1
|
Crystal GJ, Pagel PS. Perspectives on the History of Coronary Physiology: Discovery of Major Principles and Their Clinical Correlates. J Cardiothorac Vasc Anesth 2025; 39:220-243. [PMID: 39278733 DOI: 10.1053/j.jvca.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Coronary circulation plays an essential role in delivering oxygen and metabolic substrates to satisfy the considerable energy demand of the heart. This article reviews the history that led to the current understanding of coronary physiology, beginning with William Harvey's revolutionary discovery of systemic blood circulation in the 17th century, and extending through the 20th century when the major mechanisms regulating coronary blood flow (CBF) were elucidated: extravascular compressive forces, metabolic control, pressure-flow autoregulation, and neural pathways. Pivotal research studies providing evidence for each of these mechanisms are described, along with their clinical correlates. The authors describe the major role played by researchers in the 19th century, who formulated basic principles of hemodynamics, such as Poiseuille's law, which provided the conceptual foundation for experimental studies of CBF regulation. Targeted research studies in coronary physiology began in earnest around the turn of the 20th century. Despite reliance on crude experimental techniques, the pioneers in coronary physiology made groundbreaking discoveries upon which our current knowledge is predicated. Further advances in coronary physiology were facilitated by technological developments, including methods to measure phasic CBF and its regional distribution, and by biochemical discoveries, including endothelial vasoactive molecules and adrenergic receptor subtypes. The authors recognize the invaluable contribution made by basic scientists toward the understanding of CBF regulation, and the enormous impact that this fundamental information has had on improving clinical diagnosis, decision-making, and patient care.
Collapse
Affiliation(s)
- George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL.
| | - Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
2
|
Crystal GJ, Metwally AA, Salem MR. Isoflurane preserves central nervous system blood flow during intraoperative cardiac tamponade in dogs. Can J Anaesth 2014; 51:1011-7. [PMID: 15574553 DOI: 10.1007/bf03018490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The present study tested the hypothesis that the anesthetic technique will influence the changes in regional blood flow (RBF) during intraoperative cardiac tamponade. METHODS Twenty-four dogs were divided into three equal groups: Group I, anesthesia was maintained with ketamine (25 mg.kg(-1).hr(-1)); Group II, with fentanyl and midazolam (F-M; 10 mug.kg(-1).hr(-1) and 0.5 mg.kg(-1).hr(-1), respectively); Group III with 1 minimum alveolar concentration (MAC; 1.4%) isoflurane. Radioactive microspheres were used to measure RBF in myocardium, brain, spinal cord, abdominal viscera, skeletal muscle and skin. Cardiac output (CO) was measured by thermodilution and arterial pressure with a catheter situated in the thoracic aorta. Catheters were introduced into the pericardial cavity to infuse isotonic saline and to measure intrapericardial pressure (IPP). Measurements were obtained under control conditions and during tamponade, as defined by an increase in IPP sufficient to reduce mean arterial pressure by 40%. RESULTS Tamponade caused decreases in CO and RBF that were comparable under the three anesthetics, except that RBF in subcortical regions of the brain and in the spinal cord were maintained under isoflurane but decreased under ketamine or F-M. CONCLUSIONS In dogs, intraoperative cardiac tamponade caused comparable changes in RBF under the different anesthetic techniques except that autoregulation was effective in maintaining RBF within the central nervous system only under isoflurane anesthesia. Our findings provide no compelling reason to recommend one anesthetic over the others for maintenance of anesthesia in situations with increased risk for intraoperative cardiac tamponade. However, they cannot be extrapolated to anesthesia induction in the presence of cardiac tamponade.
Collapse
Affiliation(s)
- George J Crystal
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 West Wellington Avenue, Chicago, Illinois 60657-5193, USA.
| | | | | |
Collapse
|
3
|
Chatpun S, Cabrales P. Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander. Korean Circ J 2014; 44:105-12. [PMID: 24653740 PMCID: PMC3958604 DOI: 10.4070/kcj.2014.44.2.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Increased vascular wall shear stress by elevated plasma viscosity significantly enhances the endothelial nitric oxide synthase (eNOS) activity during an acute isovolemic hemodilution. Also the modulation of plasma viscosity has effects on the cardiac function that were revealed if a left ventricular (LV) pressure-volume (PV) measurement was used. The aim of this study was to assess cardiac function responses to nitric oxide synthase (NOS) inhibitors with the presence of an elevated plasma viscosity but a low hematocrit level. Furthermore, systemic parameters were monitored in a murine model. MATERIALS AND METHODS As test group five anesthetized hamsters were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, whereas five other hamsters were used as control group without L-NAME infusion. The dosage of L-NAME was 10 mg/kg. An isovolemic hemodilution was performed by 40% of estimated blood volume with 6% w/v dextran 2000 kDa, high viscosity plasma expanders (PEs) with viscosity 6.34 cP. LV function was measured and assessed using a 1.4 Fr PV conductance catheter. RESULTS The study results demonstrated that NOS inhibition prevented the normal cardiac adaptive response after hemodilution. The endsystolic pressure increased 14% after L-NAME infusion and maintained higher than at the baseline after hemodilution, whereas it gradually decreased in the animals without L-NAME infusion. The admission of L-NAME significantly decreased the maximum rate of ventricular pressure rise (+dP/dtmax), stroke volume and cardiac output after hemodilution if compared to the control group (p<0.05). CONCLUSION This finding supports the presumption that nitric oxide induced by an increased plasma viscosity with the use of a high viscosity PE plays a major role in the cardiac function during an acute isovolemic hemodilution.
Collapse
Affiliation(s)
- Surapong Chatpun
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA
| |
Collapse
|
4
|
Umbrello M, Dyson A, Feelisch M, Singer M. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching. Antioxid Redox Signal 2013; 19:1690-710. [PMID: 23311950 DOI: 10.1089/ars.2012.4979] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow--hypoxic vasodilation--occur in an attempt to restore oxygen supply. Nitric oxide (NO) is a major signaling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). RECENT ADVANCES This review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of NO, and mechanisms underlying the involvement of NO in hypoxic vasodilation. Recent insights into NO metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite (NO₂⁻) reductases, and release of NO from storage pools. The processes through which NO levels are elevated during hypoxia are presented, namely, (i) increased synthesis from NO synthases, increased reduction of NO₂⁻ to NO by heme- or pterin-based enzymes and increased release from NO stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. CRITICAL ISSUES Several reviews covered modulation of energetic metabolism by NO, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression. FUTURE DIRECTIONS We identify a key position for NO in the body's adaptation to an acute energy supply-demand mismatch.
Collapse
Affiliation(s)
- Michele Umbrello
- 1 Department of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London , London, United Kingdom
| | | | | | | |
Collapse
|
5
|
Ray CJ, Marshall JM. Nitric oxide (NO) does not contribute to the generation or action of adenosine during exercise hyperaemia in rat hindlimb. J Physiol 2009; 587:1579-91. [PMID: 19204054 DOI: 10.1113/jphysiol.2008.163691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exercise hyperaemia is partly mediated by adenosine A(2A)-receptors. Adenosine can evoke nitric oxide (NO) release via endothelial A(2A)-receptors, but the role for NO in exercise hyperaemia is controversial. We have investigated the contribution of NO to hyperaemia evoked by isometric twitch contractions in its own right and in interaction with adenosine. In three groups of anaesthetized rats the effect of A(2A)-receptor inhibition with ZM241385 on femoral vascular conductance (FVC) and hindlimb O(2) consumption at rest and during isometric twitch contractions (4 Hz) was tested (i) after NO synthase inhibition with l-NAME, and when FVC had been restored by infusion of (ii) an NO donor (SNAP) or (iii) cell-permeant cGMP. Exercise hyperaemia was significantly reduced (32%) by l-NAME and further significantly attenuated by ZM241385 (60% from control). After restoring FVC with SNAP or 8-bromo-cGMP, l-NAME did not affect exercise hyperaemia, but ZM241385 still significantly reduced the hyperaemia by 25%. There was no evidence that NO limited muscle during contraction. These results indicate that NO is not required for adenosine release during contraction and that adenosine released during contraction does not depend on new synthesis of NO to produce vasodilatation. They also substantiate our general hypothesis that the mechanisms by which adenosine contributes to muscle vasodilatation during systemic hypoxia and exercise are different: we propose that, during muscle contraction, adenosine is released from skeletal muscle fibres independently of NO and acts directly on A(2A)-receptors on the vascular smooth muscle to cause vasodilatation.
Collapse
|
6
|
Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide. Can J Anaesth 2008; 55:507-14. [DOI: 10.1007/bf03016670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
El Hasnaoui-Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, Léon-Velarde F, Richalet JP, Duvallet A, Favret F. Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol (1985) 2007; 103:1506-12. [PMID: 17690195 DOI: 10.1152/japplphysiol.00486.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.
Collapse
Affiliation(s)
- R El Hasnaoui-Saadani
- Université Paris 13, EA 2363 Réponses cellulaires et fonctionnelles à l'hypoxie, ARPE, 93017 Bobigny, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shibata M, Qin K, Ichioka S, Kamiya A. Vascular wall energetics in arterioles during nitric oxide-dependent and -independent vasodilation. J Appl Physiol (1985) 2006; 100:1793-8. [PMID: 16497835 DOI: 10.1152/japplphysiol.01632.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to evaluate whether the nitric oxide (NO) released from vascular endothelial cells would decrease vessel wall oxygen consumption by decreasing the energy expenditure of mechanical work by vascular smooth muscle. The oxygen consumption rate of arteriolar walls in rat cremaster muscle was determined in vivo during NO-dependent and -independent vasodilation on the basis of the intra- and perivascular oxygen tension (Po2) measured by phosphorescence quenching laser microscopy. NO-dependent vasodilation was induced by increased NO production due to increased blood flow, whereas NO-independent vasodilation was induced by topical administration of papaverine. The energy efficiency of vessel walls was evaluated by the variable ratio of circumferential wall stress (amount of mechanical work) to vessel wall oxygen consumption rate (energy cost) in the arteriole between normal and vasodilated conditions. NO-dependent and -independent dilation increased arteriolar diameters by 13 and 17%, respectively, relative to the values under normal condition. Vessel wall oxygen consumption decreased significantly during both NO-dependent and -independent vasodilation compared with that under normal condition. However, vessel wall oxygen consumption during NO-independent vasodilation was significantly lower than that during NO-dependent vasodilation. On the other hand, there was no significant difference between the energy efficiency of vessel walls during NO-dependent and -independent vasodilation, suggesting the decrease in vessel wall oxygen consumption produced by NO to be related to reduced mechanical work of vascular smooth muscle.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
9
|
Shibata M, Ichioka S, Kamiya A. Nitric oxide modulates oxygen consumption by arteriolar walls in rat skeletal muscle. Am J Physiol Heart Circ Physiol 2005; 289:H2673-9. [PMID: 16040716 DOI: 10.1152/ajpheart.00420.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the role of nitric oxide (NO) in regulating oxygen consumption by vessel walls, the oxygen consumption rate of arteriolar walls in rat cremaster muscle was measured in vivo during flow-induced vasodilation and after inhibiting NO synthesis. The oxygen consumption rate of arteriolar walls was calculated based on the intra- and perivascular Po2values measured by phosphorescence quenching laser microscopy. The perivascular Po2value of the arterioles during vasodilation was significantly higher than under control conditions, although the intravascular Po2values under both conditions were approximately the same. Inhibition of NO synthesis, on the other hand, caused a significant increase in arterial blood pressure and a significant decrease in arteriolar diameter. Inhibition of NO synthesis also caused a significant decrease in both the intra- and perivascular Po2values of the arterioles. Inhibition of NO synthesis increased the oxygen consumption rate of the vessel walls by 42%, whereas enhancement of flow-induced NO release decreased it by 34%. These results suggest that NO plays an important role not only as a regulator of peripheral vascular tone but also as a modulator of tissue oxygenation by reducing oxygen consumption by vessel walls. In addition, enhancement of NO release during exercise may facilitate efficient oxygen supply to the surrounding high metabolic tissue.
Collapse
Affiliation(s)
- Masahiro Shibata
- Dept. of Biomedical Engineering, Graduate School of Medicine, Univ. of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
10
|
Ruan Z, Koizumi T, Sakai A, Ishizaki T, Wang Z. Endogenous nitric oxide and pulmonary circulation response to hypoxia in high-altitude adapted Tibetan sheep. Eur J Appl Physiol 2004; 93:190-5. [PMID: 15316790 DOI: 10.1007/s00421-004-1197-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) is important for the pulmonary circulation response to acute and chronic hypoxia. We examined effects of endogenous nitric oxide synthase (NOS) inhibition on pulmonary vascular tone in response to hypoxia in Tibetan sheep dwelling at 3,000 m above sea level using a pressure chamber. Unanaesthetized male sheep living at 2,300 m above sea level ( n=7) were prepared for vascular monitoring. Pulmonary artery ( P(pa)), pulmonary artery wedge ( P(cwp)) and systemic artery pressures together with cardiac output (CO) were measured, and pulmonary vascular resistance (PVR) was calculated as ( P(pa)- P(cwp))/CO. A non-selective NOS inhibitor, N(omega)-nitro- l-arginine (NLA; 20 mg kg(-1)), and a selective NOS inhibitor, ONO-1714 (0.1 mg kg(-1)), were used and measurements were made at 0 m, 2,300 m, and 4,500 m, with and without the NOS inhibitors. After NLA, P(pa) increased slightly and CO decreased in animals at baseline (2,300 m). The increased PVR after NLA at 4,500 m was greater than that at 2,300 m ( P<0.05). Selective NOS inhibition increased PVR at baseline, but not at 4,500 m. The enhanced pulmonary vasoconstriction after NO inhibition at basal and hypoxic conditions suggests a modulating role of NOS bioactivity in the pulmonary circulation and that augmented endothelial NOS plays a counterregulatory role in the pulmonary vasoconstrictor response to acute hypoxia in high-altitude adapted Tibetan sheep.
Collapse
Affiliation(s)
- Zonghai Ruan
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi Matsumoto, 390-8621 Nagano, Japan
| | | | | | | | | |
Collapse
|
11
|
Price ER, Han F, Dick TE, Strohl KP. 7-nitroindazole and posthypoxic ventilatory behavior in the A/J and C57BL/6J mouse strains. J Appl Physiol (1985) 2003; 95:1097-104. [PMID: 12909599 DOI: 10.1152/japplphysiol.00166.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periodic breathing (PB) is a fundamental breathing pattern in many common cardiopulmonary illnesses. The finding of PB in C57BL/6J (B6) mice was previously ascribed to strain differences in posthypoxic ventilatory and frequency decline in the B6 mice (Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP. J Appl Physiol 92: 1133-1140, 2002). We tested whether the induction of posthypoxic frequency decline in A/J mice, through administration of a neuronal nitric oxide synthase blocker [7-nitroindazole (7-NI); 60 mg/kg], would cause A/J mice to exhibit PB and/or alter PB expression in the B6 strain. Recordings of ventilatory behavior by the plethysmography method were made when unanesthetized B6 (n = 10) or A/J (n = 6) animals were reoxygenated with 100% O2 or room air after exposure to 8% O2. Before undergoing gas challenges, mice were given an intraperitoneal injection of either peanut oil alone (vehicle) or 7-NI suspended in peanut oil. Compared with vehicle, both strains of mice exhibited posthypoxic frequency decline and the absence of short-term potentiation with 7-NI administration. B6 mice continued to exhibit posthypoxic PB; however, the PB was characterized by longer cycle and apnea length. In contrast, A/J mice did not show increased tendency toward posthypoxic PB with 7-NI. We conclude that 7-NI further differentiates the A/J and B6 strains in terms of PB and that strain-related differences in posthypoxic frequency decline are not primary determinants of this strain difference in the occurrence of PB. Metabolism was not associated with either the expression of posthypoxic ventilatory decline or PB. Furthermore, neuronal nitric oxide may be an organizing feature in the presence, length, and/or cycle length of apnea in the susceptible strain.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
12
|
Sander M, Welling KLK, Ravn JB, Boberg B, Amtorp O. Endogenous NO does not regulate baseline pulmonary pressure, but reduces acute pulmonary hypertension in dogs. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:269-77. [PMID: 12823185 DOI: 10.1046/j.1365-201x.2003.01140.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED It has remained unclear whether endogenous production of nitric oxide (NO) plays an important role in the regulation of physiologically normal pulmonary pressures. Severe alveolar hypoxia is accompanied by decreased pulmonary NO production, which could contribute to the development of hypoxic pulmonary hypertension. On the other hand, pharmacological NO inhibition further augments this hypertensive response. AIMS The aims of the present study were to test: (a) whether NO contributes importantly in the maintenance of baseline pulmonary pressure; and (b) to which degree NO is involved in the pulmonary haemodynamic adjustments to alveolar hypoxia. METHODS In anaesthetized dogs (n=37), the systemic and pulmonary haemodynamic effects of the NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, 20 mg kg(-1)) and substrate, L-arginine (200-500 mg kg(-1)), were determined at baseline and during alveolar hypoxia. Constant blood flows were accomplished by biventricular bypass, and systemic normoxaemia was maintained by extracorporeal oxygenation. RESULTS The primary findings were: (a) L-NAME failed to increase baseline mean pulmonary arterial pressure (10.1 +/- 0.7 vs. 10.5 +/- 0.5 mmHg, P=ns), despite effective NO synthase inhibition as evidenced by robust increases in systemic arterial pressures; (b) L-NAME augmented the pulmonary hypertensive response to alveolar hypoxia (10.2 +/- 0.7 to 19.5 +/- 1.7 with L-NAME vs. 9.9 +/- 1.1 to 15.5 +/- 1.0 mmHg without L-NAME, P<0.05); and (c) L-arginine failed to decrease baseline or elevated pulmonary pressures. Instead, prolonged L-arginine caused increases in pulmonary pressure. CONCLUSION These findings suggest that NO plays no significant role in the tonic physiological control of pulmonary pressure, but endogenous NO becomes an important vasodilatory modulator during elevated pulmonary pressure.
Collapse
Affiliation(s)
- M Sander
- Cardiovascular Research Laboratory, University of Copenhagen, Gentofte Hospital, Denmark
| | | | | | | | | |
Collapse
|
13
|
Carlsson PO, Jansson L, Palm F. Unaltered oxygen tension in rat pancreatic islets despite dissociation of insulin release and islet blood flow. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:275-81. [PMID: 12444933 DOI: 10.1046/j.1365-201x.2002.01049.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated the importance of a tightly regulated islet blood flow for an optimal oxygenation of the islet tissue during different demands for insulin release. Glucose and/or a non-specific nitric oxide synthase inhibitor (L-NNA) were infused intravenously in non-pretreated or vagotomized rats and the animals were subjected to measurements of islet blood flow, oxygen tension and serum insulin concentrations. Islet blood flow was measured using a non-radioactive microsphere technique, tissue oxygen tension was recorded with Clark microelectrodes and insulin concentrations were determined by enzyme-linked immunosorbent assay technique. Administration of L-NNA (0.3 mg kg(-1) min(-1)) for 10 min halved basal islet blood flow, but did not affect serum insulin concentrations. Glucose administration (10 mg kg(-1) min(-1)) induced a marked increase in islet blood flow, which could be prevented by vagotomy or L-NNA. The serum insulin concentrations increased in all glucose-infused animals. The islet tissue oxygen tension remained similar in all animals despite these interventions. Reasons other than oxygenation of the islet tissue must explain the normally existing tight regulation of islet blood flow.
Collapse
Affiliation(s)
- P-O Carlsson
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
14
|
Abstract
There is good evidence that nitric oxide has important autocrine/paracrine effects in the myocardium, serving to optimise and fine tune cardiac function
Collapse
Affiliation(s)
- J M Cotton
- Department of Cardiology, Guy's King's & St Thomas's School of Medicine, King's College London (Denmark Hill Campus), London, UK
| | | | | |
Collapse
|
15
|
Hoffman WE, Albrecht RF, Jonjev ZS. Myocardial tissue oxygen during coronary artery constriction and hypotension in dogs. Acta Anaesthesiol Scand 2002; 46:707-12. [PMID: 12059896 DOI: 10.1034/j.1399-6576.2002.460613.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sodium nitroprusside (SNP) may decrease myocardial tissue oxygenation in dogs with normal coronary arteries. We compared SNP- with desflurane-induced hypotension on myocardial tissue oxygen and pH in dogs with left anterior descending artery constriction. METHODS Twenty-four dogs were anesthetized with 8% desflurane for baseline anesthesia. Catheters were inserted into the femoral artery and vein and the coronary sinus. A flow probe and flow restriction device was placed on the left anterior descending (LAD) artery. A probe that measured myocardial oxygen pressure was inserted into the middle myocardium in the LAD region. Baseline measures were made of LAD artery flow, arterial and coronary sinus blood gases, and myocardial tissue gases. A 30% decrease in blood pressure was induced with SNP with unrestricted LAD flow (n=6) or when LAD artery flow was restricted by 30% from baseline (n=6). In separate dogs, a 30% decrease in blood pressure was produced with 14 +/- 1% desflurane with unrestricted LAD flow (n=6) or with baseline LAD artery flow restricted by 30% (n=6). RESULTS During SNP-induced hypotension with no LAD constriction, LAD artery flow and coronary sinus oxygen tension increased but myocardial tissue oxygen tension (PmO2) decreased by 40%. When baseline artery flow was decreased by 30% by LAD constriction, SNP-induced hypotension decreased tissue oxygen pressure by 80%, and ischemic acidosis was produced. During unrestricted LAD artery flow or with a 30% flow restriction, desflurane-induced hypotension produced no significant change from baseline myocardial tissue oxygen tension or pH. CONCLUSION During coronary artery constriction, desflurane-induced hypotension maintained myocardial tissue oxygenation and pH better than did SNP-induced hypotension. The divergence between tissue and coronary sinus oxygen tension during SNP suggests that arteriovenous shunting may occur.
Collapse
Affiliation(s)
- William E Hoffman
- Department of Anesthesiology, University of Illinois at Chicago and West Side Veterans Administration, Chicago, IL, USA.
| | | | | |
Collapse
|
16
|
Traverse JH, Chen Y, Hou M, Bache RJ. Inhibition of NO production increases myocardial blood flow and oxygen consumption in congestive heart failure. Am J Physiol Heart Circ Physiol 2002; 282:H2278-83. [PMID: 12003838 DOI: 10.1152/ajpheart.00504.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronary blood flow (CBF) and myocardial oxygen consumption (MVO(2)) are reduced in dogs with pacing-induced congestive heart failure (CHF), which suggests that energy metabolism is downregulated. Because nitric oxide (NO) can inhibit mitochondrial respiration, we examined the effects of NO inhibition on CBF and MVO(2) in dogs with CHF. CBF and MVO(2) were measured at rest and during treadmill exercise in 10 dogs with CHF produced by rapid ventricular pacing before and after inhibition of NO production with N(G)-nitro-L-arginine (L-NNA, 10 mg/kg iv). The development of CHF was accompanied by decreases in aortic and left ventricular (LV) systolic pressure and an increase in LV end-diastolic pressure (25 +/- 2 mmHg). L-NNA increased MVO(2) at rest (from 3.07 +/- 0.61 to 4.15 +/- 0.80 ml/min) and during exercise; this was accompanied by an increase in CBF at rest (from 31 +/- 2 to 40 +/- 4 ml/min) and during exercise (both P < 0.05). Although L-NNA significantly increased LV systolic pressure, similar increases in pressure produced by phenylephrine did not increase MVO(2). The findings suggest that NO exerts tonic inhibition on respiration in the failing heart.
Collapse
Affiliation(s)
- Jay H Traverse
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
17
|
Hoffman WE, Albrecht RF, Jonjev ZS. Sodium nitroprusside-induced, but not desflurane-induced, hypotension decreases myocardial tissue oxygenation in dogs anesthetized with 8% desflurane. J Cardiothorac Vasc Anesth 2002; 16:286-9. [PMID: 12073197 DOI: 10.1053/jcan.2002.124134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To compare sodium nitroprusside (SNP)-induced hypotension with desflurane-induced hypotension for the effects on myocardial blood flow and tissue oxygenation in dogs. DESIGN Prospective, randomized, crossover, nonblinded. SETTING University teaching hospital. PARTICIPANTS Male nonpurpose-bred hounds (n = 8). INTERVENTIONS Dogs were anesthetized with 8% desflurane. Catheters were inserted into the femoral artery and coronary sinus. A flow probe was placed in the left anterior descending (LAD) branch of the coronary artery. A sensor that measured myocardial oxygen pressure (PmO(2)) was inserted into the myocardium of the left ventricle. Myocardial oxygen consumption (MVO(2)) was calculated as LAD flow x arterial - coronary sinus oxygen content. MEASUREMENTS AND MAIN RESULTS Measurements were made at baseline blood pressure levels of 99 mmHg (measure 1), during hypotension to 62 to 66 mmHg using intravenous SNP or 14% desflurane (measure 2), and during SNP or 14% desflurane with blood pressure support using phenylephrine (measure 3). Each dog randomly received both hypotensive treatments, separated by 1 hour. Baseline measures were PmO(2) = 46 +/- 9 mmHg, LAD flow = 43 +/- 11 mL/min, and MVO(2) = 2.47 +/- 0.73 mL O(2)/min. During hypotension induced with SNP, PmO(2) decreased 30% (p < 0.05), LAD flow increased 40% (p < 0.05), and MVO(2) did not change. During hypotension induced with 14% desflurane, PmO(2) did not change, and LAD flow and MVO(2) decreased 25% and 40% (p < 0.05). Blood pressure support with phenylephrine increased LAD flow and MVO(2) but did not change PmO(2) during SNP or 14% desflurane treatment. CONCLUSION SNP-induced hypotension produced myocardial vasodilation, but tissue oxygenation was impaired. PmO(2) was maintained during desflurane-induced hypotension.
Collapse
Affiliation(s)
- William E Hoffman
- Departments of Anesthesiology and Physiology, University of Illinois at Chicago, Chicago, IL60612, USA.
| | | | | |
Collapse
|
18
|
Kindig CA, McDonough P, Erickson HH, Poole DC. Effect of L-NAME on oxygen uptake kinetics during heavy-intensity exercise in the horse. J Appl Physiol (1985) 2001; 91:891-6. [PMID: 11457807 DOI: 10.1152/jappl.2001.91.2.891] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence that oxidative enzyme inertia plays a major role in limiting/setting the O(2) uptake (VO(2)) response at the transition to higher metabolic rates and also that nitric oxide (NO) competitively inhibits VO(2) within the electron transport chain. To investigate whether NO is important in setting the dynamic response of VO(2) at the onset of high-intensity (heavy-domain) running in horses, five geldings were run on a treadmill across speed transitions from 3 m/s to speeds corresponding to 80% of peak VO(2) with and without nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor (20 mg/kg; order randomized). L-NAME did not alter (both P > 0.05) baseline (3 m/s, 15.4 +/- 0.3 and 16.2 +/- 0.5 l/min for control and L-NAME, respectively) or end-exercise VO(2) (56.9 +/- 5.1 and 55.2 +/- 5.8 l/min for control and L-NAME, respectively). However, in the L-NAME trial, the primary on-kinetic response was significantly (P < 0.05) faster (i.e., reduced time constant, 27.0 +/- 2.7 and 18.7 +/- 3.0 s for control and L-NAME, respectively), despite no change in the gain of VO(2) (P > 0.05). The faster on-kinetic response was confirmed independent of modeling by reduced time to 50, 63, and 75% of overall VO(2) response (all P < 0.05). In addition, onset of the VO(2) slow component occurred earlier (124.6 +/- 11.2 and 65.0 +/- 6.6 s for control and L-NAME, respectively), and the magnitude of the O(2) deficit was attenuated (both P < 0.05) in the L-NAME compared with the control trial. Acceleration of the VO(2) kinetics by L-NAME suggests that NO inhibition of mitochondrial VO(2) may contribute, in part, to the intrinsic metabolic inertia evidenced at the transition to higher metabolic rates in the horse.
Collapse
Affiliation(s)
- C A Kindig
- Department of Anatomy, Kansas State University, Manhattan, Kansas 66506-5602, USA
| | | | | | | |
Collapse
|
19
|
Kline DD, Yang T, Premkumar DR, Thomas AJ, Prabhakar NR. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol (1985) 2000; 88:1496-508. [PMID: 10749847 DOI: 10.1152/jappl.2000.88.4.1496] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the role of nitric oxide (NO) generated by endothelial nitric oxide synthase (NOS-3) in the control of respiration during hypoxia and hypercapnia was assessed using mutant mice deficient in NOS-3. Experiments were performed on awake and anesthetized mutant and wild-type (WT) control mice. Respiratory responses to 100, 21, and 12% O(2) and 3 and 5% CO(2)-balance O(2) were analyzed. In awake animals, respiration was monitored by body plethysmography along with O(2) consumption (VO(2)) and CO(2) production (VCO(2)). In anesthetized, spontaneously breathing mice, integrated efferent phrenic nerve activity was monitored as an index of neural respiration along with arterial blood pressure and blood gases. Under both experimental conditions, WT mice responded with greater increases in respiration during 12% O(2) than mutant mice. Respiratory responses to hyperoxic hypercapnia were comparable between both groups of mice. Arterial blood gases, changes in blood pressure, VO(2), and VCO(2) during hypoxia were comparable between both groups of mice. Respiratory responses to cyanide and brief hyperoxia were attenuated in mutant compared with WT mice, indicating reduced peripheral chemoreceptor sensitivity. cGMP levels in the brain stem during 12% O(2), taken as an index of NO production, were greater in mutant compared with WT mice. These observations demonstrate that NOS-3 mutant mice exhibit selective blunting of the respiratory responses to hypoxia but not to hypercapnia, which in part is due to reduced peripheral chemosensitivity. These results support the idea that NO generated by NOS-3 is an important physiological modulator of respiration during hypoxia.
Collapse
Affiliation(s)
- D D Kline
- Department, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|