))-acetyl-CoA carboxylase (indexes of AMPK activation) were elevated in SHR versus WKY E(+) rings at low AICAR (∼2-fold). Together these findings suggest that AMPK-mediated inhibition of EDCF-dependent contraction and elevated AMPK activation may contribute to the enhanced sensitivity of SHR E(+) rings to AICAR. These results demonstrate AMPK-mediated vasorelaxation is present and enhanced in arteries of SHR and suggest that activation of AMPK may be a potential strategy to improve vasomotor dysfunction by suppressing enhanced endoperoxide-mediated contraction and enhancing NO-mediated relaxation.
Collapse
Affiliation(s)
- Rebecca J Ford
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
10
|
Abstract
In October 1985, 25 years ago, 8 subjects and 27 investigators met at the United States Army Research Institute for Environmental Medicine (USARIEM) altitude chambers in Natick, Massachusetts, to study human responses to a simulated 40-day ascent of Mt. Everest, termed Operation Everest II (OE II). Led by Charlie Houston, John Sutton, and Allen Cymerman, these investigators conducted a large number of investigations across several organ systems as the subjects were gradually decompressed over 40 days to the Everest summit equivalent. There the subjects reached a V(O)(2)max of 15.3 mL/kg/min (28% of initial sea-level values) at 100 W and arterial P(O(2)) and P(CO(2)) of approximately 28 and approximately 10 mm Hg, respectively. Cardiac function resisted hypoxia, but the lungs could not: ventilation-perfusion inequality and O(2) diffusion limitation reduced arterial oxygenation considerably. Pulmonary vascular resistance was increased, was not reversible after short-term hyperoxia, but was reduced during exercise. Skeletal muscle atrophy occurred, but muscle structure and function were otherwise remarkably unaffected. Neurological deficits (cognition and memory) persisted after return to sea level, more so in those with high hypoxic ventilatory responsiveness, with motor function essentially spared. Nine percent body weight loss (despite an unrestricted diet) was mainly (67%) from muscle and exceeded the 2% predicted from energy intake-expenditure balance. Some immunological and lipid metabolic changes occurred, of uncertain mechanism or significance. OE II was unique in the diversity and complexity of studies carried out on a single, courageous cohort of subjects. These studies could never have been carried out in the field, and thus complement studies such as the American Medical Research Expedition to Everest (AMREE) that, although more limited in scope, serve as benchmarks and reality checks for chamber studies like OE II.
Collapse
|
11
|
Cerretelli P, Gelfi C. Energy metabolism in hypoxia: reinterpreting some features of muscle physiology on molecular grounds. Eur J Appl Physiol 2010; 111:421-32. [PMID: 20352258 DOI: 10.1007/s00421-010-1399-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2010] [Indexed: 02/03/2023]
Abstract
An holistic approach for interpreting classical data on the adaptation of the animal and, particularly, of the human body to hypoxic stress was promoted by the discovery of HIF-1, the "master regulator" of cell hypoxic signaling. Mitochondrial production of ROS stabilizes the O(2)-regulated HIF-1α subunit of the HIF-1 dimer promoting transaction functions in a large number of potential target genes, activating transcription of sequences into RNA and, eventually, protein production. The aim of the present preliminary study is to assess whether adaptive changes in oxygen sensing and metabolic signaling, particularly in the control of energy turnover known to occur in cultured cells exposed to hypoxia, are detectable also in the muscles of animals and man. For the present analysis, data obtained from the proteome of the rat gastrocnemius and of the vastus lateralis muscle of humans together with functional measurements were compared with homologous data from hypoxic cultured cells. In particular, the following variables were assessed: (1) the role of stress response proteins in the maintenance of ROS homeostasis, (2) the activity of the PDK1 gene on the shunting of pyruvate away from the TCA cycle in rodents and in humans, (3) the COX-4/COX-2 ratio in hypoxic rodents, (4) the overall efficiency of oxidative phosphorylation in humans during exercise in hypoxia, (5) some features of muscle mitochondrial autophagy in humans undergoing subchronic and chronic altitude exposure. Despite the limited number of observations and the differences in the experimental approach, some initial interesting results were obtained encouraging to pursue this innovative effort.
Collapse
Affiliation(s)
- Paolo Cerretelli
- Istituto di Bioimmagini e Fisiologia Molecolare del Consiglio Nazionale delle Ricerche (CNR), Palazzo LITA, Via Fratelli Cervi, 93, 20190, Segrate, Milan, Italy.
| | | |
Collapse
|
12
|
Norris SM, Bombardier E, Smith IC, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C521-9. [PMID: 20018953 DOI: 10.1152/ajpcell.00479.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to directly quantify the relative contribution of Ca(2+) cycling to resting metabolic rate in mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) skeletal muscle. Resting oxygen consumption of isolated muscles (Vo(2), microl.g wet wt(-1).s(-1)) measured polarographically at 30 degrees C was approximately 25% higher in soleus (0.61 +/- .03) than in EDL (0.46 +/- .03). To quantify the specific contribution of Ca(2+) cycling to resting metabolic rate, cyclopiazonic acid (CPA), a highly specific inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPases (SERCAs), was added to the bath at different concentrations (1, 5, 10, and 15 microM). There was a concentration-dependent effect of CPA on Vo(2), with increasing CPA concentrations up to 10 microM resulting in progressively greater reductions in muscle Vo(2). There were no differences between 10 and 15 microM CPA, indicating that 10 microM CPA induces maximal inhibition of SERCAs in isolated muscle preparations. Relative reduction in muscle Vo(2) in response to CPA was nearly identical in EDL (1 microM, 10.6 +/- 3.0%; 5 microM, 33.2 +/- 3.4%; 10 microM, 49.2 +/- 2.9%; 15 microM, 50.9 +/- 2.1%) and soleus (1 microM, 11.2 +/- 1.5%; 5 microM, 37.7 +/- 2.4%; 10 microM, 50.0 +/- 1.3%; 15 microM, 49.9 +/- 1.6%). The results indicate that ATP consumption by SERCAs is responsible for approximately 50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30 degrees C. Thus SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.
Collapse
|
13
|
Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running: lessons from triathletes. Sports Med 2009; 39:179-206. [PMID: 19290675 DOI: 10.2165/00007256-200939030-00002] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.
Collapse
|
14
|
van Hall G, Lundby C, Araoz M, Calbet JAL, Sander M, Saltin B. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives. J Physiol 2009; 587:1117-29. [PMID: 19139048 PMCID: PMC2673779 DOI: 10.1113/jphysiol.2008.160846] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/06/2009] [Indexed: 11/08/2022] Open
Abstract
Chronic hypoxia has been proposed to induce a closer coupling in human skeletal muscle between ATP utilization and production in both lowlanders (LN) acclimatizing to high altitude and high-altitude natives (HAN), linked with an improved match between pyruvate availability and its use in mitochondrial respiration. This should result in less lactate being formed during exercise in spite of the hypoxaemia. To test this hypothesis six LN (22-31 years old) were studied during 15 min warm up followed by an incremental bicycle exercise to exhaustion at sea level, during acute hypoxia and after 2 and 8 weeks at 4100 m above sea level (El Alto, Bolivia). In addition, eight HAN (26-37 years old) were studied with a similar exercise protocol at altitude. The leg net lactate release, and the arterial and muscle lactate concentrations were elevated during the exercise in LN in acute hypoxia and remained at this higher level during the acclimatization period. HAN had similar high values; however, at the moment of exhaustion their muscle lactate, ADP and IMP content and Cr/PCr ratio were higher than in LN. In conclusion, sea-level residents in the course of acclimatization to high altitude did not exhibit a reduced capacity for the active muscle to produce lactate. Thus, the lactate paradox concept could not be demonstrated. High-altitude natives from the Andes actually exhibit a higher anaerobic energy production than lowlanders after 8 weeks of acclimatization reflected by an increased muscle lactate accumulation and enhanced adenine nucleotide breakdown.
Collapse
Affiliation(s)
- G van Hall
- The Copenhagen Muscle Research Centre, Rigshospitalet section 7652, 9 Blegdamsvej, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
15
|
Green HJ, Bombardier E, Duhamel TA, Stewart RD, Tupling AR, Ouyang J. Metabolic, enzymatic, and transporter responses in human muscle during three consecutive days of exercise and recovery. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1238-50. [PMID: 18650322 DOI: 10.1152/ajpregu.00171.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the responses in substrate- and energy-based properties to repetitive days of prolonged submaximal exercise and recovery. Twelve untrained volunteers (Vo(2)(peak) = 44.8 +/- 2.0 ml.kg(-1).min(-1), mean +/- SE) cycled ( approximately 60 Vo(2)(peak)) on three consecutive days followed by 3 days of recovery. Tissue samples were extracted from the vastus lateralis both pre- and postexercise on day 1 (E1), day 3 (E3), and during recovery (R1, R2, R3) and were analyzed for changes in metabolism, substrate, and enzymatic and transporter responses. For the metabolic properties (mmol/kg(-1) dry wt), exercise on E1 resulted in reductions (P < 0.05) in phosphocreatine (PCr; 80 +/- 1.9 vs. 41.2 +/- 3.0) and increases (P < 0.05) in inosine monophosphate (IMP; 0.13 +/- 0.01 vs. 0.61 +/- 0.2) and lactate (3.1 +/- 0.4 vs. 19.2 +/- 4.3). At E3, both IMP and lactate were lower (P < 0.05) during exercise. For the transporters, the experimental protocol resulted in a decrease (P < 0.05) in glucose transporter-1 (GLUT1; 29% by R1), an increase in GLUT4 (29% by E3), and increases (P < 0.05) for both monocarboxylate transporters (MCT) (for MCT1, 23% by R2 and for MCT4, 18% by R1). Of the mitochondrial and cytosolic enzyme activities examined, cytochrome c oxidase (COX), and hexokinase were both reduced (P < 0.05) by exercise at E1 and in the case of hexokinase and phosphorylase by exercise on E3. With the exception at COX, which was lower (P < 0.05) at R1, no differences in enzyme activities existed at rest between E, E3, and recovery days. Results suggest that the glucose and lactate transporters are among the earliest adaptive responses of substrate and metabolic properties studied to the sudden onset of regular low-intensity exercise.
Collapse
Affiliation(s)
- Howard J Green
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | | | | | |
Collapse
|
16
|
Green HJ, Burnett ME, D'Arsigny CL, O'Donnell DE, Ouyang J, Webb KA. Altered metabolic and transporter characteristics of vastus lateralis in chronic obstructive pulmonary disease. J Appl Physiol (1985) 2008; 105:879-86. [PMID: 18635880 DOI: 10.1152/japplphysiol.90458.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate energy metabolic and transporter characteristics in resting muscle of patients with moderate to severe chronic obstructive pulmonary disease [COPD; forced expiratory volume in 1 s (FEV(1)) = 42 +/- 6.0% (mean +/- SE)], tissue was extracted from resting vastus lateralis (VL) of 9 COPD patients and compared with that of 12 healthy control subjects (FEV(1) = 114 +/- 3.4%). Compared with controls, lower (P < 0.05) concentrations (mmol/kg dry wt) of ATP (19.6 +/- 0.65 vs. 17.8 +/- 0.69) and phosphocreatine (81.3 +/- 2.3 vs. 69.1 +/- 4.2) were observed in COPD, which occurred in the absence of differences in the total adenine nucleotide and total creatine pools. Higher concentrations were observed in COPD for several glycolytic metabolites (glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, pyruvate) but not lactate. Glycogen storage was not affected by the disease (289 +/- 20 vs. 269 +/- 20 mmol glucosyl units/kg dry wt). Although no difference between groups was observed for the glucose transporter GLUT1, GLUT4 was reduced by 28% in COPD. For the monocarboxylate transporters, MCT4 was 35% lower in COPD, with no differences observed for MCT1. These results indicate that in resting VL, moderate to severe COPD results in a reduction in phosphorylation potential, an apparent elevation of glycolytic flux rate, and a potential defect in glucose and lactate transport as a result of reduced levels of the principal isoforms.
Collapse
Affiliation(s)
- H J Green
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | | | | | | | | | |
Collapse
|
17
|
Prommer N, Heinicke K, Viola T, Cajigal J, Behn C, Schmidt WFJ. Long-term intermittent hypoxia increases O2-transport capacity but not VO2max. High Alt Med Biol 2008; 8:225-35. [PMID: 17824823 DOI: 10.1089/ham.2007.8309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term intermittent hypoxia, characterized by several days or weeks at altitude with periodic stays at sea level, is a frequently occurring pattern of life in mountainous countries demanding a good state of physical performance. The aim of the study was to determine the effects of a typical South American type of long-term intermittent hypoxia on VO2max at altitude and at sea level. We therefore compared an intermittently exposed group of soldiers (IH) who regularly (6 months) performed hypoxic-normoxic cycles of 11 days at 3550 m and 3 days at sea level with a group of soldiers from sea level (SL, control group) at 0 m and in acute hypoxia at 3550 m. VO2max was determined in both groups 1 day after arrival at altitude and at sea level. At altitude, the decrease in VO2max was less pronounced in IH (10.6 +/- 4.2%) than in SL (14.1 +/- 4.7%). However, no significant differences in VO2max were found between the groups either at sea level or at altitude, although arterial oxygen content (Ca(O(2) )) at maximum exercise was elevated (p < 0.001) in IH compared to SL by 11.7% at sea level and by 8.9% at altitude. This higher Ca(O(2) ) mainly resulted from augmented hemoglobin mass (IH: 836 +/- 103 g, SL: 751 +/- 72 g, p < 0.05) and at altitude also from increased arterial O(2)-saturation. In conclusion, acclimatization to long-term intermittent hypoxia substantially increases Ca(O(2) ), but has no beneficial effects on physical performance either at altitude or at sea level.
Collapse
Affiliation(s)
- Nicole Prommer
- Department of Sports Medicine and Sports Physiology, University of Bayreuth, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Green HJ, Duhamel TA, Holloway GP, Moule J, Ouyang J, Ranney D, Tupling AR. Muscle metabolic responses during 16 hours of intermittent heavy exercise. Can J Physiol Pharmacol 2007; 85:634-45. [PMID: 17823626 DOI: 10.1139/y07-039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alterations in muscle metabolism were investigated in response to repeated sessions of heavy intermittent exercise performed over 16 h. Tissue samples were extracted from the vastus lateralis muscle before (B) and after (A) 6 min of cycling at approximately 91% peak aerobic power at repetitions one (R1), two (R2), nine (R9), and sixteen (R16) in 13 untrained volunteers (peak aerobic power = 44.3 +/- 0.66 mL.kg-1.min-1, mean +/- SE). Metabolite content (mmol.(kg dry mass)-1) in homogenates at R1 indicated decreases (p < 0.05) in ATP (21.9 +/- 0.62 vs. 17.7 +/- 0.68) and phosphocreatine (80.3 +/- 2.0 vs. 8.56 +/- 1.5) and increases (p < 0.05) in inosine monophosphate (IMP, 0.077 +/- 0.12 vs. 3.63 +/- 0.85) and lactate (3.80 +/- 0.57 vs. 84.6 +/- 10.3). The content (micromol.(kg dry mass)-1) of calculated free ADP ([ADPf], 86.4 +/- 5.5 vs. 1014 +/- 237) and free AMP ([AMPf], 0.32 +/- 0.03 vs. 78.4 +/- 31) also increased (p < 0.05). No differences were observed between R1 and R2. By R9 and continuing to R16, pronounced reductions (p < 0.05) at A were observed in IMP (72.2%), [ADPf] (58.7%), [AMPf] (85.5%), and lactate (41.3%). The 16-hour protocol resulted in an 89.7% depletion (p < 0.05) of muscle glycogen. Repetition-dependent increases were also observed in oxygen consumption during exercise. It is concluded that repetitive heavy exercise results in less of a disturbance in phosphorylation potential, possibly as a result of increased mitochondrial respiration during the rest-to-work non-steady-state transition.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Green HJ, Duhamel TA, Foley KP, Ouyang J, Smith IC, Stewart RD. Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 2007; 293:R354-62. [PMID: 17409263 DOI: 10.1152/ajpregu.00701.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of maximal Na+-K+-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (V̇o2peak) of 44.8 ± 1.9 ml·kg−1·min−1; mean ± SE cycled at ∼57% V̇o2peak to fatigue during both NG (artificial sweeteners) and G (6.13 ± 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased ( P < 0.05) in G compared with NG (137 ± 7 vs. 115 ± 6 min). Maximal Na+-K+-ATPase activity (Vmax) as measured by the 3- O-methylfluorescein phosphatase assay (nmol·mg−1·h−1) was not different between conditions prior to exercise (85.2 ± 3.3 or 86.0 ± 3.9), at 30 min (91.4 ± 4.7 vs. 91.9 ± 4.1) and at fatigue (92.8 ± 4.3 vs. 100 ± 5.0) but was higher ( P < 0.05) in G at 90 min (86.7 ± 4.2 vs. 109 ± 4.1). Na+-K+-ATPase content (βmax) measured by the vanadate facilitated [3H]ouabain-binding technique (pmol/g wet wt) although elevated ( P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher ( P < 0.05) in G compared with NG. The G condition also resulted in higher ( P < 0.05) serum insulin at similar time points to glucose and lower ( P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in Vmax by mechanisms that are unclear.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 2007; 581:389-403. [PMID: 17317739 PMCID: PMC2075206 DOI: 10.1113/jphysiol.2007.129700] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the effects of hypoxia severity on peripheral versus central determinants of exercise performance. Eight cyclists performed constant-load exercise to exhaustion at various fractions of inspired O2 fraction (FIO2 0.21/0.15/0.10). At task failure (pedal frequency < 70% target) arterial hypoxaemia was surreptitiously reversed via acute O2 supplementation (FIO2 = 0.30) and subjects were encouraged to continue exercising. Peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (DeltaQ(tw,pot)) as measured pre- versus post-exercise in response to supramaximal femoral nerve stimulation. At task failure in normoxia (haemoglobin saturation (SpO2) approximately 94%, 656 +/- 82 s) and moderate hypoxia (SpO2) approximately 82%, 278 +/- 16 s), hyperoxygenation had no significant effect on prolonging endurance time. However, following task failure in severe hypoxia (SpO2) approximately 67%; 125 +/- 6 s), hyperoxygenation elicited a significant prolongation of time to exhaustion (171 +/- 61%). The magnitude of DeltaQ(tw,pot) at exhaustion was not different among the three trials (-35% to -36%, P = 0.8). Furthermore, quadriceps integrated EMG, blood lactate, heart rate, and effort perceptions all rose significantly throughout exercise, and to a similar extent at exhaustion following hyperoxygenation at all levels of arterial oxygenation. Since hyperoxygenation prolonged exercise time only in severe hypoxia, we repeated this trial and assessed peripheral fatigue following task failure prior to hyperoxygenation (125 +/- 6 s). Although Q(tw,pot) was reduced from pre-exercise baseline (-23%; P < 0.01), peripheral fatigue was substantially less (P < 0.01) than that observed at task failure in normoxia and moderate hypoxia. We conclude that across the range of normoxia to severe hypoxia, the major determinants of central motor output and exercise performance switches from a predominantly peripheral origin of fatigue to a hypoxia-sensitive central component of fatigue, probably involving brain hypoxic effects on effort perception.
Collapse
Affiliation(s)
- Markus Amann
- University of Wisconsin Medical School, John Rankin Laboratory of Pulmonary Medicine, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
21
|
Svedenhag J, Saltin B, Johansson C, Kaijser L. Aerobic and anaerobic exercise capacities of elite middle-distance runners after two weeks of training at moderate altitude. Scand J Med Sci Sports 2007. [DOI: 10.1111/j.1600-0838.1991.tb00297.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Duhamel TA, Green HJ, Perco JG, Ouyang J. Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am J Physiol Cell Physiol 2006; 291:C607-17. [PMID: 16707551 DOI: 10.1152/ajpcell.00643.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (V̇o2 peak) = 43.6 ± 2.6 (SE) ml·kg−1·min−1] during prolonged cycle exercise to fatigue performed at ∼58% V̇o2 peakafter 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower ( P < 0.05) resting maximal Ca2+-ATPase activity ( Vmax= 174 ± 12 vs. 153 ± 10 μmol·g protein−1·min−1) and smaller reduction in Vmaxinduced during exercise. A similar effect was observed for Ca2+uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+concentration and Ca2+-ATPase activity, was higher ( P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+uptake to Vmax, was 23–30% elevated ( P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The ∼27 and 34% reductions ( P < 0.05) in phase 1 and phase 2 Ca2+release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+sequestration properties and efficiency are improved compared with those during Lo CHO alone.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Holloway GP, Green HJ, Tupling AR. Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol Regul Integr Comp Physiol 2005; 290:R393-404. [PMID: 16179493 DOI: 10.1152/ajpregu.00006.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
24
|
Py G, Eydoux N, Lambert K, Chapot R, Koulmann N, Sanchez H, Bahi L, Peinnequin A, Mercier J, Bigard AX. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle. Metabolism 2005; 54:634-44. [PMID: 15877294 DOI: 10.1016/j.metabol.2004.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To dissect the independent effects of altitude-induced hypoxemia and anorexia on the capacity for cardiac lactate metabolism, we examined the effects of 21 days of chronic hypobaric hypoxia (CHH) and its associated decrease in food intake and right ventricle (RV) hypertrophy on the monocarboxylate transporter 1 and 4 (MCT) expression, the rate of lactate uptake into sarcolemmal vesicles, and the activity of lactate dehydrogenase isoforms in rat muscles. In comparison with control rats (C), 1 mmol/L lactate transport measured on skeletal muscle sarcolemmal vesicles increased by 33% and 58% in hypoxic (CHH, barometric pressure = 495 hPa) and rats pair-fed an equivalent quantity of food to that consumed by hypoxic animals, respectively. The increased lactate transport was higher in PF than in CHH animals ( P < .05). No associated change in the expression of MCT1 protein was observed in skeletal muscles, whereas MCT1 mRNA decreased in CHH rats, in comparison with C animals (42%, P < .05), partly related to caloric restriction (30%, P < .05). MCT4 mRNA and protein increased during acclimatization to hypoxia only in slow-oxidative muscles (68%, 72%, P < .05, respectively). The MCT4 protein content did not change in the plantaris muscle despite a decrease in transcript levels, related to hypoxia and caloric restriction. In both the left and right ventricles, the MCT1 protein content was unaffected by ambient hypoxia or restricted food consumption. These results suggest that MCT1 and MCT4 gene expression in fast-glycolytic muscles is mainly regulated by posttranscriptional mechanisms. Moreover, the results emphasize the role played by caloric restriction on the control of gene expression in response to chronic hypoxia and suggest that hypoxia-induced right ventricle hypertrophy failed to alter MCT proteins.
Collapse
Affiliation(s)
- Guillaume Py
- Département de Physiologie, Muscle et Pathologies Chronmiques, EA 701, Faculté de Médecine, Institut de Biologie, 34060 Montpellier cedex 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 2005; 39:120-4. [PMID: 15665213 PMCID: PMC1725112 DOI: 10.1136/bjsm.2003.010330] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is hypothesised that physical activity is controlled by a central governor in the brain and that the human body functions as a complex system during exercise. Using feed forward control in response to afferent feedback from different physiological systems, the extent of skeletal muscle recruitment is controlled as part of a continuously altering pacing strategy, with the sensation of fatigue being the conscious interpretation of these homoeostatic, central governor control mechanisms.
Collapse
Affiliation(s)
- T D Noakes
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Sports Science of South Africa, PO Box 115, Newlands 7725, South Africa.
| | | | | |
Collapse
|
26
|
Duhamel TA, Green HJ, Sandiford SD, Perco JG, Ouyang J. Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. J Appl Physiol (1985) 2004; 97:188-96. [PMID: 15064300 DOI: 10.1152/japplphysiol.00958.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca2+cycling and whether alterations in SR Ca2+cycling are related to the blunted peak mechanical power output (POpeak) and peak oxygen consumption (V̇o2 peak) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 ± 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of V̇o2 peak(as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca2+-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower ( P < 0.05) POpeakand V̇o2 peak, respectively. During progressive exercise in N, Ca2+-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca2+concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca2+uptake (before exercise = 357 ± 29 μmol·min−1·g protein−1; at fatigue = 306 ± 26 μmol·min−1·g protein−1; P < 0.05) when measured at free Ca2+concentration of 2 μM and in phase 2 Ca2+release (before exercise = 716 ± 33 μmol·min−1·g protein−1; at fatigue = 500 ± 53 μmol·min−1·g protein−1; P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca2+-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower POpeakand V̇o2 peakobserved during H.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
27
|
Pronk M, Tiemessen I, Hupperets MDW, Kennedy BP, Powell FL, Hopkins SR, Wagner PD. Persistence of the lactate paradox over 8 weeks at 3,800 m. High Alt Med Biol 2004; 4:431-43. [PMID: 14672546 DOI: 10.1089/152702903322616182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The arterial blood lactate [La] response to exercise increases in acute hypoxia, but returns to near the normoxic (sea level, SL) response after 2 to 5 weeks of altitude acclimatization. Recently, it has been suggested that this gradual return to the SL response in [La], known as the lactate paradox (LP), unexpectedly disappears after 8 to 9 weeks at altitude. We tested this idea by recording the [La] response to exercise every 2 weeks over 8 weeks at altitude. Five normal, fit SL-residents were studied at SL and 3,800 m (Pbar = 485 torr) in both normoxia (PIO2 = 150 torr) and hypoxia (PIO2 = 91 torr approximately air at 3,800 m). Arterial [La] and blood gas values were determined at rest and during cycle exercise at the same absolute workloads (0, 25, 50, 75, 90, and 100% of initial SL-VO2Max) and exercise duration (4, 4, 4, 2, 1.5, and 0.75 min, respectively) at each time point. [La] curves were elevated in acute hypoxia at SL (p < 0.01) and at 3,800 m fell progressively toward the SL-normoxic curve (p < 0.01). On the same days, [La] responses in acute normoxia showed essentially no changes over time and were similar to initial SL normoxic responses. We also measured arterial catecholamine levels at each load and found a close relationship to [La] over time, supporting a role for adrenergic influence on [La]. In summary, extending the time at this altitude to 8 weeks produced no evidence for reversal of the LP, consistent with prior data obtained over shorter periods of altitude residence.
Collapse
Affiliation(s)
- Marieke Pronk
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sightings. High Alt Med Biol 2002. [DOI: 10.1089/15270290260512828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Fowles JR, Green HJ, Schertzer JD, Tupling AR. Reduced activity of muscle Na(+)-K(+)-ATPase after prolonged running in rats. J Appl Physiol (1985) 2002; 93:1703-8. [PMID: 12381757 DOI: 10.1152/japplphysiol.00708.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the hypothesis that Na(+)-K(+)-ATPase activity is reduced in muscle of different fiber composition after a single session of aerobic exercise in rats. In one experiment, untrained female Sprague-Dawley rats (weight 275 +/- 21 g; means +/- SE; n = 30) were run (Run) on a treadmill at 21 m/min and 8% grade until fatigue, or to a maximum of 2 h, which served as control (Con), or performed an additional 45 min of low-intensity exercise at 10 m/min (Run+). In a second experiment, utilizing rats of similar characteristics (weight 258 +/- 18 g; n = 32), Run was followed by passive recovery (Rec). Directly after exercise, rats were anesthetized, and tissue was extracted from Soleus (Sol), red vastus lateralis (RV), white vastus lateralis (WV), and extensor digitorum longus (EDL) and frozen for later analysis. 3-O-methylfluorescein phosphatase activity (3-O-MFPase) was determined as an indicator of Na(+)-K(+)-ATPase activity, and glycogen depletion identified recruitment of each muscle during exercise. 3-O-MFPase was decreased (P < 0.05) at Run+ by an average of 12% from Con in all muscles (P < 0.05). No difference was found between Con and Run. Glycogen was lower (P < 0.05) by 65, 57, 44, and 33% (Sol, EDL, RV, and WV, respectively) at Run, and there was no further depletion during the continued low-intensity exercise period. No differences in Na(+)-K(+)-ATPase activity was observed between Con and Rec. The results of this study indicate that inactivation of Na(+)-K(+)-ATPase can be induced by aerobic exercise in a volume-dependent manner and that the inactivation that occurs is not specific to muscles of different fiber-type composition. Inactivation of Na(+)-K(+)-ATPase suggests intrinsic structural modifications by mechanisms that are unclear.
Collapse
Affiliation(s)
- J R Fowles
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
30
|
McClelland GB, Brooks GA. Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia. J Appl Physiol (1985) 2002; 92:1573-84. [PMID: 11896024 DOI: 10.1152/japplphysiol.01069.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the effect of chronic hypobaric hypoxia on the enzymes and transporters involved in lactate metabolism. We looked at the protein expression of monocarboxylate transporters MCT 1, MCT 2, and MCT 4, along with total lactate dehydrogenase (LDH) and LDH isozymes in skeletal muscle, cardiac muscle, and liver. Expression of these components of the lactate shuttle affects the ability to transport and oxidize lactate. We hypothesized that the expression of MCTs and LDH would increase after acclimation to high altitude (HA). The response to acclimation to HA was, however, tissue specific. In addition, the response was different in whole muscle (Mu) and mitochondria-enriched (Mi) fractions. Heart, soleus, and plantaris muscles showed the greatest response to HA. Acclimation resulted in a 34% increase in MCT 4 in heart and a decrease in MCT 1 (-47%) and MCT 4 (-47%) in plantaris Mu. In Mi fractions, the heart had an increase (+40%) and soleus a decrease (-40%) in LDH. HA also had a significant effect on the LDH isozyme composition of both the Mu and Mi fractions. Mitochondrial density was decreased in both the soleus (-17%) and plantaris (-44%) as a result of chronic hypoxia. We conclude that chronic hypoxia had a tissue-specific effect on MCTs and LDH (that form the lactate shuttle) but did not produce a consistent increase in these components in all tissues.
Collapse
Affiliation(s)
- Grant B McClelland
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | |
Collapse
|
31
|
Tupling R, Green H, Senisterra G, Lepock J, McKee N. Ischemia-induced structural change in SR Ca2+-ATPase is associated with reduced enzyme activity in rat muscle. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1681-8. [PMID: 11641141 DOI: 10.1152/ajpregu.2001.281.5.r1681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we employed an in vivo model of prolonged ischemia in rat skeletal muscle to investigate the hypothesis that structural modifications to the sarcoplasmic reticulum (SR) Ca2+-ATPase can explain the alterations in Ca2+-ATPase activity that occur with ischemia. To induce total ischemia, a tourniquet was placed around the upper hindlimb in 27 female Sprague-Dawley rats weighing 256 +/- 6.7 g (mean +/- SE) and was inflated to 350 mmHg for 4 h. The contralateral limb served as control (C) to the ischemic limb (I), and the limbs of animals killed immediately after anesthetization served as a double control (CC). Mixed gastrocnemius and tibialis anterior muscles were sampled and used for SR vesicle preparation. Maximal Ca2+-ATPase activity (micromol x g protein(-1) x min(-1)) of C (15,802 +/- 1,246) and I (11,609 +/- 1,029) was 90 and 73% (P < 0.05) of CC (17,562 +/- 1,682), respectively. No differences were found between groups in either the Hill coefficient or the free Ca2+ at half-maximal activity. The fluorescent probes, FITC and N-cyclohexyl-N'-(dimethylamino-alpha-naphthyl) carbodiimide, used to assess structural alterations in the regions of the ATP binding site and the Ca2+ binding sites of the Ca2+-ATPase, respectively, indicated a 26% reduction (P < 0.05) in FITC binding capacity (absolute units) in I (0.22 +/- 0.01) compared with CC (0.29 +/- 0.02) and C (0.29 +/- 0.03). Our results suggest that the reduction in maximal SR Ca2+-ATPase activity in SR vesicles with ischemia is related to structural modification in the region of the nucleotide binding domain by mechanisms that are as yet unclear.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada M5S 1A1
| | | | | | | | | |
Collapse
|
32
|
van Hall G, Calbet JA, Søndergaard H, Saltin B. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. J Physiol 2001; 536:963-75. [PMID: 11691888 PMCID: PMC2278893 DOI: 10.1111/j.1469-7793.2001.00963.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Accepted: 07/04/2001] [Indexed: 11/29/2022] Open
Abstract
1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood lactate and net lactate release from the active leg to an extent similar to that observed in acute hypoxia, independent of work intensity. 2. Six Danish lowlanders (25-26 years) were studied during graded incremental bicycle exercise under four conditions: at sea level breathing either ambient air (0 m normoxia) or a low-oxygen gas mixture (10 % O(2) in N(2), 0 m acute hypoxia) and after 9 weeks of acclimatization to 5260 m breathing either ambient air (5260 m chronic hypoxia) or a normoxic gas mixture (47 % O(2) in N(2), 5260 m acute normoxia). In addition, one-leg knee-extensor exercise was performed during 5260 m chronic hypoxia and 5260 m acute normoxia. 3. During incremental bicycle exercise, the arterial lactate concentrations were similar at sub-maximal work at 0 m acute hypoxia and 5260 m chronic hypoxia but higher compared to both 0 m normoxia and 5260 m acute normoxia. However, peak lactate concentration was similar under all conditions (10.0 +/- 1.3, 10.7 +/- 2.0, 10.9 +/- 2.3 and 11.0 +/- 1.0 mmol l(-1)) at 0 m normoxia, 0 m acute hypoxia, 5260 m chronic hypoxia and 5260 m acute normoxia, respectively. Despite a similar lactate concentration at sub-maximal and maximal workload, the net lactate release from the leg was lower during 0 m acute hypoxia (peak 8.4 +/- 1.6 mmol min(-1)) than at 5260 m chronic hypoxia (peak 12.8 +/- 2.2 mmol min(-1)). The same was observed for 0 m normoxia (peak 8.9 +/- 2.0 mmol min(-1)) compared to 5260 m acute normoxia (peak 12.6 +/- 3.6 mmol min(-1)). Exercise after acclimatization with a small muscle mass (one-leg knee-extensor) elicited similar lactate concentrations (peak 4.4 +/- 0.2 vs. 3.9 +/- 0.3 mmol l(-1)) and net lactate release (peak 16.4 +/- 1.8 vs. 14.3 mmol l(-1)) from the active leg at 5260 m chronic hypoxia and 5260 m acute normoxia. 4. In conclusion, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude.
Collapse
Affiliation(s)
- G van Hall
- The Copenhagen Muscle Research Centre, University Hospital, Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
33
|
Abstract
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal "drive" based on force recordings. Some of the changes in motor cortical behavior can be dissociated from the development of this "supraspinal" fatigue. Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle. Some intrinsic adaptive properties of the motoneurons help to minimize fatigue. A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control. Human muscle fatigue does not simply reside in the muscle.
Collapse
Affiliation(s)
- S C Gandevia
- Prince of Wales Medical Research Institute, Prince of Wales Hospital and University of New South Wales, Randwick, Sydney, Australia.
| |
Collapse
|
34
|
Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 2001; 204:3225-34. [PMID: 11581338 DOI: 10.1242/jeb.204.18.3225] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
An enduring hypothesis in exercise physiology holds that a limiting cardiorespiratory function determines maximal exercise performance as a result of specific metabolic changes in the exercising skeletal muscle, so-called peripheral fatigue. The origins of this classical hypothesis can be traced to work undertaken by Nobel Laureate A. V. Hill and his colleagues in London between 1923 and 1925. According to their classical model, peripheral fatigue occurs only after the onset of heart fatigue or failure. Thus, correctly interpreted, the Hill hypothesis predicts that it is the heart, not the skeletal muscle, that is at risk of anaerobiosis or ischaemia during maximal exercise. To prevent myocardial damage during maximal exercise, Hill proposed the existence of a ‘governor’ in either the heart or brain to limit heart work when myocardial ischaemia developed. Cardiorespiratory function during maximal exercise at different altitudes or at different oxygen fractions of inspired air provides a definitive test for the presence of a governor and its function. If skeletal muscle anaerobiosis is the protected variable then, under conditions in which arterial oxygen content is reduced, maximal exercise should terminate with peak cardiovascular function to ensure maximum delivery of oxygen to the active muscle. In contrast, if the function of the heart or some other oxygen-sensitive organ is to be protected, then peak cardiovascular function will be higher during hyperoxia and reduced during hypoxia compared with normoxia. This paper reviews the evidence that peak cardiovascular function is reduced during maximal exercise in both acute and chronic hypoxia with no evidence for any primary alterations in myocardial function. Since peak skeletal muscle electromyographic activity is also reduced during hypoxia, these data support a model in which a central, neural governor constrains the cardiac output by regulating the mass of skeletal muscle that can be activated during maximal exercise in both acute and chronic hypoxia.
Collapse
Affiliation(s)
- T D Noakes
- Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Sports Science Institute of South Africa, PO Box 115, Newlands 7725, South Africa.
| | | | | |
Collapse
|
35
|
Clanton TL, Klawitter PF. Invited review: Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. J Appl Physiol (1985) 2001; 90:2476-87. [PMID: 11356816 DOI: 10.1152/jappl.2001.90.6.2476] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia (IH) describes conditions of repeated, transient reductions in O2 that may trigger unique adaptations. Rest periods during IH may avoid potentially detrimental effects of long-term O2 deprivation. For skeletal muscle, IH can occur in conditions of obstructive sleep apnea, transient altitude exposures (with or without exercise), intermittent claudication, cardiopulmonary resuscitation, neonatal blood flow obstruction, and diving responses of marine animals. Although it is likely that adaptations in these conditions vary, some patterns emerge. Low levels of hypoxia shift metabolic enzyme activity toward greater aerobic poise; extreme hypoxia shifts metabolism toward greater anaerobic potential. Some conditions of IH may also inhibit lactate release during exercise. Many related cellular phenomena could be involved in the response, including activation of specific O2 sensors, reactive oxygen and nitrogen species, preconditioning, hypoxia-induced transcription factors, regulation of ion channels, and influences of paracrine/hormonal stimuli. The net effect of a variety of adaptive programs to IH may be to preserve contractile function and cell integrity in hypoxia or anoxia, a response that does not always translate into improvements in exercise performance.
Collapse
Affiliation(s)
- T L Clanton
- Department of Internal Medicine (Pulmonary and Critical Care Division), Dorothy Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
36
|
Grassi B, Mognoni P, Marzorati M, Mattiotti S, Marconi C, Cerretelli P. Power and peak blood lactate at 5050 m with 10 and 30 s 'all out' cycling. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 172:189-94. [PMID: 11472305 DOI: 10.1046/j.1365-201x.2001.00857.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anecdotal observations suggest that the reduction in peak lactate accumulation in blood ([La]b peak) after exhausting exercise, in chronic hypoxia vs. normoxia, may be related to the duration of the exercise protocol, being less pronounced after short supramaximal exercise than after incremental exercise (IE) lasting several minutes. To test this hypothesis, six healthy male Caucasians (age 36.8 +/- 7.3, X +/- SD) underwent three exercise protocols on a cycle ergometer, at sea level (SL) and after 21 +/- 10 days at 5050 m altitude (ALT): (1) 10 s, (2) 30 s 'all out' exercise and (3) IE leading to exhaustion in approximately 20-25 min. 'Average' power output (P) was calculated for 10 or 30 s 'all out'; maximal power output (Pmax) was determined for IE. Lactate concentration in arterialized capillary blood ([La]b) was measured at rest and at different times during recovery; the highest [La]b during recovery was taken as [La]b peak. No significant differences in P were observed between SL and ALT, for either 10 or 30 s 'all out' exercise; Pmax during IE was significantly lower at ALT than at SL. [La]b peak after 10 s 'all out' was unaffected by chronic hypoxia (7.0 +/- 0.9 at ALT vs. 6.3 +/- 1.8 mmol x L(-1) at SL). After 30 s 'all out' the [La]b peak decrease, at ALT (10.6 +/- 0.6 mmol x L(-1)) vs. SL (12.9 +/- 1.4 mmol x L(-1)), was only approximately 50% of that observed for IE (6.7 +/- 1.6 mmol x L(-1) vs. 11.3 +/- 2.8 mmol x L(-1)). Muscle power output and blood lactate accumulation during short supramaximal exercise are substantially unaffected by chronic hypoxia.
Collapse
Affiliation(s)
- B Grassi
- Istituto di Tecnologie Biomediche Avanzate, Consiglio Nazionale delle Ricerche, Segrate, Milan, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Lundby C, Saltin B, van Hall G. The 'lactate paradox', evidence for a transient change in the course of acclimatization to severe hypoxia in lowlanders. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:265-9. [PMID: 11450136 DOI: 10.1046/j.1365-201x.2000.00785.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metabolic response to exercise at high altitude is different from that at sea level, depending on the altitude, the rate of ascent and duration of acclimatization. One apparent metabolic difference that was described in the 1930s is the phenomenon referred to as the 'lactate paradox'. Acute exposure to hypoxia results in higher blood lactate accumulation at submaximal workloads compared with sea level, but peak blood lactate remain the same. Following continued exposure to hypoxia or altitude, blood lactate accumulation at submaximal work and peak blood lactate levels are paradoxically reduced compared with those at sea level. It has recently been shown, however, that, if the exposure to altitude is sufficiently long, blood lactate responses return to those seen at sea level or during acute hypoxia. Thus, to evaluate the 'lactate paradox' phenomenon in relation to time spent at altitude, five Danish lowland climbers were studied at sea level, during acute exposure to hypoxia (10% O2 in N2) and 1, 4 and 6 weeks after arrival in the basecamp of Mt Everest (approximately 5400 m, Nepal). Basecamp was reached after 10 days of gradual ascent from 2800 m. Peak blood lactate levels were similar at sea level (11.0 +/- 0.7 mmol L-1) and during acute hypoxia (9.9 +/- 0.3 mmol L-1), but fell significantly after 1 week of acclimatization to 5400 m (5.6 +/- 0.5 mmol L-1) as predicted by the 'lactate paradox'. After 4 weeks of acclimatization, peak lactate accumulation (7.8 +/- 1.0 mmol L-1) was still lower compared with acute hypoxia but higher than that seen after 1 week of acclimatization. After 6 weeks of acclimatization, 2 days after return to basecamp after reaching the summit or south summit of Mt Everest, peak lactate levels (10.4 +/- 1.1 mmol L-1) were similar to those seen during acute hypoxia. Therefore, these results suggest that the 'lactate paradox' is a transient metabolic phenomenon that is reversed during a prolonged period of exposure to severe hypoxia of more than 6 weeks.
Collapse
Affiliation(s)
- C Lundby
- Copenhagen Muscle Research Centre, Rigshospitalet Section 7652, 9 Blegdamsvej, DK-2100, Copenhagen Ø, Denmark
| | | | | |
Collapse
|
38
|
Scheuermann BW, Kowalchuk JM, Paterson DH, Taylor AW, Green HJ. Muscle metabolism during heavy-intensity exercise after acute acetazolamide administration. J Appl Physiol (1985) 2000; 88:722-9. [PMID: 10658043 DOI: 10.1152/jappl.2000.88.2.722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CA) inhibition is associated with a lower plasma lactate concentration ([La(-)](pl)), but the mechanism for this association is not known. The effect of CA inhibition on muscle high-energy phosphates [ATP and phosphocreatine (PCr)], lactate ([La(-)](m)), and glycogen was examined in seven men [28 +/- 3 (SE) yr] during cycling exercise under control (Con) and acute CA inhibition with acetazolamide (Acz; 10 mg/kg body wt iv). Subjects performed 6-min step transitions in work rate from 0 W to a work rate corresponding to approximately 50% of the difference between the O(2) uptake at the ventilatory threshold and peak O(2) uptake. Muscle biopsies were taken from the vastus lateralis at rest, at 30 min postinfusion, at end exercise (EE), and at 5 and 30 min postexercise. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for [La(-)](pl). ATP was unchanged from rest values; no difference between Con and Acz was observed. The fall in PCr from rest [72 +/- 3 and 73 +/- 3.6 (SE) mmol/kg dry wt for Con and Acz, respectively] to EE (51 +/- 4 and 46 +/- 5 mmol/kg dry wt for Con and Acz, respectively) was similar in Con and Acz. At EE, glycogen (mmol glucosyl units/kg dry wt) decreased to similar values in Con and Acz (307 +/- 16 and 300 +/- 19, respectively). At EE, no difference was observed in [La(-)](m) between conditions (46 +/- 6 and 43 +/- 5 mmol/kg dry wt for Con and Acz, respectively). EE [La(-)](pl) was higher during Con than during Acz (11.4 +/- 1.0 vs. 8.2 +/- 0.6 mmol/l). The similar [La(-)](m) but lower [La(-)](pl) suggests that the uptake of La(-) by other tissues is enhanced after CA inhibition.
Collapse
Affiliation(s)
- B W Scheuermann
- Centre for Activity and Ageing, School of Kinesiology, The University of Western Ontario, London, Ontario N6A 3K7
| | | | | | | | | |
Collapse
|
39
|
Green H, Tupling R, Roy B, O'Toole D, Burnett M, Grant S. Adaptations in skeletal muscle exercise metabolism to a sustained session of heavy intermittent exercise. Am J Physiol Endocrinol Metab 2000; 278:E118-26. [PMID: 10644545 DOI: 10.1152/ajpendo.2000.278.1.e118] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the hypothesis that a single, extended session of heavy exercise would be effective in inducing adaptations in energy metabolism during exercise in the absence of increases in oxidative potential. Ten healthy males [maximal aerobic power (VO(2 peak)) = 43.4 +/- 2.2 (SE) ml x kg(-1) x min(-1)] participated in a 16-h training session involving cycling for 6 min each hour at approximately 90% of maximal oxygen consumption. Measurements of metabolic changes were made on tissue extracted from the vastus lateralis during a two-stage standardized submaximal cycle protocol before (Pre) and 36-48 h after (Post) the training session. At Pre, creatine phosphate (PCr) declined (P < 0.05) by 32% from 0 to 3 min and then remained stable until 20 min of exercise at 60% VO(2 peak) before declining (P < 0.05) by a further 35% during 20 min of exercise at 75% VO(2 peak). Muscle lactate (mmol/kg dry wt) progressively increased (P < 0.05) from 4.59 +/- 0.64 at 0 min to 17.8 +/- 2.7 and 30.9 +/- 5.3 at 3 and 40 min, respectively, whereas muscle glycogen (mmol glucosyl units/kg dry wt) declined (P < 0.05) from a rest value of 360 +/- 24 to 276 +/- 31 and 178 +/- 36 at similar time points. During exercise after the training session, PCr and glycogen were not as depressed (P < 0.05), and increases in muscle lactate were blunted (P < 0.05). All of these changes occurred in the absence of increases in oxidative potential as measured by the maximal activities of citrate synthase and malate dehydrogenase. These findings are consistent with other studies, namely, that muscle metabolic adaptations to regular exercise are an early adaptive event that occurs before increases in oxidative potential.
Collapse
Affiliation(s)
- H Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | | | | | | | | | |
Collapse
|
40
|
Tupling R, Green H, Grant S, Burnett M, Ranney D. Postcontractile force depression in humans is associated with an impairment in SR Ca(2+) pump function. Am J Physiol Regul Integr Comp Physiol 2000; 278:R87-94. [PMID: 10644625 DOI: 10.1152/ajpregu.2000.278.1.r87] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the hypothesis that intrinsic changes in sarcoplasmic reticulum (SR) Ca(2+)-sequestration function can be implicated in postcontractile depression (PCD) of force in humans, muscle tissue was obtained from the vastus lateralis and determinations of maximal Ca(2+) uptake and maximal Ca(2+)-ATPase activity were made on homogenates obtained before and after the induction of PCD. Eight untrained females, age 20.6+/-0.75 yr (mean +/- SE), performed a protocol consisting of 30 min of isometric exercise at 60% maximal voluntary contraction and at 50% duty cycle (5-s contraction and 5-s relaxation) to induce PCD. Muscle mechanical performance determined by evoked activation was measured before (0 min), during (15 and 30 min), and after (60 min) exercise. The fatiguing protocol resulted in a progressive reduction (P<0.05) in evoked force, which by 30 min amounted to 52% for low frequency (10 Hz) and 20% for high frequency (100 Hz). No force restoration occurred at either 10 or 100 Hz during a 60-min recovery period. Maximal SR Ca(2+)-ATPase activity (nmol x mg protein(-1) x min(-1)) and maximal SR Ca(2+) uptake (nmol. mg protein(-1) x min(-1)) were depressed (P<0.05) by 15 min of exercise [192+/-45 vs. 114+/-8.7 and 310+/-59 vs. 205+/-47, respectively; mean +/- SE] and remained depressed at 30 min of exercise. No recovery in either measure was observed during the 60-min recovery period. The coupling ratio between Ca(2+)-ATPase and Ca(2+) uptake was preserved throughout exercise and during recovery. These results illustrate that during PCD, Ca(2+) uptake is depressed and that the reduction in Ca(2+) uptake is due to intrinsic alterations in the Ca(2+) pump. The role of altered Ca(2+) sequestration in Ca(2) release, cytosolic-free calcium, and PCD remains to be determined.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
41
|
Goreham C, Green HJ, Ball-Burnett M, Ranney D. High-resistance training and muscle metabolism during prolonged exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E489-96. [PMID: 10070015 DOI: 10.1152/ajpendo.1999.276.3.e489] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the hypothesis that changes in muscle submaximal exercise metabolism would occur as a result of fiber hypertrophy, induced by high-resistance training (HRT), active but untrained males (age 20 +/- 0.7 yr; mean +/- SE) performed lower-limb weight training 3 days/wk for 12 wk using three sets of 6-8 repetitions maximal (RM)/day. Muscle metabolism was examined at different stages of training (4, 7, and 12 wk) using a two-stage continuous cycle test performed at the same absolute power output and duration (56.4 +/- 2.9 min) and representing 57 and 72% of pretraining peak aerobic power (VO2 peak). Compared with pretraining, at the end of exercise, HRT resulted in a higher (P < 0.05) phosphocreatine (PCr; 27.4 +/- 6. 7 vs. 38.0 +/- 1.9 mmol/kg dry wt), a lower lactate (38.9 +/- 8.5 vs. 24.4 +/- 6.1 mmol/kg dry wt), and a higher (P < 0.05) glycogen content (132 +/- 11 vs. 181 +/- 7.5 mmol glucosyl units/kg dry wt). The percent change from rest before and after training was 63 and 50% for PCr, 676 and 410% for lactate, and 60 and 43% for glycogen, respectively. These adaptations, which were observed only at 72% VO2 peak, occurred by 4 wk of training in the case of PCr and glycogen and before any changes in fiber cross-sectional area, capillarization, or oxidative potential. Fiber hypertrophy, observed at 7 and 12 wk of training, failed to potentiate the metabolic response. No effect of HRT was found on VO2 peak with training (41.2 +/- 2.9 vs. 41.0 +/- 2.1 ml. kg-1. min-1) or on the steady-state, submaximal exercise rate of oxygen consumption. It is concluded that the HRT results in muscle metabolic adaptations that occur independently of fiber hypertrophy.
Collapse
Affiliation(s)
- C Goreham
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
42
|
Weston AR, Karamizrak O, Smith A, Noakes TD, Myburgh KH. African runners exhibit greater fatigue resistance, lower lactate accumulation, and higher oxidative enzyme activity. J Appl Physiol (1985) 1999; 86:915-23. [PMID: 10066705 DOI: 10.1152/jappl.1999.86.3.915] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nine African and eight Caucasian 10-km runners resident at sea level volunteered. Maximal O2 consumption and peak treadmill velocity (PTV) were measured by using a progressive test, and fatigue resistance [time to fatigue (TTF)] was measured by using a newly developed high-intensity running test: 5 min at 72, 80, and 88% of individual PTV followed by 92% PTV to exhaustion. Skeletal muscle enzyme activities were determined in 12 runners and 12 sedentary control subjects. In a comparison of African and Caucasian runners, mean 10-km race time, maximal O2 consumption, and PTV were similar. In African runners, TTF was 21% longer (P < 0.01), plasma lactate accumulation after 5 min at 88% PTV was 38% lower (P < 0.05), and citrate synthase activity was 50% higher (27.9 +/- 7.5 vs. 18.6 +/- 2.1 micromol. g wet wt-1. min-1, P = 0.02). Africans accumulated lactate at a slower rate with increasing exercise intensity (P < 0.05). Among the entire group of runners, a higher citrate synthase activity was associated with a longer TTF (r = 0.70, P < 0.05), a lower plasma lactate accumulation (r = -0.73, P = 0.01), and a lower respiratory exchange ratio (r = -0.63, P < 0.05). We conclude that the African and Caucasian runners in the present study differed with respect to oxidative enzyme activity, rate of lactate accumulation, and their ability to sustain high-intensity endurance exercise.
Collapse
Affiliation(s)
- A R Weston
- Medical Research Council/University of Cape Town Bioenergetics of Exercise Research Unit, Department of Physiology, Cape Town 7925, South Africa.
| | | | | | | | | |
Collapse
|
43
|
NOAKES TIMOTHYDAVID. Maximal oxygen uptake: "classical" versus "contemporary" viewpoints: a rebuttal. Med Sci Sports Exerc 1998. [DOI: 10.1249/00005768-199809000-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Abstract
Bassett and Howley contend that the 1996 J. B. Wolffe lecture is erroneous because: 1) A. V. Hill did establish the existence of the "plateau phenomenon," 2) the maximum oxygen consumption (VO2max) is limited by the development of anaerobiosis in the active muscle, and 3) endurance performance is also determined by skeletal muscle anaerobiosis because the VO2max is the best predictor of athletic ability. As a result, 4) cardiovascular and not skeletal muscle factors determine endurance performance. They further contend that Hill's "scientific hunches were correct," requiring "only relatively minor refinements" in the past 70 yr. But the evidence presented in this rebuttal shows that Hill neither sought nor believed in either the "plateau phenomenon" or the concept of the individual maximum oxygen consumption. These twin concepts were created by Taylor et al. (97) in 1955 and erroneously attributed to Hill. Rather Hill believed that there was a universal human VO2max of 4 L x min(-1). His error resulted from his incorrect belief that the real VO2 unmeasurable because it includes a large "anaerobic component," rose exponentially at running speeds greater than 13.2 km x h(-1). But Hill and his colleagues were indeed the first to realize the danger that a plateau in cardiac output (CO) and hence in VO2 would pose for the heart itself. For unlike skeletal muscle, the pumping capacity of the heart is both dependent on, but also the determinant of, its own blood supply. Thus, if the CO reaches a peak causing the "plateau phenomenon," the immediate cause of that peak will have been a plateau in myocardial oxygen delivery, causing a developing myocardial ischemia. The ischemia must worsen as exercise continues beyond the supposed VO2 "plateau." To accommodate this dilemma, Hill and his colleagues proposed a governor "either in the heart muscle or in the nervous system" necessary to prevent myocardial ischemia developing during maximal exercise. This governor would cause maximal exercise to terminate before the development of a plateau in either coronary flow, CO, or VO2, or the onset of skeletal muscle anaerobiosis. Accordingly, a new physiological model is proposed in which skeletal muscle recruitment is regulated by a central "governor" specifically to prevent the development of a progressive myocardial ischemia that would precede the development of skeletal muscle anaerobiosis during maximum exercise. As a result cardiovascular function "limits" maximum exercise capacity, probably as a result of a limiting myocardial oxygen delivery. The model is compatible with all the published findings of cardiovascular function during exercise in hypobaric hypoxia, in which there is a greater likelihood that myocardial hypoxia will develop.
Collapse
Affiliation(s)
- T D Noakes
- Department of Exercise and Sports Science, Medical Research Council, University of Cape Town, Sports Science Institute of South Africa, Newlands
| |
Collapse
|
45
|
McClelland GB, Hochachka PW, Weber JM. Carbohydrate utilization during exercise after high-altitude acclimation: a new perspective. Proc Natl Acad Sci U S A 1998; 95:10288-93. [PMID: 9707640 PMCID: PMC21501 DOI: 10.1073/pnas.95.17.10288] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At high altitude (HA), carbohydrate (CHO) is thought to be the preferred fuel because of its higher yield of ATP per mole of O2. We used indirect calorimetry and D-[6-3H]glucose infusions to determine total CHO and circulatory glucose utilization during exercise in HA-acclimated and sea level (SL) rats. We hypothesized that the percent contribution of CHO to total metabolism (VO2) is determined by exercise intensity relative to an aerobic maximum (% VO2max). HA rats run under hypoxia (FIO2 = 0.12) showed a decrease in VO2max compared with SL (67.55 +/- 1.26 vs. 89.30 +/- 1.23 ml kg-1 min-1). When exercised at 60% of their respective VO2max, both groups showed the same relative use of CHO (38 +/- 3% and 38 +/- 5% of VO2, at the beginning of exercise, in HA and SL, respectively). In both HA and SL, circulatory glucose accounted for approximately 20% of VO2, the balance was provided by muscle glycogen (approximately 18% of VO2). After 20 min at a higher intensity of 80% VO2max, 54 +/- 5% (HA) and 59 +/- 4% (SL) of VO2 was accounted for by CHO. We conclude the following: (i) the relative contributions of total CHO, circulatory glucose, and muscle glycogen do not increase after HA acclimation because the O2-saving advantage of CHO is outweighed by limited CHO stores; and (ii) relative exercise intensity is the major determinant of metabolic fuel selection at HA, as well as at SL.
Collapse
Affiliation(s)
- G B McClelland
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | |
Collapse
|
46
|
West JB. Physiology of Extreme Altitude. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
|
48
|
|
49
|
Hochachka PW. Metabolic Defense Adaptations to Hypobaric Hypoxia in Man. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
|